## SUNIL KUMAR SINHA (\*)

# On two new characterizations of the Fourier transform for distributions (\*\*)

#### 1 - Introduction

Pandey and Pathak [6] introduced the distributional Fourier transform F(n) of the generalized function  $f \in F'(I)$ ,  $I = (-\pi, \pi)$  as

(1.1) 
$$F(n) = \langle f(t), \psi_n(t) \rangle \quad (n = 0, 1, 2, ...)$$

 $\psi_n(t)$  be the eigenfunctions defined by

and, of course,  $\psi_n(t)$  be the eigen functions of the Sturm-Liouville problem

(1.3) 
$$\frac{d^2 y}{dt^2} + \lambda y = 0 \qquad y(-\pi) = y(\pi) \qquad y'(-\pi) = y'(\pi)$$

and eigenvalues be

$$(1.4) \ldots \lambda_n = n^2.$$

<sup>(\*)</sup> Indirizzo: Department of Mathematics, Tata College, Chaibasa, Singhbhum, IND-Bihar-833202.

<sup>(\*\*)</sup> Ricevuto: 10-IV-1987.

F'(I) is the dual of testing function space F(I) defined in 2 of this paper. In the present paper we give two new characterizations of the Fourier transform for distributions by the help of dilatations  $U_n$  and the exponential shifts  $T^{-p}$  introduced earlier by E. Gesztalyi [4]. It is interesting to note here that Gesztelyi considered two transformations viz., dilatations  $U_n$  and exponential shifts  $T^{-p}$  which are defined for ordinary functions f, complex number p and positive integer n by

$$(1.5) U_n f(t) = nf(nt)$$

(1.6) 
$$T^{-p} f(t) = e^{-pt} f(t) .$$

Gesztelyi shows that whenever the sequence  $\{u_nf\}$  converges (in the sense of Mikusinski-convergence [5]) the limit is necessary a complex number. Also he proved that if f is a function which has Laplace transform at p, then the sequence of functions  $\{U_nT^{-p}f(t)\}$  converges (in the Mikusinski sense) as  $n\to\infty$  to the classical Laplace transform of f at p. He then defined the Laplace transform of a Mikusinski operator x as the limit (whenever it exist in the sense of Mikusinski convergence) of the sequence  $\{U_nT^{-p}x\}$  and shows that his definition generalizes the previous formulation of the Laplace transform of Mikusinski operator of G. Doetsch [3] and V. A. Ditkin [1], [2].

In 1975, D.B. Price [7] working on the same line shows that whenever f is a distribution such that the sequence  $\{U_n f\}$  converges as  $n \to \infty$  to a distribution h, then h must be a linear combination of the delta distribution and the distribution p.v. 1/t. Moreover, if  $\{U_n T^{-p} f\}$  converges for two complex numbers with different real parts then the limit must be a constant multiple of delta distribution. Price [7] also defined the Laplace transform of a distribution f using sequence of the form  $\{U_n T^{-p} f\}$  and showed that the new definition is equivalent to the Schwartz's extension of the transform to distributions. He also introduced spaces B and  $B_0$  and their duals B' and  $B'_0$ . In fact,  $B_0$  is a subspace of  $B(\mathbb{R}^n)$  (or, where  $R^n$  is understood, by B, the space of all complex valued functions of an ndimensional real variable  $t = (t_1, t_2, ..., t_n)$  which possesses continuous and bounded partial derivatives of all orders) consisting of those functions in B each of whose derivatives, approaches to zero as  $|t| \to \infty$ . Whereas  $B'_0$  (the dual of  $B_0$ ) is a subspace of  $\mathcal{D}'$  and a distribution f in  $B'_0$  is completely determined by its values on  $\mathcal{D}$ . Price [7] also showed that each distribution f on  $B'_0$  has a unique extension  $\hat{f}$  in B' and that the sequence  $\{U_i f\}$  converges to  $\langle f, 1 \rangle \delta$  whenever f is in  $B_0'$ .

Recently working on the same lines the present author Sinha [8] has introduced new characterizations of the Mellin, Stieltjes, K, Hankel, Maijer-Laplace and finite Sturm-Liouville transform for distributions.

#### 2 - The testing function space F(I) and its dual F'(I)

The testing function space F(I),  $I = (-\pi, \pi)$  consists of complex valued  $C^{\infty}$  functions  $\phi(t)$  defined over I satisfying the conditions

The topology over F(I) is generated by the sequence of seminorms  $\{\gamma_k\}_{k=0}^{\infty}$  ([9], p. 8) and the concept of convergence and completeness over F(I) is defined in the usual way. F'(I) denotes the dual of F(I).

### 3 - Two new characterizations of the Fourier transform

In this section we give two new characterizations of the Fourier transform for one-dimensional distributions.

We will say that a distribution f is Fourier transformable if there is an open interval  $(\alpha, \beta)$  such that whenever  $p = -\frac{1}{t}\log\psi_n(t)$   $(n=0, 1, 2, ..., t \neq 0)$ , a complex number,  $\operatorname{Re} p \in (\alpha, \beta)$ ,  $T^{-p}f$  is a distribution in  $B_0'$  where  $B_0'$  is the dual of  $B_0$ , a subspace of  $\mathscr{D}'$  as defined in [7] and  $\psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville problem (1.3) with eigenvalue (1.4).

If  $(\alpha, \beta)$  is the largest such open interval then the set  $\Omega = \{p : \text{Re } p \in (\alpha, \beta)\}$  is called *the domain of definition* of the Fourier transform for f.

If f is a Fourier transformable distribution where the transform has domain of definition  $\Omega$ , then for  $p \in \Omega$ , we define the Fourier transform  $\mathscr{F}[f](p)$  of f at p by

(3.1) 
$$\mathscr{F}[f](p) = \frac{1}{\phi(0)} \lim_{j \to \infty} \langle U_j T^{-p} f, \phi \rangle$$

where  $\phi$  is a test function in  $\mathcal{D}$  with  $\phi(0) \neq 0$ .

We have another characterization also as

(3.2) 
$$\mathscr{F}[f](p) = \langle T^{-p}f, 1 \rangle$$

where  $p = -\frac{1}{t} \log \psi_n(t)$ ,  $t \neq 0$ ,  $n = 0, 1, 2, ..., \psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville problem (1.3) with eigenvalue (1.4). From (3.2) we see that  $\mathscr{F}[f](p)$  is a complex valued function of complex variable p with domain  $\Omega$ .

#### 4 - Linearity of $\mathcal{F}$

The mapping  $\mathscr{F}$  is linear. For, if f and g are distributions that are Fourier transformable at p and a and b are complex numbers then (af+bg) is Fourier transformable at p and

(4.1) 
$$\mathscr{F}[af + bg](p) = \langle T^{-p}(af + bg), 1 \rangle$$
$$= \{ a \langle T^{-p}f, 1 \rangle + b \langle T^{-p}g, 1 \rangle \} = a \mathscr{F}[f](p) + b \mathscr{F}[g](p) .$$

#### 5 - Analicity of F

Theorem 5.1. If f is a distribution that is Fourier transformable in  $\Omega$  then  $\mathcal{F}[f](p)$  is analytic function of p in  $\Omega$  and

(5.1) 
$$\frac{\mathrm{d}}{\mathrm{d}p} \, \mathcal{F}[f](p) = \, \mathcal{F}[-tf(t)](p) \; .$$

Proof. Here  $\Omega = \{p : \text{Re } p \in (\alpha, \beta)\}$  and also  $p = -\frac{1}{t} \log \psi_n(t)$   $(t \neq 0, n = 0, 1, 2, ...)$  and  $\psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville Problem (1.3) with eigenvalue (1.4).

We choose  $p_0 \in \Omega$  and  $\varepsilon \in (0, 1)$  such that  $\varepsilon < \min\{\operatorname{Re} p_0 - \alpha, \beta - \operatorname{Re} p_0\}$ . If  $\lambda(t) = e^{\varepsilon t} + e^{-\varepsilon t}$  then  $\frac{1}{\lambda} \varepsilon S \subset B_0$  and  $(\lambda T^{-p_0} f) \in B_0'$ . Also whenever  $|p - p_0| < \varepsilon$  we

have

$$\frac{\mathscr{F}[f](p) - \mathscr{F}[f](p_0)}{p - p_0} = \left\langle \frac{e^{-pt} - e^{-p_0t}}{p - p_0} f(t), \ 1(t) \right\rangle = \left\langle \lambda(t) e^{-p_0t} f(t), \ \frac{1}{\lambda(t)} \left[ \frac{e^{-(p - p_0)t} - 1}{p - p_0} \right] \right\rangle 
= \left\langle \lambda(t) e^{-p_0t} f(t), \ \frac{-t}{\lambda(t)} + \frac{(p - p_0) t^2}{\lambda(t)} \sum_{j=2}^{\infty} \frac{\left[ -(p - p_0) t \right]^{j-2}}{j!} \right\rangle.$$

Here each derivative is

$$\frac{t^2}{\lambda(t)} \sum_{j=2}^{\infty} \frac{[-(p-p_0)\,t]^{j-2}}{j!}$$

is bounded in absolute value away from zero by the corresponding derivative of  $\frac{t^2}{\lambda(t)} \exp|(p-p_0)\,t|$  and is therefore in S (defined in [7]). Thus as  $p \to p_0$ 

$$\begin{split} \frac{1}{\lambda(t)} \left| \frac{\mathrm{e}^{-(p-p_0)t} - 1}{p - p_0} \right| & \text{converges in } B_0 \text{ to } \frac{-t}{\lambda(t)} \text{ and we have} \\ \frac{\mathrm{d}}{\mathrm{d}p_0} \, \mathscr{F}[f](p_0) &= \lim_{p \to p_0} \, \frac{\mathscr{F}[f](p) - \, \mathscr{F}[f](p_0)}{p - p_0} = \left\langle \lambda(t) \, T^{-p_0} f(t), \, \frac{-t}{\lambda(t)} \right\rangle \\ &= \left\langle T^{-p_0}[-tf(t)], \, 1(t) \right\rangle = \, \mathscr{F}[-tf(t)](p) \; . \end{split}$$

#### 6 - Treatment of the convolution of two distributions

Statement. If f and g are Fourier transformable distributions such that the domain of their respective transform have intersection  $\Omega$ , then (f\*g) is Fourier transformable in  $\Omega$  and for every  $p \in \Omega$  we have

$$\mathcal{F}[f*g](p) = \mathcal{F}[f](p)*\mathcal{F}[g](p) .$$

Proof. Here  $\Omega = \{p: \alpha < \text{Re } p < \beta\}$ . If  $p = -\frac{1}{t} \log \psi_n(t) \in \Omega$  is a complex number  $(t \neq 0, n = 0, 1, 2, ...)$  and  $\psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville problems (1.3) with eigenvalue (1.4), then  $T^{-p}f$  and  $T^{-p}g$  are both in  $B'_0$ . So by the Lemma 2.3 (p. 20) of [7] we have  $T^{-p}f * T^{-p}g = T^{-p}(f * g)$  is in  $B'_0$ . Thus (f \* g) is Fourier transformable at p, from (3.2) and the definition of the

convolution we get

$$\mathscr{F}[f*g](p) = \langle T^{-p}(f*g), 1 \rangle = \langle T^{-p}f*T^{-p}g, 1 \rangle = \langle T^{-p}f(t) \otimes T^{-p}g(\tau), 1(t+\tau) \rangle$$
$$= \langle T^{-p}f(t) \otimes T^{-p}g(\tau), 1(t) 1(\tau) \rangle = \langle T^{-p}f, 1 \rangle \langle T^{-p}g, 1 \rangle = \mathscr{F}[f](p) \mathscr{F}[g](p).$$

#### 7 - Inversion and uniqueness theorms for Fourier transform

In the present section we will state a Theorem 7.1 which includes both inversion and uniqueness theorems as its corollary.

In what follows we will have as an independent variable at several times and the real variable t and the real and immaginary parts of the complex variable

$$p=-\frac{1}{t}\log \psi_n(t)$$
  $(t\neq 0,\ n=0,\ 1,\ 2,\ \ldots)$  and  $\psi_n(t)$  be the eigenfunctions (1.2) of the

Sturm-Liouville problem (1.3) with eigenvalue (1.4). For this reason we will sometime indicate the particular independent variable  $\eta$  for a space or an operator by a subscript e.g.,  $\langle f(\eta), e^{-i\omega\eta} \rangle_{\eta}$  where  $f(\eta) \in B_{0}$  and  $\omega$  is a parameter.

Theorem 7.1. If f is a distribution in  $B'_{0}$ , then

(7.1.1) 
$$f(t) = \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} e^{i\omega t} \langle f(\eta), e^{-i\omega \eta} \rangle_{\eta} d\omega$$

where the limit is taken in  $\mathcal{D}'_t$ .

Proof. The integral in (7.1-1) is well defined because  $\langle f(\eta), e^{-i\omega\eta} \rangle_{\eta}$  is a continuous function of  $\omega$ . Let  $\phi \in \mathcal{D}_t$  and r be a positive real number. Then from the standard theorems on integration of distributions and test functions with respect to parameters, we have

$$\begin{split} & \langle \int_{-r}^{r} \mathrm{e}^{i\omega t} \langle f(\tau), \ \mathrm{e}^{-i\omega \eta} \rangle_{\eta} \, \mathrm{d}\omega, \ \phi(t) \rangle_{t} = \int_{-r}^{r} \langle \mathrm{e}^{-i\omega t} \langle f(\eta), \ \mathrm{e}^{-i\omega \eta} \rangle_{\eta}, \ \phi(t) \rangle_{t} \, \mathrm{d}\omega \\ & = \int_{-r}^{r} \langle f(\eta), \ \mathrm{e}^{-i\omega \eta} \rangle_{\eta} \langle \mathrm{e}^{i\omega t}, \ \phi(t) \rangle_{t} \, \mathrm{d}\omega = \int_{-r}^{r} \langle f(\eta), \ \langle \mathrm{e}^{i\omega(t-\eta)}, \ \phi(t) \rangle_{t} \rangle_{\eta} \, \mathrm{d}\omega \\ & = \langle f(\eta), \ \int_{-r}^{r} \langle \mathrm{e}^{i\omega(t-\eta)}, \ \phi(t) \rangle_{t} \, \mathrm{d}\omega \rangle_{\eta} = \langle f(\eta), \ \int_{-r}^{r} \mathrm{e}^{-i\omega \eta} \int_{-\infty}^{\infty} \mathrm{e}^{i\omega t} \, \phi(t) \, \mathrm{d}t \, \mathrm{d}\omega \rangle_{\eta} \\ & = \langle f(\eta), \ \int_{-r}^{r} \mathrm{e}^{i\xi \eta} \, \tilde{\phi}(\xi) \, \mathrm{d}\xi \rangle_{\eta} \end{split}$$

where  $\xi = -\omega$  and  $\tilde{\phi}(\xi)$  is the Fourier transform of  $\phi(t)$ . Obviously as  $r \to \infty$   $\int_{-r}^{r} e^{i\omega\eta} \tilde{\phi}(\xi) d\xi \to 2\pi\phi(\eta) \text{ uniformly with respect to } \eta \text{ and similarly}$ 

$$\frac{\mathrm{d}^k}{\mathrm{d}\eta^k} \left[ \int_{-r}^r \mathrm{e}^{\mathrm{i}\xi\eta} \,\tilde{\phi}(\xi) \,\mathrm{d}\xi \right] = \int_{-r}^r (\mathrm{i}\xi)^k \,\mathrm{e}^{\mathrm{i}\xi\eta} \,\tilde{\phi}(\xi) \,\mathrm{d}\xi \to 2\pi\phi^{(k)}(\eta) \qquad \text{uniformly}$$

so the limit in  $B_{\eta}$  of  $\int_{-r}^{r} \mathrm{e}^{i\xi\eta} \tilde{\phi}(\xi) \,\mathrm{d}\xi$  as  $r \to \infty$  is  $2\pi \phi(\eta)$  and we have

$$\begin{split} & \left\langle \frac{1}{2\pi} \lim_{r \to \infty} \int\limits_{-r}^{r} \mathrm{e}^{i\omega t} \left\langle f(\eta), \; \mathrm{e}^{-i\omega\eta} \right\rangle_{\eta} \mathrm{d}\omega, \; \phi(t) \right\rangle \\ = & \frac{1}{2\pi} \left\langle f(\eta), \; \lim_{t \to \infty} \int\limits_{-r}^{r} \left\langle \mathrm{e}^{i\omega(t-\eta)}, \; \phi(t) \right\rangle_{t} \mathrm{d}\omega \right\rangle_{\eta} = & \frac{1}{2\pi} \left\langle f(\eta), \; 2\pi\phi(\eta) \right\rangle_{\eta} = \left\langle f(t), \; \phi(t) \right\rangle_{t} \; . \end{split}$$

Thus as distributions

$$f(t) = \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} e^{i\omega t} \langle f(\eta), e^{-i\omega \eta} \rangle_{\eta} d\omega.$$

There are three corollaries of the above theorem.

Corollary 1. If  $\sigma$  is a real number such that  $e^{-\sigma t}f(t)$  is in  $B_{0t}'$ , then as distributions

(7.1.2) 
$$f(t) = \lim_{r \to \infty} \frac{1}{2\pi i} \int_{q-ir}^{q+ir} e^{pt} \left\langle e^{-p\eta} f(\eta), 1(\eta) \right\rangle_{\eta} dp.$$

Proof. If  $e^{-at}f(t) \in B'_{0t}$  then as long as

$$\operatorname{Re} p = \sigma, \ \mathrm{e}^{-pt} f(t) \in B_{0t}', \ \mathrm{e}^{-\sigma t} f(t) = \frac{1}{2\pi} \lim_{r \to \infty} \int_{-\pi}^{\tau} \mathrm{e}^{i\omega t} \langle \mathrm{e}^{-\sigma \eta} f(\eta), \ \mathrm{e}^{-i\omega \eta} \rangle_{\eta} \, \mathrm{d}\omega \ .$$

Thus we have

$$f(t) = \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} e^{\sigma t} e^{i\omega t} \langle e^{-\sigma \eta} f(\eta), e^{-i\omega \eta} \rangle_{\eta} d\omega = \frac{1}{2\pi i} \lim_{r \to \infty} \int_{\sigma - ir}^{\sigma + ir} e^{pt} \langle e^{-p\eta} f(\eta), 1(\eta) \rangle_{\eta} dp .$$

Corollary 2. (Inversion theorem). If f is Fourier transformable in  $\Omega = \{p: \alpha < \operatorname{Re} p < \beta\}, \ p = -\frac{1}{t} \log \psi_n(t) \ (t \neq 0, \ n = 0, 1, 2, \ldots) \ and \ \psi_n(t) \ is the eigenfunctions (1.2) of the Sturm-Liouville problem (1.3) with eigenvalue (1.4), then as long as <math>\alpha < \sigma < \beta$ 

(7.1.3) 
$$f(t) \lim_{r \to \infty} \frac{1}{2\pi i} \int_{-\infty}^{\sigma+ir} e^{pt} \mathcal{F}[f](p) dp$$

where the limit is taken in  $\mathcal{D}'_{t}$ .

Corollary 3. (Uniqueness theorem). If f and g are Fourier transformable distributions such that

(7.1.4) 
$$\mathscr{F}[f](p) = \mathscr{F}[g](p)$$

on some vertical line in the common domain of the transform of f and g, then f = g as distributions.

8 - A sufficient condition that an analytic function F(p) be the Fourier transform of a distribution f(t) and characterization of the distribution

Statement. If F(p) is an analytic function for  $p = -\frac{1}{t} \log \psi_n(t)$  (n = 0, 1, 2, ...) in  $\Omega = {\sigma + i\omega : \alpha < \sigma < \beta}$  and is bounded in  $\Omega$  by a polynomial in  $\omega$  (or in |p|) then

(8.1) 
$$F(p) = \mathcal{F}[f](p)$$

where the distribution f(t) is defined by

(8.2) 
$$f(t) = \frac{1}{2\pi i} \lim_{r \to \infty} \int_{q-ir}^{q+ir} e^{pt} F(p) dp$$

for any fixed value of  $\sigma$  such that  $\sigma \in (\alpha, \beta)$ ,  $t \neq 0$  real number and  $\psi_n(t)$  be the eigenfunction (1.2) of the Sturm-Liouville problem (1.3) with eigenvalue (1.4).

Proof. We shall prove the above statement in the following four steps: Step 1: f is a distribution. Step 2: f is independent of the value of  $\sigma$ . Step 3:  $e^{-\sigma t} f(t) \in B'_{0_t}$  as long as  $\alpha < \sigma < \beta$ . Step 4:  $F(p) = \mathscr{F}[f](p) = \langle T^{-p}f, 1 \rangle$  for every p in  $\Omega$ .

Proofs of Steps 1, 2 and 3 are the same as given in [7], the only difference here is that we take  $p = -\frac{1}{t} \log \psi_n(t)$ .

We now proceed to give an outline of the proof of the last Step 4 as follows: in order to prove  $F(p) = \mathscr{F}[f](p) = \langle T^{-p}f, 1 \rangle$  for every  $p \in \Omega$  here  $p = -\frac{1}{t} \log \psi_n(t)$   $(t \neq 0, n = 0, 1, 2, ...)$  and  $\psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville problems (1.3) with the eigenvalue (1.4). As p is a complex number so we take  $p = \sigma + i\eta$  where  $\alpha < \sigma < \beta$  and suppose that  $\phi$  is a function in  $\mathscr{D}_t$  with  $\phi(0) = 1$  and such that the support of  $\phi$  is contained in (-1, 1). Then from [7] result if f is in  $B'_0$ , then  $\lim_{t \to \infty} U_j f = \langle f, 1 \rangle$ , where the limit is taken in  $\mathscr{D}'$ , we see that

(8.3) 
$$\langle e^{-pt} f(t), 1(t) \rangle = \lim_{i \to \infty} \langle U_i e^{-pt} f(t), \phi(t) \rangle$$

and starting from here we get the following results

(8.4) 
$$\lim_{j \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\sigma + i\omega) \left\langle e^{i(\omega \eta)}, \phi(\frac{t}{j}) \right\rangle d\omega$$

$$= \lim_{j \to \infty} \frac{(-1)^k}{j^{k-1}} \int_{-j}^{j} e^{-i\eta t} \frac{\phi^{(k)}(\frac{t}{j})}{j} F^{-1}[G(\omega)](t) dt .$$
(8.5) 
$$\lim_{j \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} F_2(\sigma + i\omega) \left\langle e^{i(\omega - \eta)t}, \phi(\frac{t}{j}) \right\rangle_t d\omega$$

$$= \lim_{j \to \infty} \int_{-\infty}^{\infty} e^{-i\eta t} \phi(\frac{t}{j}) F^{-1}[F_2(\sigma + i\omega)](t) dt$$

and hence we have

(8.6) 
$$\langle T^{-p}f, 1 \rangle = F(p) = \mathcal{F}[f](p) \qquad \alpha < \operatorname{Re} p < \beta.$$

# 9 - Some standard operation-transform formulae for the distributional Fourier transform

In this section we will introduce some standard transform formulae using the characterizations of the transform given in (3.1).

Let f be a Fourier transformable distribution whose transform has domain of definition  $\Omega = \{p: \alpha < \operatorname{Re} p < \beta\}$ , here  $p = -\frac{1}{t} \log \psi_n(t)$   $(n = 0, 1, 2, ..., t \neq 0)$  and  $\psi_n(t)$  be the eigenfunctions (1.2) of the Sturm-Liouville problem (1.3) with eigenvalue (1.4). Then  $f^{(1)}$  is also Fourier transformable in  $\Omega$ . To compute the transform of  $f^{(1)}$ , let  $\phi$  be a function in  $\mathscr D$  such that  $\phi(0) = 1$ ,  $\phi'(0) \neq 0$  and let j > 0 is an integer. Then if  $p \in \Omega$  we have

$$\begin{split} \langle \, U_j \, T^{-p_f(\mathbf{l})}, \; \, \phi \, \rangle &= \langle f^{(\mathbf{l})}(t), \; \, \mathrm{e}^{-pt} \, \phi(\frac{t}{j}) \, \rangle = \langle f(t), \; \, p \mathrm{e}^{-pt} \, \phi(\frac{t}{j}) - \frac{1}{j} \, \mathrm{e}^{-pt} \, \phi^{(\mathbf{l})}(\frac{t}{j}) \, \rangle \\ &= p \, \langle \, U_j \, T^{-p} f, \; \phi \, \rangle - \frac{1}{j} \, \langle \, U_j \, T^{-p} f, \; \phi^{(\mathbf{l})} \, \rangle \; . \end{split}$$

As  $j \to \infty$ , the term  $\frac{1}{j} \langle U_j T^{-p} f, \phi^{(1)} \rangle$  converges to zero and so from (3.1) we have

$$(9.1) \hspace{1cm} \mathscr{F}[f^{(1)}](p) = \lim_{j \to \infty} p \left\langle U_j T^{-p}, \ \phi \right\rangle = p \ \mathscr{F}[f](p) \ .$$

By induction we can prove that for every positive integer k

(9.2) 
$$\mathscr{F}[f^{(k)}](p) = p \,\mathscr{F}[f^{(k-1)}](p) = p^k \,\mathscr{F}[f](p) \;.$$

Another operation transform formula can be obtained from (5.1) viz.,

$$\mathscr{F}[-tf(t)](p) = \frac{\mathrm{d}}{\mathrm{d}p} \mathscr{F}[f](p) .$$

This formula can be extended by the method of induction, for every positive integer k to get

(9.3) 
$$\mathscr{F}[t^k f(t)](p) = (-1)^k \frac{\mathrm{d}^k}{\mathrm{d}p^k} \, \mathscr{F}[f](p) \; .$$

If f is Fourier transformable in  $\Omega$ , then  $f(t-\eta)$  is Fourier transformable in  $\Omega$  for every real number  $\eta$  and we have

$$\langle U_j T^{-p} f(t-\eta), \ \phi(t) \rangle = \langle f(t-\eta), \ e^{-pt} \phi(\frac{t}{j}) \rangle = \langle f(t), \ e^{-p(t-\eta)} / (\frac{t+\eta}{j}) \rangle$$

$$= e^{-p\eta} \langle U_j T^{-p} f(t), \ \phi(t+\eta) \rangle .$$

Now,  $\phi(t+\eta) \in \mathcal{D}$  and as long as  $\phi(\eta) \neq 0$ 

$$\lim_{j\to\infty} \mathrm{e}^{-p\eta} \langle U_j T^{-p} f(t), \ \phi(t+\eta) \rangle = \frac{1}{\phi(\eta)} \ \mathrm{e}^{-p\eta} \langle T^{-p} f, \ 1 \rangle \ \langle \delta(t), \ \phi(t+\eta) \rangle \ .$$

So we have

[11]

(9.4) 
$$\mathscr{F}[f(t-\eta)](p) = e^{-p\eta} \mathscr{F}[f](p) .$$

If q is a fixed complex number and if f is Fourier transformable in  $\Omega$  then  $e^{-qt}f(t)$  is Fourier transformable in  $\Omega'=\{p\colon \alpha-\operatorname{Re} q<\operatorname{Re} p<\beta-\operatorname{Re} q\}$  and we have

$$\langle U_i T^{-p}[e^{-qt}f(t)], \phi(t) \rangle = \langle U_i T^{-(p+q)}f, \phi \rangle$$
.

Thus, whenever  $p \in \Omega$ 

(9.5) 
$$\mathscr{F}[e^{-qt}f(t)](p) = \mathscr{F}[f](p+q).$$

If k is a fixed positive integer and f is Fourier transformable in  $\Omega$ , then  $(U_k f)$  is Fourier transformable in  $\Omega'' = \{p: k\alpha < \operatorname{Re} p < \beta k\}$ . For  $p \in \Omega''$  we have

$$\langle U_j T^{-p} \{ U_k f \}, \ \phi \rangle = \langle U_k f, \ \mathrm{e}^{-pt} \phi(\frac{t}{j}) \rangle = \langle f(t), \ \mathrm{e}^{(-p/k)t} \phi(\frac{t}{jk}) \rangle = \langle U_j T^{-p/k} f, \ \phi(\frac{t}{k}) \rangle \ .$$

As  $j \to \infty$ , this converges to  $\langle T^{-p/k}f, 1 \rangle \langle \delta, \phi \rangle$ . So we get the formula

(9.6) 
$$\mathscr{F}[U_k f](p) = \mathscr{F}[f](\frac{p}{k}).$$

#### References

- [1] V. A. DITKIN, On the theory of operational calculus, Pergamon Press, New York, 1965.
- [2] V. A. DITKIN and A. P. PRUDNIKOV, Integral transforms and operational calculus, Pergamon Press, New York, 1965.
- [3] G. DOETSCH, Hand bunch der Laplace-Transformation (I), Birkhauser, Verlag, Basel, 1950.
- [4] E. GESZTELYI, *Uber Lineare Operator transformationen*, Publ. Math. Debrecean 14 (1967), 169-206.
- [5] J. Mikusinski, Operational calculus, Pergamon Press, New York, 1959.
- [6] J. N. PANDAY and R. S. PATHAK, Eigenfunction expansion of generalized functions, Nagoya Math. J. 72 (1978), 1-25.
- [7] D. B. PRICE, On the Laplace transform for distribution, SIAM J. Math. Anal. 6 (1975), 49-80.
- [8] S. K. Sinha: [•]<sub>1</sub> On two new characterizations of the Mellin transform for distribution, J. Indian, Math. Soc. 47 (1983), 231-236 (issued in July 1986); [•]<sub>2</sub> On two new characterizations of the Stieltjes transform for distributions, Internat. J. Math. Math. Sci. 4 (1985), 719-723; [•]<sub>3</sub> On two new characterizations of the K transform for distributions, Proc. Nat. Acad. Sci., India Sect A (IV) 56 (1986), 341-349; [•]<sub>4</sub> On two new characterizations of the Henkel transform for distributions, J. Math. Phys. Sci. 22 (1988) (to appear); [•]<sub>5</sub> On two new characterizations of the Meijer-Laplace transform for distributions, Proc. Math. Soc., B.H.U. (1987) (to appear); [•]<sub>6</sub> On two new characterizations of the finite Sturm-Liouville transform for distributions, Rend. Mat. (1987) (to appear).
- [9] A. H. ZEMANIAN, Generalized integral transformations, Interscience Publishers, New York, 1968.

#### Abstract

Two new characterizations of the Fourier transform for distributions have been developed using dilatations  $U_n$  and the exponential shifts  $T^p$ . The standard theorems on analicity, uniqueness, invertibility and some standard operation transform formulas for the distributional Fourier transform are proved.

\*\*\*