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On two new characterizations

of the Fourier transform for distributions (%)

1 - Introduction

Pandey and Pathak [6] introduced the distributional Fourier transform F(n)
of the generalized function fe F'(I), I=(~=, =) as

1.1 Flr) = (fD), @) (n=0,1,2, ..)
¢n(f) be the eigenfunctions defined by

17V (27_r) for n=0

(1.2) e Da(®) = { cosnt/\/=  for n=2k

sinnt/\z  for n=2k—1 (k=1 2, ...)
and, of course, ¢,() be the eigen functions of the Sturm-Liouville problem

d2y
(1.3) F+Ay=0 Y(— =) = y(x) Y (—n) =y

and eigenvalues be

(1.4) WY
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F'(I) is the dual of testing function space F(I) defined in 2 of this paper.

In the present paper we give two new characterizations of the Fourier
transform for distributions by the help of dilatations U, and the exponential
shifts 777 introduced earlier by E. Gesztalyi [4]. It is interesting to note here
that Gesztelyi considered two transformations viz., dilatations U, and exponen-
tial shifts 77 which are defined for ordinary functions f, complex number p and
positive integer n by

1.5) U, f(t) = nfint)
(1.6) TP f6) = e () .

Gesztelyi shows that whenever the sequence {u,f} converges (in the sense of
Mikusinski-convergence [5]) the limit is necessary a complex number. Also he
proved that if fis a function which has Laplace transform at p, then the sequence
of functions {U, T "f(t)} converges (in the Mikusinski sense) as n—  to the
classical Laplace transform of f at p. He then defined the Laplace transform of a -
Mikusinski operator « as the limit (whenever it exist in the sense of Mikusinski
convergence) of the sequence {U,T " «} and shows that his definition generali-
zes the previous formulation of the Laplace transform of Mikusinski operator of
G. Doetsch [3] and V. A. Ditkin [1], [2].

In 1975, D.B. Price [7] working on the same line shows that whenever fis a
distribution such that the sequence {U, f} converges as n— « to a distribution A,
then 2 must be 2 linear combination of the delta distribution and the distribution
p.v. Ut. Moreover, if {U,T "f} converges for two complex numbers with
different real parts then the limit must be a constant multiple of delta
distribution. Price [7] also defined the Laplace transform of a distribution f using
sequence of the form {U, T""f} and showed that the new definition is equivalent
to the Schwartz’s extension of the transform to distributions. He also introduced
spaces B and B, and their duals B’ and B¢. In fact, B, is a subspace of B(R™) (or,
where R" is understood, by B, the space of all complex valued functions of an n-
dimensional real variable t= (¢, %, ..., t,) which possesses continuous and
bounded partial derivatives of all orders) consisting of those functions in B each
of whose derivatives, approaches to zero as |t| — . Whereas B} (the dual of B,)
is a subspace of &' and a distribution f in B is completely determined by its
values on J. Price [7] also showed that each distribution f on B} has a unique
extension f in B’ and that the sequence {U; f} converges to (f, 1) 8 whenever f
is in Bj.
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Recently working on the same lines the present author Sinha [8] has
introduced new characterizations of the Mellin, Stieltjes, K, Hankel, Maijer-
. Laplace and finite Sturm-Liouville transform for distributions.

2 - The testing function space F(J) and its dual F'(J)

The testing function space F(I), I =(—=, =) consists of complex valued C®
functions ¢(t) defined over I satisfying the conditions

@.1) 7d@) = sup [D*st) <o (k=0 1,2, ..).

The topology over F'(I) is generated by the sequence of seminorms {y;}i-o
([9], p. 8) and the concept of convergence and completeness over F(I) is defined
in the usual way. F'(I) denotes the dual of F(I).

3 - Two new characterizations of the Fourier transform

In this section we give two new characterizations of the Fourier transform
for one-dimensional distributions.
We will say that a distribution f is Fourier transformable if there is an open

interval («, B) such that whenever p= —%1og¢zn(t) n=0, 1, 2, ..., t#0), a

complex number, Rep € («, 8), T "f is a distribution in B; where B}, is the dual of
B, a subspace of &' as defined in [7] and ¢,(t) be the eigenfunctions (1.2) of the
Sturm-Liouville problem (1.8) with eigenvalue (1.4).

If (, ) is the largest such open interval then the setQ = {p: Rep e (a, f)} is
called the domain of definition of the Fourier transform for f.

If f is a Fourier transformable distribution where the transform has domain
of definition Q, then for p € 2, we define the Fourier transform F[fl(p) of fat p
by '

I R P
3.1) TR =565 dm (U T, ¢)

where ¢ is a test function in & with ¢(0) #0.
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We have another characterization also as
(3.2) T =(T"f, 1)

where p = ~% log¢,(D), t#0, n=0, 1, 2, ..., ¢,(t) be the eigenfunctions (1.2) of

the Sturm-Liouville problem (1.3) with eigenvalue (1.4). From (3.2) we see that
Fflp) is a complex valued function of complex variable p with domain Q.

4 - Linearity of &

The mapping & is linear. For, if f and g are distributions that are Fourier
transformable at p and @ and b are complex numbers then (af + bg) is Fourier
transformable at p and

4.1) Flaf + bglp) = (T "(af + by), 1)

={a(T"f, 1) +b{(T"g, 1)} =a Fflp)+ b Fglp) .

5 - Analicity of &

Theorem 5.1. If fis a distribution that is Fourier transformable in Q
then Ffl(p) is analytic function of p in Q and

5.1) % FIp) = FI- Ol -

Proof. HereQ={p: Repe(a, B)} and alsop = —~1t- log, @) ¢#0,n=0, 1,

2, ...) and ¢,(?) be the eigenfunctions (1.2) of the Sturm-Liouville Problem (1.3)
with eigenvalue (1.4).
We choose poeQ and € (0, 1) such that e<min{Repy—~«, g~ Repy}. If

M)=e*+e then %&S c By and (AT f) e B}. Also whenever |p—po| <c we



5] ON TWO NEW CHARACTERIZATIONS OF THE FOURIER TRANSFORM... 333

have
TP — T py) _ e —e a0t e -1
py— = - "D, 10) = (@ e A, )\(t) p— I
_ . (p po)t* & [— (p—po)t¥ 2
(M) e ™' fit), A(t) 0 Jzz 7 ).

Here each derivative is

B [~ —-pytF*
At o !

is bounded in absolute value away from zero by the corresponding derivative of

Ait) exp [(p —po)t| and is therefore in S (defined in [7]). Thus as p— p,
=~ —po)t _ _
ﬁ | : P _”po 1l converges in B, to 7(;% and we have
d g Fp) = FHp) _
. T Ao =1k A T-mA¢
qp; T W0 =lim EE SR = ) T, T

= (T P[- )], 1)) = F[-HfO)lp) .

6 - Treatment of the convolution of two distributions

Statement. If fand g are Fourier transformable distributions such that
the domain of their respective tramsform have intersection Q, then (fxg) is
Fourier transformable in Q and for every peQ we have

Ff+glp) = Fflp)« Flglp) .

Proof. Here Q= {p:a<Rep<pg}. If p=—%log¢n(t)e[2 is a complex

number (¢#0, n=0, 1, 2, ...) and ¢,(t) be the eigenfunctions (1.2) of the Sturm-
Liouville problems (1.3) with eigenvalue (1.4), then T°"f and T "g are both in
Bj. So by the Lemma 2.8 (p. 20) of [7] we have T " f+T " g=T "(fxg) is in Bj.
Thus (f+g) is Fourier transformable at p, from (3.2) and the definition of the
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convolution we get

Flf«glp) = (T P(fxg), 1) ={(T"f+«T g, 1) ={TfORT " g(x), 1(t+7))
=(T7fO®T"9(x), 101@) =(T"f, 1)(T"g, 1) = Fflp) Flglp) .

7 - Inversion and uniqueness theorms for Fourier transform

In the present section we will state a Theorem 7.1 which includes both
inversion and uniqueness theorems as its corollary.

In what follows we will have as an independent variable at several times and
the real variable ¢ and the real and immaginary parts of the complex variable

p= ———i— log¢ (&) E#0,n=0, 1, 2, ...) and ¢,(¢) be the eigenfunctions (1.2) of the

Sturm-Liouville problem (1.8) with eigenvalue (1.4). For this reason we will
sometime indicate the particular independent variable y for a space or an
operator by a subscript e.g., {f{r), e™7), where f() € B; and w is a parameter.

Theorem 7.1. If f is a distribution in Bg, then
1.1.1) f(t)=§1- lim [ e (fin), e, dw
T T L

where the limit is taken in P|.

Proof. The integral in (7.1-1) is well defined because (f(n), e™*7), is a
continuous function of w. Let ¢ € &, and r be a positive real number. Then from
the standard theorems on integration of distributions and test functions with
respect to parameters, we have

(S e 4f0e), €5, du, $O)= [ (™), €., 4(D)ed
= J () ), (e, s)udor= [ (fln), (€49, (D)), do

= (), [ (5, Yo}, = (fl), [ e [ g dtdu),

={flp), [e*§()de),

-r
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where {= —w and &) is the Fourier transform of ¢(f). Obviously as r— o«

fre"‘”‘ &(8) A8 — 27¢(n) uniformly with respect to » and similarly
& L ! . e T . .
Ed;’; [ [e®d®dsl= [ @&re™¢(&)dé— 27¢®(y)  uniformly

so the limit in B, of [ e®&@&)dE as r— o is 27¢(n) and we have

(5 lim _f e (fla), e77),dw, ¢(1)
_ Zin- <f(y})’ l}}‘g _f <eiw(t—n)’ ¢(t)>t dca>)T = él_,:;- <f(7))y 27r¢(77)>77 = (f(t)’ ¢(t)>t .

Thus as distributions

L

fo=-%

lim [ e (fl), &), do

There are three corollaries of the above theorem.

Corollary 1. If ¢ is a real number such that e f(t) is in By, then as
distributions

(1.1.2) fo=tm 2 e (e fla), 160),dp

a=ir

Proof. If e™f(t) e By, then as long as

1

Rep=q, e ”f(t)e B, efiH)= 5
7T

lim [ eefly), ), dor

Thus we have

o+ir

fO=lm [ ete(erfly), e ) du=o lim | eXe™ifly), 1), dp .

g7
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Corollary 2. (Inversion theorem). If f is Fourier tranmsformable in
0= {p: «<Rep<p), p=-—%—loggbn(t) ¢#0, n=0, 1, 2, ...) and &) is the

etgenfunctions (1.2) of the Sturm-Liowville problem (1.8) with eigenvalue (1.4),
then as long as a<a<p

chir

(7.1.3) S lim 21_1 J et Flpdp

where the limit is taken in 9.

Corollary 3. (Uniqueness theorem). If f and g are Fourier transformable
distributions such that

(7.1.4) Fflp) = Flglp)

on some vertical line in the common domain of the transform of f and g, then
f=g as distributions.

8 - A sufficient condition that an analytic function F(p) be the Fourier transform
of a distribution f{f) and characterization of the distribution

Statement. If F(p) is an analytic function for p = ——% log (&) (=0, 1,
2, ..M Q={c+iw: a <o <f} and is bounded in Q by a polynomial in w (or in
Ip|) then
8.1) F(p) = F[fl(p)

where the distribution f(t) is defined by

otir

8.2 fO)==lim [ *Fp)dp

o—ir

for any fized value of ¢ such that o € («, B), t#0 real number and L,(f) be the
eigenfunction (1.2) of the Sturm-Liouville problem (1.8) with eigenvalue (1.4).
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Proof. We shall prove the above statement in the following four steps:
Step 1: f is a distribution. Step 2: f is independent of the value of o.
Step 3: e™if(t) € B}, as long as a<o<B. Step 4 F(p)=F[flp)=(T""f, 1)
for every p in Q.

Proofs of Steps 1, 2 and 8 are the same as given in [7], the only difference here

is that we take p= —%— log ¢,.(D).

We now proceed to give an outline of the proof of the last Step 4 as follows: in
order to prove F(p) = F[flip)= (T "f, 1) for every peQ herep = ~—% log ¢, ()

##0,n=0,1, 2, ...) and &,(t) be the eigenfunctions (1.2) of the Sturm-Liouville
problems (1.3) with the eigenvalue (1.4). As p is a complex number so we take
p = o+ iy where a <o < and suppose that ¢ is a functionin &J, with ¢(0) =1 and
such that the support of ¢ is contained in (— 1, 1). Then from [7] result if f is in
By, then lim U;f=(f, 1), where the limit is taken in &', we see that

8.3) (ef(8), 1(h)) =1lim (U;e™f), ¢(®)

and starting from here we get the following results

(8.4) fm k[ Fie+io) (69, ¢h)) do
; (k)(t)
1 i
=1lim ( D je—"t J] F{G()] (®)dt .
(8.5) lim L [ Fyot i) (e, 55 do

=lim f e ¢<§)F-1[Fz<a + i)l () dt

and hence we have

(8.6) (T?f, 1) =F(p)= Fflp) a<Rep<g.
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9 - Some standard operation-transform formulae for the distributional Fourier
transform

In this section we will introduce some standard transform formulae using the
characterizations of the transform given in (3.1).
Let f be a Fourier transformable distribution whose transform has domain of

definition Q = {p: « <Rep <}, here p= —%— log¢,(t) m=0, 1, 2, ..., t#0) and

¢n(t) be the eigenfunctions (1.2) of the Sturm-Liouville problem (1.8) with
eigenvalue (1.4). Then @ is also Fourier transformable in Q. To compute the
transform of /¥, let ¢ be a function in & such that ¢(0)=1, $'(0) 0 and let j >0
is an integer. Then if peQ we have

(UT5, 8) = (200, e6D) = (), pers(5)—Temg0(hy)
=p{UT™S, ) =S {UT7F, 49) .
As j— oo, the term jl (U;T*f, $¥) converges to zero and so from (3.1) we have
©.1 FUUp) =limp(U; T, ¢) =p Ffl(p) .
By induction we can prove that for every positive integer k
(9.2) FPNp) =p FI* Np) = p* Ffp) .
Another operation transform formula can be obtained from (5.1) viz.,
FI-f0lp) = 3 TP .

This formula can be extended by the method of induction, for every positive
integer k to get

©9.3) FIEROND) = (— 1)"(%}"; FID) .
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If f is Fourier transformable in Q, then f{t — ) is Fourier transformable in Q
for every real number » and we have '

_ t+n
(U; TP fie =), ¢@®) = (ft—1), e_pt¢(§r)> = (ft), e””(t"*’)/(":;;‘/»

=e P (U; T f1), ¢(t+n)) .

Now, ¢(t+n) e & and as long as ¢(n)+#0

lim e (U; T A1), $(t+n)) =¢(%7) e (T Pf, 1) (6@®), ¢(t+ 1)) .

So we have
9.4) Fft—lp) = Fflp) .

If ¢ is a fixed complex number and if f is Fourier transformable in Q then
e %f(t) is Fourier transformable in Q' = {p: « —Reqg<Rep<p—Req} and we
have

(U;T"le™"f®)], ¢(B)) = (U;T-C*2f, ¢) .
Thus, whenever p e
(9.5) FlefOlp)= Fflp+9 .

If k is a fixed positive integer and f is Fourier transformable in Q, then (U,f) is
Fourier transformable in Q"= {p: ka <Rep <pBk}. For p € Q" we have

(U T7 (UL, 8) = (U, e4(20) = (1), PG} = (LT, 6(1) -
As j— oo, this conVergeS to (T7P%f, 1) (8, ¢). So we get the formula

9.6) TP = FHE) .
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Abstract

Two new characterizations of the Fourier transform for distributions have been

developed using dilatations U, and the exponential shifts T¢. The standard theorems on
analicity, uniqueness, invertibility and some standard operation transform formalas for
the distributional Fourier transform are proved.



