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Qualitative behaviour of solutions
of forced nonlinear third order differential equations (**)

1 — In recent years, third order homogeneous differential equations (linear
and nonlinear) have been the subject of investigations for many authors, viz,
Hanan [3], Lazer [6], Heidel [4], Barrett [1], Jones [5]; 2, Erbe [2]; 2 and Philos
[9] to mention a few. They obtained sufficient conditions for oscillation and
nonoscillation of solutions of these equations, proved existence of oscillatory and
nonoscillatory solutions and studied asymptotic behaviour of these solutions.

It seems that no work was done on oscillation theory of non-homogeneous
third order differential equations until the work of the first author [7]. In this
paper we consider forced nonlinear third order differential equations of the form

¢ @y +qd®) @)+ p@dy =£1)

where p, ¢, r and f are real-valued continuous functions on [0, ) such that
() >0, q(®) <0, p(t)<0 and f(t) =0 and each of «>0 and >0 is a ratio of odd
integers. Sufficient conditions have been obtained for oscillation and nonoscilla-
tion of solutions of (1). Also we have studied asymptotic behaviour of these
solutions. Results of this paper improve some of the results in [7]. The authors in
their earlier works [8]; 2 3 studied equation (1) under different sign restrictions
on coefficient functions p and gq.

The motivation for our work came chiefly from a recent work due to Sitter
and Tefteller [10] who studied qualitative behaviour of solutions of

@ @y +pB)y =,
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where p, g and f are real-valued continuous functions on [0, o) such that »(¢)>0
and p(t) is ultimately positive or ultimately negative. They proved theorems
concerning oscillatory and nonoscillatory behaviour of solutions of (2) with the
assumption that the oscillatory and nonoscillatory behaviour of solutions of
nonhomogeneous third order differential equations of the type

EDOY) +RWBy + POy =FQ@)

are known, where -

__ Gty _ e _r®
P = w(t) ) w¥(?) R w(t)
F(t)= wj( 5+ [0l ds)

¢ being a real number and w(f) is a nonoscillatory solution of the corresponding
homogeneous fourth-order differential equation

r ") +pH)z=0.

We restrict our considerations to those solutions %(£) of (1) which exist on the
half-line [T, =), T,,=0, and are nontrivial in any neighbourhood of infinity. We
may recall that a solution y(t) of (1) on [T}, «) is said to be nonoscillatory if there
exists a ¢, = T, such that y(f) # 0 for ¢ =t;; y(¢) is said to be oscillatory if for any
t1=T, there exist ¢, and ¢, satisfying ¢, <t, <, such that y(f) >0 and y(t;) <0; it
is said to be of Z-type if it has arbitrarily large zeros but is ultimately
nonnegative or non-positive. Equation (1) is said to be nonoscillatory if all
solutions of (1) are nonoscillatory.

2 — In this section we obtain sufficient conditions for oscillation and
nonoscillation of solutions of (1).

Theorem 2.1. Ifa=p=1and q(t) is once continuously differentiable such
that p(t) —q'(() =0, then (1) is nonoscillatory.

Proof. Let y(?) be a solution of (1) on [T}, ), T,=0. If possible, let () be
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of non-negative Z-type with consecutive double zeros at a and b (T, <a <b) such

that y(©)>0 for te(a, b). So there exists a ce(a, b) such that y'(c)=0 and
y'(£)>0 for te(a, ¢). Now multiplying (1) through by y'(%), we get

@ Oy OYOY=r®)E'®? - 90O -pOYOY' O+ Dy ®) .
Integrating (3) from a to ¢, we obtain

0= [/ dt= [ O OFdt— [ pOYOY Odt+ [ O E)dt>0
a contradiction.

Let y(f) be of non-positive Z-type with consecutive double zeros at @ and b

(Ty=<a<b). So there exists a ce(a, b) such that y'(c)=0 and y'(¥)>0 for
te(c, b). Integrating (1) from ¢ to b, we get

b
0=7(b)y"(b) — r(c) y"(c) = qle) y(e) + [ [g'®) — p®)]y(@®) dt>0
a contradiction.

If possible, let y(f) be oscillatory with consecutive zeros at a, b and
a'(Ty<a<b<a') such that y'(@=<0, y’'(0)=0, y' (@) =<0, yO) <0 for te(a, b
and y(t)>0 for te (b, a'). So there exist ce(a, b) and ¢’ €(b, a’) such that
y'()=0, y'(c)=0, y@® >0 for te(c, b) and te (b, ¢'). Suppose that y"(b) =0.
Integration of (3) from b to ¢ yields

0=—-7b)y' By (b)>0
a contradiction. So ¥"(b)<0. Now integrating (1) from c‘to b, we obtain
0=7(b)y"(b) — () y"(c) = q(c)y(c) + cf b [¢'®) —p@®]y@®) dt>0
a contradiction. Hence the theorem.
Example. (ity")' —(E+ 146y — (7 - Dy =1+ 667 t=2.

From the above theorem it follows that all solutions of the equation are
nonoscillatory. In particular, y(¢) =t is one such solution. A
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Theorem 2.2. If lggf%= -, then all bounded solutions of (1) are
nonoscillatory. p ‘

The proof is similar to that of Theorem 2.3. in [8]; and hence is omitted.

Theorem 2.8. Let =1 and 8=1. Suppose that p(t), q(t) and ft) are once

continuously differentiable functions such that p'(€) =0, ¢'(®) <0 and f'(t) = 0. If
"t
lim %((5)»= + o, then all bounded solutions of (1) are nonoscillatory.

Proof. Let y(t) be a bounded solution of (1) on [T, ), T,=0, such that
ly@®| <K for t=T,. So there exists a £{,=T, such that ¢'(t) — K=™! p(£) <0 for
t=1,,

Let y(?) be of non-negative Z-type with consecutive double zeros at ¢ and b
(th=<a<b). So there exists a ce(a, b) such that y'(¢c)=0 and y'(£)>0 for
te(a, ¢). Now integrating

@ Oy Oyl =r®) @O — 9@ @' OF —p&y @Oy @+ D)y @)
from a to ¢, we get

0=[r@®y' Oy ®E>0

a contradiction.
Let y(?) be of non-positive Z-type with consecutive double zeros at @ and b
(ty<a<b). Now integration of (4) from a to b yields

0> [fOy @) dt~ [ pOTFOYOd> - [FOYOd+—1 [P0y d>0

a contradiction.

Let y(?) be oscillatory with consecutive zeros at @, b and o’ ((,<a<b<a')
such that y'(a)<0, y'(0)=0, y'(@)=<0, yt)<0 for te(a, b) and y(t)>0 for
te (b, a'). So there exist ce (a, b) and ¢’ € (b, a’) such that y'(c) =0, y'(c’) =0
and ¥'(f)>0 on (¢, b) and (b, ¢’). Clearly, %"(b) =0 leads to a contradiction. So
y"(b) <0. Now integrating (1) from ¢ to b yields a contradiction because

0>7(b)y"(b) — (0 y"(©)= qlc) y(e) + [ [¢'(®) — p@®) =) y(t) dt

= [~ K" ph)]ly@®dt>0 .
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~ This completes the proof of the theorem.
Example. All bounded solutions of

YA __3_ § l ’..._1. 3=
By (t3+1+t+t2+t3)y tzy

are nonoscillatory. In particular, y(f) =1+ % is a bounded nonoscillatory solution
of the equation.

Theorem 2.4. If () +p(t)>0 for large t, then any solution y(t) of (1)
which satisfies the inequality

6)) @2 +2z2'>0
m any interval on which it is negative is nonoscillatory.

The proof has been omitted because the arguments to prove this theorem are
similar to those of Theorems 2.1 and 2.8.

Theorem 2.5. Let g(t) be bounded and once continuously differentiable
such that ¢'(t)<0. If

Of PO dt>— o Ofm fydt = oo of % =0

then bounded solutions of (1) with B=1 are oscillatory.

Proof. Let y(?) be a bounded solution of (1) on [T,, «), T, =0, such that
ly®)| <K for t=T,. We claim that y(t) is oscillatory. If not, Yy =0ory@)<Ofor"
t=t,=T,

Let y(®) =0 for t=1t,=T,. Integration of (1) from %, to ¢ yields

@)y =1t y' () + ¢t y(t) + K [ ¢'()ds + [ fs)ds .
o to
Since g(f) bounded and ¢(f)<0 imply that [ ¢'(s)ds> — «, then
to

r@Qy" =L ftf(s) ds
f
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for large t, where 0 <L <1. This in turn implies that

y(t)>y(to>+Lf (ff(e)de)ds

( )y
Clearly,

C dt

; ;(5= o implies that hm f (jf(@) de)ds = o .

Thus y'(f)—> « as t— ©, which contradicts the boundedness of y(?).
Let y(©)<0 for t=t,=T,. Integrating (1) from %, to ¢, we obtain

@)y () =ri) y'(t) — ¢y + K* [ p(s)ds + [fs)ds= L’ [ fis)ds
to fo )

for large t, where 0 <L’ <1. So y(t) >0 for large ¢, a contradiction. Hence the
theorem.

Remark. The above theorem may be stated as follows: Suppose that the
conditions of Theorem 2.5 are satisfied. Then nonoscillatory solutions of (1) with
B =1 are unbounded.

3 — In this section we study asymptotic behaviour of nonoscillatbry solutions
of (1).

Theorem 3.1. If ]q(t)l<Mfor large t, f o and ff(t)dt— o, then

(t)

bounded nonosczllatory solutzons of (1) wzth B=1 are ultzmately negative.

Proof. Let y(t) be a bounded nonoscillatory solution of (1) on [T,, =),
T,=0, such that [y@®)|<K for t=T,.
If possible, let y(¥) >0 for t =, = T,. Let y'(t) be oscillatory (non-negative Z-
type) with conseeutive zeros (double zeros) at a and b (f{y<a <) such that
#'(6)>0 for te(a, b). Integration of (1) from a to b yields

0= [ [ —p®) y(®) — gy’ ®)]1dt>0

a contradiction. Let y'(£)> 0 for large ¢{. Now integrating (1) from ¢, to ¢, we
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obtain
) y"(E) = r(ty) ') + [ f(s)ds>0

for large t. This in turn implies that y(¢) is unbounded, a contradiction. So
y'()=<0 for large ¢. In this case also we obtain a contradiction because
integration of (1) from £, to ¢ yields

() y" () =7t y'(t) ~ My(to) + [ fs)ds>L

for large ?, where L >0 is a constant, that is, y'(t)>0 for large t.
This completes the proof of the theorem.

Example. (%ty”)’ ——%y’ —tyt=1 t>1.

Theorem 3.2. If

.S -
n p(t) Of J®
then, for every bounded solution y(t) of (1), lti}gl y(t) ewists.

Proof. Let y(?) be a bounded solution of (1) on [T,, ), T,=0, such that
ly(D)| <K for t=T,. From the given condition it follows that there exists a ¢, = T,
such that f(f) + K*p(t) > 0 for ¢t =¢,. In view of Theorem 2.2., y(¢) is nonoscilla-
tory. So it is ultimately positive or ultimately negative.

Let y(t) >0 for t=t,=1{,. Proceeding as in Theorem 3.1., we can show that
y'(®) cannot be oscillatory or non-negative Z-type or positive for large t. So
y'(®) <0 for large ¢ and hence 11135’ y(t) exists.

Let y(}) <0 for t=¢,=1¢,. If y'(t) is oscillatory (non-negative Z-type) with
consecutive zeros (double zeros) at @ and b (¢, <a<b) such that y'(£)>0 for
te(a, b), then integrating (1) from a to b we get

0= [fidt— [ p®y®)dt= [ [+ K=p®)]dt>0

a contradiction. So y'(t) > 0 or <0 for large ¢. In any case lim y(f) exists. Hence
the theorem.
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Theorem 3.3. If |q)| <M for large t

w10
= p(t)

] dt = 00 1 = 00 ] — 0
Joe= Of S dt= Uf p®) dt>

then all solutions of (1) with B=1 are unbounded.

Proof. Suppose the contrary. Let y(f) be a solution of (1) such that
ly®)|<K for t=T,=0. From Theorems 2.2. and 3.1. it follows that y(¢) is
ultimately negative. Let y(¢) <0 for t=1t,=T,. There exists a ¢, =1, such that
S + K*p(t) >0 for £ =¢,. Proceeding as in Theorem 38.2. we can show that y'(f)
cannot be oscillatory or non-negative Z-type. If %'(f)>0 for large t, then
integrating (1) from ¢, to t we obtain

By @) =rl) y' ) + K [ p(s)ds + [ fls)ds .
to ty

This in turn implies that y(¢) > 0 for large ¢, a contradiction. So ¥’ (%) <0 for large
t. Since

) y' () = r(t) y'(t) — MK+ K= [ p(s)ds + [ f(s)ds
% %

implies that r@)y"({)>L for large ¢, L>0, then y'({)>0 for large t, a
contradiction. Hence y(f) must be unbounded and this proves the theorem.

Example. All solutions of
Y 1 ’ 1 3 e 42 .
by —(1-3)y —gv =t +2t—4 t=2

are unbounded. In particular, ()= —1# is an unbounded solution of the
equation.

Theorem 3.4. Let

3 dt = 00 3 = OO - - 0
S5 J ftyat= J P dt>—co .

If q(t) is once continuously differentiable such that ¢'(1)=0 and [ ¢'(t)dt < oo,
0

then all monoscillatory solutions of (1) with B=1 are unbounded.
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The proof is similar to that of Theorem 3.3. and hence is omitted.
s 1 ’ 1 3 _— 42

Example. (ty") -3y ——gy =t t>1.

Theorem 3.5. Let

cdb_ o,

and q(t) be bounded. If r(t) + p@E) >0 for large t, then for all bounded solutions
y(®) of (1) with 8 = 1, which satisfy the inequality (5) in any interval on which it is
negative, limy(t) = 0.

Proof. Let |y(®)| <K and |g(t)| <M for ¢ =t,. From Theorem 2.4 it follows
that y(¢) is ultimately positive or ultimately negative. We shall prove the
theorem for the case y(f) > 0 for t = t, = t,. The proof is similar for the other case.

It is easy to show that '(¢) cannot be oscillatory or non-negative Z-type. If
possible, let y'(#)>0. So

@) y'(®) = rt) y'(t) — y*(t) [ pls)ds

and hence (%) is unbounded, a contradiction. Consequently, y'(f) <0 and ltl_gl y()

exists. If lbi_)rgy(t) =A >0, then integrating (1) from ¢, to ¢, we obtain
r(®)y"(6) = r(t) ¥ () — My(t) — @)  p(s)ds .

This in turn implies that y'(f)>0 for large t. This contradiction proves that
lirg y() =0. Hence the theorem.

Example. (@ty")’ —%y’ —ty5=% t=1.

y) = —% is a solution of the equation such that lirg y(&) = 0.
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Abstract

In this paper sufficient conditions have been obtained Jor oscillation and nonoscilla-
tion of solutions of forced nonlinear third order differential equations of the form

YY) +q® @'Y +p@)y* = ft)

where p, q, v and f are real-valued continuous Sfunctions on [0, ) such that v(t)>0,
P =<0, ¢)<0 and ft)=0 and eack of >0 and B>0 is a ratio of odd integers.
Asymptotic behaviour of monoscillatory solutions of these equations has also been
studied.



