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S. DRAGOMIR and M. CAPURSI (¥)

On the topology of Landsberg spaces (*%)

1 - The main results

Let M be a Landsberg space, dim(M) =n, n=3. Let E: T(M)— M denoteits
Finsler energy; let =: V(M)— M be the natural projection, V(M) = T'(M)N\0. Let
Y T(M)— V(M) be the pullback of the tangent bundle T(M) by =. We denote by

| g the Riemann bundle metric of =~ T(M) induced by E, i.e. g(X;, X;) = gy, where

gij = %é" éjEi Xz(u) = (’U/, ail.—:(u))y U € V(M) éi = a/ayl 81- = a/é’mi.

Let V be the Cartan connection of (M, E) and N its non-linear connection on
V(M); let B: =7 'T(M)—> N be the corresponding horizontal lift, i.e. gX;=4¢;(i=1,
2, ..., n). Here 8= 8;— Nig;. Also Ni are given by the formula (18.15) in ref. [9];
(p. 118). Denote by y: z ! T(M )— Ker(dr) the mapping defined as follows: if

Xer1TWM), X = (i, v), then yX=%(0), where c¢: [0, 11— V(M) is the curve .

such that ¢(®) =u+tv, te[0, 1]. The Sasaki lift of g to V(M) is the Riemann
metric

(1.1) 9z, W)=g(LZ, LW)+g(GZ, GW)

where Lal = Xi, La.,, = O, Gé\z = O, Gél = Xi. Let Rl(Xj, X},) = R;qu
C(X;, X)=CiX;, where Ri =& Nj— & N, while C}, are given by (17.1) in ref.
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[9]; (p. 109). Let Rjn, Sk, be the horizontal and vertical curvature tensors of v,
respectively: we put 7(X;, X,) =Ry, s(X;, X)) =S, where Rj. =R, Sj =Sk,
We shall also need the exterior v-differentiation operator d* (cf. Z. I. Szabo, [16],
p. 165). Let us consider the following inequalities

(1.2) X, X) + Trace{Y - C(R'(X, V), X)}

= (O, X)) log\/§+%gffg<Rl<X, X), R'X, X))

(1.3) 99X, (V;RH(Y, X)Z0
1.4), s(X, X)Z(V,xd” log \/g) X + Trace{Y — C(C(X, V), X)}

_%gugkmg(Rl(Xu Xk): X)g(Rl(in Xm)y X)'*‘%gl]g(C(Rl(X, Xz), X]); X)

where g;¢* = ¢f. We obtain the following

Theorem 1. Let M be a n-dimensional Landsberg space, n=83. If the
Sasakian lift of the Landsberg metric is complete and (1.2)-(1.4) are verified for
any Finsler vector fields X, Y on M, then the growth function of any finitely
generated subgroup H of the first homotopy group =(M) is subject to

< wZnQ‘ + S)Zn on
(1.5) gra(s) = A © s,
Here w,, is the volume of the unit ball in R?*, while v(r) denotes the volume of
the compact ball of radius r>0 with respect to the induced metric on the
universal covering manifold of V().

Theorem 2. Let M? be a totally geodesic closed Landsberg surface of a
Finsler space M™* of positive scalar curvature. Then M? has a non vanishing
Euler-Poincaré characteristic.

Note that Theorem 1 extends a result of J. Milnor [10] to the case of
Landsberg spaces; it might be contrasted with the Finslerian version of S.
Myers’ Theorem (cf. F, Moalla [11D)).
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The Theorem 2 is based mainly on the Gauss-Bonnet formula for Landsberg
spaces, such as obtained by A. Lichnerowicz {8] and P. Dazord [41.

The first author wishes to acknowledge his gratitude to prof. A. Lichnero-
wicz for discussion during 27-80 April 1987, at the Dept. of Mathematics,
Palermo. Both authors are gratefull to prof. G. B. Rizza for suggestions which
have improved the initial form of the manuseript.

2 - Proof of Theorem 1

We firstly show that the fundamental groups m(V(M)) and =(M) are
isomorphic. Indeed, if M is non-compact, then by Corollary III (p. 399) in [6],
there exists a globally defined everywhere non-vanishing vector field on M (a
Landsberg space is supposed to be connected), i.e. a globally defined cross-
section in V(M). Consequently, by a theorem of N. Steenrod [14] (i.e. Th. 17.7, p.
92), if such a cross-section exists, then m(V(M))=G,- G, where Gy=m (M),
Go=m(V(xg)), Vixg)=n'(x,), for a given base point x,eM. Since
V(wg) ~R*=R™\{0} and n»n>2, we have m(V(x))=0. This proves
(M) = m(VMD). If, in turn, M is compact then there exists a globally defined
everywhere non-vanishing vector on M if and only if x(M) =0, i.e. the Euler-
Poincaré characteristic of M is vanishing. So generally we cannot use again the
above N. Steenrod’s theorem. However, if M is compact, then (M, E) is
complete (cf. B. T. Hassan [7]); then the induced group homomorphism
g m(VM))— m(M) is an isomorphism by the following argumentation. We
firstly show that =, is a monomorphism. To this end we consider the homotopy
sequence of the fibre bundle »: V(M) — M i.e.

@.1) e B (M) S m(V@e) > m(VAD) 5 =) .

But (2.1) is exact and = (Vizy)=0, »>2, so that the sequence
0— m(VIMD)— =(M) is exact.

Next we show that =, is an epimorphism. Let h € m(M), h#1. Let voe M be a
fixed base point and I, a loop at x, representing the class k, i.e. b= (%,). Let
l,,€h be chosen such that L(l;)= inf{L(3) | l;,€ k}; here L(c) denotes the
(Finslerian) length of the curve c¢. Then [, is a geodesic of (M, E) (see also J.
Synge [15]). Indeed, since the property of being a geodesic is local, it suffices to
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show that [, is a geodesic between any two points (on l.) lying in a simply-
connected neighbourhood in M. Suppose that, on the contrary, there exist two
values of the parameter, say ¢, <t,, such that p = LT, = 1,(t), p # g, and the
portion of [, between p, ¢ is not a geodesic and p, ge U, =,(U) = 0. Let ¢ be the
geodesic connecting p and ¢. Such a geodesic always exists since (M, E) is
complete. Let [, be the loop at x, obtained by joining the portion of l., between
%, and p with ¢ followed by the portion of I, between ¢ and x,, for a fixed
orientation of . Since =(U)=0, I, and I}, are clearly homotopic. Thus Iz, € .
This is a contradiction as L(;) <L), due to the inferior length of Iy, on its
portion ¢. Since [,, is a geodesic, it is in particular regular; therefore, its natural
dt
of I, at x,, then L;(0) =u, and u, e V(). Obviously the end point u{ = L;(1) of
L;, still belongs to the fibre V(x,), yet generally u, % uy, so L, is not a loop at u,.
However, since V(xg) ~R%, V(xy) 1is pathwise connected. Let then
¢: [0, 11— V(x,) be a curve such that c(0) =uqg, c(1)=u, We ‘construct the
following loop at uy: L, (&)=L, 2t), 0=t=1/2 and L, =c@t—~1), 12=t=1.
Let I;, be the projection of L,, on M, ie. I, ==-L,. Then l., and [ are
homotopie, by the homotopy H(s, )=z, iff ¢t=1—s/2 and
H(s, 1) =1,(t/(1 - s/2)) iff 0=¢=1- s/2. Consequently =,(L,,) =k and 7, is an
epimorphism.

Let H be a finitely generated subgroup of =;() and h,, ..., h, a system of
generators of H. Then the growth function of H (associated with %, ..., hy) is
given by

Lift L; () = (®), te[0, 1], is a curve in V(M). If u, denotes the tangent vector

g'rH(s)=card{ﬁh§"“}i|mil§s, m;eZ} seZ s>0.
. =1 i=1

Let g;e (VM) (i=1, ..., p) corresponding to %; by the isomorphism z.. Let
V(M) be the universal covering manifold of V(M) and p: VO — V(M) the natural
projection. The p* § is a Riemann metric on V(3), associated with (1.1); let D be
the corresponding distance function. Moreover, let v,e V(M) be fixed and let
v(r) = vol(N,(vy)), where N,(v,) = {ve V() | D(vy, v)=7}, r>0. Since we have
(1.2)-(1.4), the mean curvature of (1.1) is non-negative (cf. our n. 3). Now we
apply the proof of J. Milnor (op. cit.) to establish the constant in the inequality
(1.5); that is, by a result of L. Bishop [1] we have

2.2) UT) = wp, 7.
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Think of elements of =(V(M)) as deck transformations of V(). Let
u= mgx D(ws, g:vy)), o> 0. Then gi(vy) € N(vg) =1, ..., p). Any deck transfor-

mation is a D-isometry, such that

D(vy, E™(vp)) = |m| D(vy, h(vy))
2.3)
D(wvy, (hh') (ve)) =Dy, hvo) + D(v,, k' vg)

for any h, h' € G, m € Z. Here I is (uniquely) determined by =, S = H. Let
g=ﬁ g% be a word in € of length at most s. By (2.3): D(v,, g(vp) S pus.
i=1

Consequently card{g(v,) € N,s(vy) | g € F} Z gr #(s). Since =,(V(M)) acts properly
discontinuously on W), we may choose >0 such that N (v)) ngV.(v)) =0
whenever g # 1. Then N, (v,) contains at least gr (s) = gry(s) disjoint sets of
the form g(N.(vy) and we get gry(s)v(e) =v(us + ¢); using this and (2.2) we
obtain (1.5).

We wish to underline that the difficulties in the above proof are furnished by
the lack of differentiability of the Finsler energy function E (only of class C*
along the zero section in T(M)). This prompts our choice of bundle
(V(M), =, M, R%), rather than the whole of T(M) (where we automatically have
2 (T(M)) = m(M), since T(M) admits globally defined cross-sections).

3 - The curvature of the Sasaki metric

Next we discuss the conditions (1.2)-(1.4). T. E. Davies-K. Yano [4], [5] have
considered the following linear connection on V(M), (associated with the Cartan
connection)

(3.1) VoW =8V, LW+ yV;GW .
Note that Vg =0, but V has non-trivial torson form, say A. If M is a Landsberg
space, i.e. the Berwald connection of M is A-metrical (cf. also Th. 25.3 in [9];, p.

162), then

B.2) AQ@X, pY)=yR'X, Y) A(rX, pY)=pCX, Y) AQrX, y)=0.
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One may use (3.1) to determine the Levi-Civita connection of (V(M), §), say D.
That is, we have

20(DxY, 2)=2§(Vx Y, 2)+ A, Z), X) +§HAX, Z), V) + gAY, X), 2)

for any tangent vector fields X, Y, Z on V(M). Then (8.2) leads to

Dxy¥=yVxY  DuBY =pVuY— y{%Rl(X, Y) +C&X, 7))
3.3
" e vi Y +BZ GRYX, 9, Y)* +C(X, 1)}

DY =B{E GRAY, ), X)*+C(X, V)
for any Finsler vector fields X, Y on M. Here # denotes raising of indices by g.
Straighforward computation based on (3.3) yields the expression of the Ricci
curvature of (1.1)

Ric(3;, &) X/ ¥ = %— FgX, (ViR) (¥, X))

Ric(s), 80 X XF=1(X, X)— (yCX, X)) log Vg

+Trace(Y— CRIX, Y), X)} — 3079 ®'X, X), R'X, X))
Rie(8;, 8) XY X* = s(X, X)— Trace{Y— C(X, C(¥, X))}
- (Vad’log Vo) X - L97g* g®X,, X, X)gBYX;, X0), )

~2999(RACX, X), X), X) .

Thus (1.2)-(1.4) are equivalent to Rie(Z, Z)= 0 for any tangent vector field
Z on V(M).
4 - Proof of Theorem 2

Let M* be a closed Landsberg surface of the Finsler space M**2 of scalar
curvature K> 0, K € C*(V(M"*%)). We need the following Gauss-Codazzi equa-
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tion (cf. [5], p. 6)

4.1 R*X, Y)Z +P*HX, 9), Y)Z
- P*HY, 0), X)Z +S*HX, v), HY, ") Z
=RX, NZ+ApxnY — Any,nX + Dux )Y, Z)— Dy H)(X, Z)
+HTX, V), 2)+QR'X, ), 2).

By direct extension of a result of M. G. Brown ([2], th. 6.2, p. 1035) to the
arbitrary codimension case, M? is totally geodesic iff No=0, No=H(®, D).
Moreover, as observed by O. Varga [17] N,=0 iff HX, ) for any Finsler
vector field X on M2 Let L be the induced fundamental Finsler metric function
on M2, L=E". Let U(M?—> M?be the tangent sphere bundle of M?% then UM?)
is a 3-dimensional hypersurface of the Riemann space V(M?) (carrying the Sasaki
metrie). Let [ be the Finsler I-form given by I = (dL).y. Since U(M?) is compact
7]l is bounded, ie. ||I|,=A, for any uweUM?® and some A>0. Let
ly=(n+2)"2A1]. We also define hy = g — I, ® l,. Moreover, M"**is said to be a
Finsler space of scalar curvature K if for any Finsler vector fields X, Y, Z on
M™% we have

4.2) FHR¥*X, V), D)= oM X, Z)— oX)ha(Y, Z)

2
where w=—l—’3—~d”K + KLI. Note that our notation of Finsler space of scalar

curvature differs slightly from that in [9]; (p. 168) where A = (n + 2)*.
Let (u®) be a local coordinate system on M? and (u* v®) the induced
coordinates on V(M?). Under the hypothesis of Th. 2, (4.1)-(4.2) lead to

(4.3) R vv=m+2-||L|HKL*.

Here R, =R).. Suppose now y(M?» =0, where x(M*) denotes the Euler-
Poincaré characteristic of M?; at this point we may use the Gauss-Bonnet formula

(4], [8]

[ (Bovhv)¥1 = 42 (M)

vath

and K>0, n+2—||14]?>0, to obtain L =0, a contradiction, since det(g,.) # 0.
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Here *1 denotes the canonical Riemannian measure (associated with the induced
metric) on the hypersurface U(M?). It is tempting to assume that M»*2 is itself
Landsberg; then M? would inherit the Landsberg property, as a totally geodesic
surface (cf. M. Matsumoto [9];). Yet, by a result of S. Numata [12] if n= 1, M"+2
falls into nothing but a Riemann space-form.
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Riassunto

Si determina una limitazione per lo funzione di accrescimento di un qualsiasi
sottogruppo finitamente generato del gruppo fondamentale di uno spazio di Landsberg.
Inoltre si prova che certe superfici di uno spazio di Finsler a curvatura scalare hanno
caratleristica di Eulero-Poincaré non nulla.
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