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NATALE MANGANARO (%)

On a hyperbolic model in magnetofluid dynamics
with heat conduction (**)

1 - Introduction

As well known the classical constitutive theory of Fourier and Navier-Stokes
gives rise to a parabolic model for magnetofluid dynamics [7], so that no finite
wave speeds are permitted. It is remarkable to point out that even in the case of
an adiabatic inviscid motion the magnetofluid dynamics governing system is
hyperbolic only if the electrical conductivity is infinite.

The aim of this paper is to propose a hyperbolic model taking into account the
main dissipative effects arising during the motion of a fluid through an external
magnetic field. The paper is organized as follows.

In 2 we recall the classical model of magnetofluid dynamies [7]. In 3 we stress
out that the entropy equation can be viewed like a supplementary law for the
F.N.S. governing system. Then, within the context of irreversible thermodyna-
mics, by means of the procedure given in [10] we are able to obtain a first order
hyperbolic system of governing equations which can be reduced also to a
symmetric form.

In 4 we characterize the main features of wave propagation compatible with
the proposed model. Among others we recover as particular cases some results
already obtained within the classical theory (e.g. for an inviscid rigid conductor
and an adiabatic motion of an inviscid fluid).

Moreover we are able to point out the influence on wave propagation of the
different dissipative effects present in the model.

(*) Indirizzo: Dipartimento di Matematica, Universita, Contrada Papardo, Salita
Sperone 31, 1-98010 Sant’Agata, Messina.
(**) This work was supported by the G.N.F.M. (C.N.R.). - Ricevuto: 28-VII-1986.
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2 - Classical Fourier and Navier-Stokes constitutive theory

Let us coﬁsider the motion of a viscous fluid through an external magnetic
field described by the following system of equations [7]

atp -+ ak(p%k) ={ at(pui) + ak{pui Uy + tik + (H2/87’C) Sik - (1/4E) H,Hk] = ()
(2.1)
at &+ ak{auk + [tk] -+ (H2/8ﬂ.') akj e (1/475) HkHj] ’I/Lj + qr + (0/4710'0) ekijJiHj} =0

O H; + dy[uy Hi — Hyu; + (¢loy) ey I ] = 0 » Olewy; Hy) = (4rlc) J;

where the conditions
divH=0 div/ =0
and the relation
J =g[E + (1/c)u A H)] = (c/4=) rot H

hold.

In (2.1) ¢, is the mass density, » the fluid velocity, t=pl~o the stress
tensor, o the viscous tensor, p the fluid pressure, c=pe + o(u/2) + (H8x)
represents the total energy where e is the internal energy, ¢ the heat flux, H the
magnetic field, J the conduction current, E the electric field, ¢ the light velocity
in the vacuum, 3;= (3/3t), 3; = (3/9x,) where t and % denote respectively time
coordinate and space coordinates. Moreover A denotes the exterior product, &
the Levi-Civita symbol, I the unit matrix.

The system of equations (2.1) must be supplemented by constitutive laws. In
particular on the usual approach (Fourier and Navier-Stokes equations) the heat
flux g and the stress-viscous tensor o are related linearly to the temperature
gradient and to the velocity gradient respectively as follows

Vo= —xg

(2.2)
12)[VOu+u®V]—(1/3)1 divu = ac? divu=8tre

when (14 =y is the thermal conductivity, (1/2x)=7 and (1/38) =¢ are the
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viscosity coefficients, 6 is the absolute temperature, V;=293;, v & w=v;uy,
P =0—-(1/3)] tro is the deviator stress of s. Since the following entropy
inequality

2.8) 3(eS) + leur S + (:/0)]
= - (1/02) qr ak 6+ (1/0) o'?k ai U + (1/30) treo ak%k + (1/6) (JZ/G‘()) =0

must be satisfied for any thermodynamics process, the II principle of thermo-
dynamics requires that x, «, 8 are positive (in (2.3) S is the entropy density).

It is simple matter to see that, because of the constitutive equations assumed
for q, o°, tre, J the system of equations (2.1) and (2.2) is not hyperbolic.
Consequently the model given by (2.1) and (2.2) does not allow for finite wave
speeds. To avoid this paradox we make use of an approach proposed by
T. Ruggeri in [10].

3 - The hyperbolic model via «generators»

The system of governing equations (2.1) and (2.2) can be written under the
conservative form

3.1 daF(U) = fU) where:
«a=0,1,2, 3 =t FO=[o, ow;, & Hi 05 05, 05, 0,17 ()

F*=[ouy, ou;uy + ty + (H87) 8y — (V4n) H; H,,

et + (b + (EI87) & — (V) Hy H) w; + q, + (elmoy) ey I H,

wy H; — Hiu; + (6loy) egom S my 08 (1/2)(u; 8y, + w; O5) — (1/8) Uy, Uy €ari H, i

f=1[0y, 05, 0y, 05, —xq;, o, Btrs, dnlc)J]"

U=le, u, ¢, H, q, &, tra, JI¥

(!) The superscript T means for transportation.
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In (8.1) the field U must obey to the constraints
(3.2 aBYU)=0 where B*=[H,, J.J7.

The entropy equation (2.3) may be considered like a supplementary
conservation law for the system (3.1), endowed by (8.2), of the following form

(3.3) 3. k() =g(U)<0
where W= —pS, b= —[cu; S + (q,/6)]
g=—(/ @ = (/) P : P — (B/36) (tr )% — (1/6) (J¥sp) < 0 (®).

According to the theoretical framework concerning with first order quasilinear
conservative systems compatible with a supplementary conservation law
developed in [10], [11]1 () the consistency of (3.1), (3.2) and (3.3) leads to the
existence of a field U’ (main field), 2 vector K and four scalars 4’* such that the
following relations hold

3.4) U -dF°= dh’ U'-dF*=dr*+ K-dB* U -f=¢g<0
3.5) RO=U"-F°—p° We=U'-F*—~K-B*— k% (4.
From (3.4) we obtain

U =[1/0) (G — (w?¥2)), (w6), — (1/6) (H/4=6)
(@/6%), — (P/6), — (tro/80), — (c/dnay0) 1"

K =[—(1/4=8)(H -u), 0].

(®) We denote with ¢:¢' = tr (¢ ® ¢").

3 An exaustive list of references on this subject may be found in [2),, [4], [5].

(*) Moreover if there are not constraints, that is B* = 0, the general theory [10], [11]
is recovered. Furthermore the quantities U’, &'%, f, k are called «generators» (see the
note on page 6). We observe that in the hyperbolic case the (3.4) are studied in [2];.
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So that (8.5) specialize to
hIO = (p/@) + (HQ/SQT@) h’k = (1/6) tik u; + (1/0) qr + (HZ/SNG) Uy, + (0/4750'0 6) EkijJiHj .

(G =¢e+ (plp) — 65 denotes the chemical potential).

Now, within the framework of the extended thermodynamics, making use of
the method of approach proposed in [10] we aim to obtain a hyperbolic model to
describe magnetofluid dynamics.

According to the basic assumption of the irreversible thermodynamics [9], we
introduce a new entropy density of non-equilibrium

(3.6) Sy =3Sxe, ¢, q, >, tre, J).

That is equivalent to consider ¢, s°, tro as effective field variables which satisfy
suitable field equations to be determined.

In (8.6) J has been included among the non-equilibrium variables. In fact
when we consider states which are far from the equilibrium a variation of the
magnetic field induces in a conductor an electric field giving rise to a conduction
current.

Therefore the electric field forces produce work so that a suitable Gibbs
relation as well as a suitable entropy density must be determined. Such a
situation does not take place at the equilibrium where the stationary electric
field vanishes inside on the conductor (see [7], p. 70).

In this section we determined the generators for the system (2.1) (2.2). Now,
following the procedure used in [10], we modify the thermodynamics quantities
involved in the generators in order to obtain a hyperbolic model.

In our case the chemical potential only must be considered. Within the
extended thermodynamics framework we introduce the non-equilibrium chemi-
cal potential

GN':GN(P) ¢ ¢, GD; trU; J) .

As in [10], we assume that the non-equilibrium generators have the same
form as the corresponding Fourier and Navier-Stokes quantities (hypothesis of
invariance of the generators).

Thus our analysis will be carried on as follows.

Once the modified generators Uy, k), fv, Ky have determined, then the
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system

(3.7 9, F3(Un) = fn(Uy)
and the related supplementary law

(3.8) 9, 13(Un) = gn(Uy)

will be completely characterized. Furthemore we will obtain necessary and
sufficient conditions for the convexity of A}, which automatically guarantee the
hyperbolicity of the system (3.7).
In fact if it is possible to choose FY = UY and A% is a convex function of FY
then there is global invertibility for the mapping Uy = UW(Uy) (see [1]).
Consequently since

3.9 F$ = @rRUY) F¥% = (Qhif8UY) + BY(OKN/AUY) ()
system (3.7) can be written

(3.10) @2h¥RUL UL 3, Ul + [(B* WUy 3UY)
+ B{(3? Ky/3U} U318, Uy = fu(Uy) -
As Ry is the Legendre conjugate function of A%, then (32 A Y/0UL dU}) is positive

definite, and (3.10) is a symmetric hyperbolic and conservative system.
Since we have fy=f, then the entropy source g does not vary

ogv=Ux"fn=g.

Moreover, as by =h'*, Ky-BY; =K - B, the calculation of F, h% leads to [10]

F AUy —-UY+FY—F)dUxy=0 Fy=FF+u(F} — F%
(3.11)
Ry =0+ UNFYy—F)+(Uy—-U)F% k= b 4w (b — 1°) .

(®) If Uy, hj, fv, Ky are given then the system (3.7) and the supplementary law (3.8)
are completely determined by (3.9) and (3.5), whereupon the quantities Uy, ki, f, Kn
can be considered like «generators» of (8.7) and (3.8).
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The veetor F§ to be determined has the form
P}y = LO’ Pl €, Hi; PXii _PY%’ ’—3PZ; - (477609/6)/11']7‘

where X, Y?, Z, A are quantities to be found.
From (8.11); we have

3.12) dS =X -dg*+ YP:de®* + Z dtro* +A-dJ*
where
S =(G— Gy/6) q* = (q/6®) P = (50/8) tr o* = (tr o/0) JE=(J/6) .

Moreover from (3.12) we obtain

(8.13) X=0J73g*), Y’=Q@JRc*P), Z=0@JSBtre*), A=(3J/RJ*).

So that the knowledge of the function o determines X, Y°, Z, A. From
(3.11), 5 follows

Fy=F*+1[0, 05 01, 03, pt Xi, —pow Y3, ~ 3012, — (dmpo/c) ue A"

h})v=—pS*pJ+pq*'X+paD*:YD+p tro*Z +oJ*-A.

Requiring (3.8) to represent the entropy balance equation we identify A% with
(—pSy) so that we get

(3.14) Sy=8+ S —(g*- X+ YP +tro* Z + J*- A)
together with the Gibbs relation
dSy=dS — (¢g*-dX + P*:dYP + tro*dZ + J* - dA) .
Finally from (8.11), we have

k= — [owr Sy + (g1 /0)] .
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Consequently the system (3.7) specializes to
Ot + Aulous) = 0
Alous) + Anlow; uy, + ty + (H87) 8y, — (1/4=x) H; H, ] =0
Oye + Op{euy + qi + [t + (H%8r) 8y, — (Vdm) H  H i w; + (c/dnoy) ey J  H;} = 0
O H; + iluw H; — Hypwt; + (¢log) egmd ] = 0
(3.15)
X)) + Aoy, X; + 63y) = — xq;
3:(eY %) + Oulour Y5 — (1/2) (w85, + u: 8) + (1/3) S5u] = — o
AeZ) + ilowr Z — UB) up]l = — (B/38) tr o

az(pAi) + ak[pukAi - (0/4750‘0) Siijj] = - (1/0'0) Ji .
Of course such a system automatically satisfies the entropy balance

= (/0?) ¢* + (a/8) o : o + (8/36) (tr o)? + (1/8) (J¥ap) =0 .

The convexity of the function Y = h3(F%) requires the following condition to
be fulfilled for any non vanishing variation &F%.

(3.16) SUY - 8FYy = o{(1/6) [G — (u2/2)]} do + S(u/6) &ow)
— 8(1/6) e + o(u?/2)] + (1/476) (SH)?
+o(8X - 8g* + 8YP : 86P* + 8ZStr o + A - 8JF) >0 .

It can be seen that if G at the equilibrium is a convex function of p and 6 (see
[12]), then (3.16) holds if and only if /is a convex function of g*, ™%, tro*, J*.

As a consequence this leads to the acquisition of the maximum of entropy at
the equilibrium.

In fact at the equilibrium we have J =0, therefore the condition of
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convexity of J is written
3.17) — SHg* X+ P Y+ tro¥ Z +J¥A>0

and from (3.14), (8.17) gives Sy<3S.
An interesting special case of the system (3.15) is obtained if we choose

(3.18) S = 12) (g g% - ¢F + oy PF 1 PF + gy tr oF tr o + g JF - JF)

with ay, ay, o, «s positive constants.
On account of (3.13) from (3.15), we deduce

o0o A/dE(q/6%) + V6 = — xq
(38.19) _ »
cog A/dE(T/0) — (c/drag) rot H = — (T/ay)J .

The equations (3.19); 2 are of Maxwell-Cattaneo like with variable relaxation
times.

The system obtained through the procedure sketched above is hyperbolic,
conservative and also it can be written in symmetric form. Therefore this model
exhibits as main features:

(1) real and finite velocity of propagation of the discontinuity waves;

(i) compatibility with propagation of shock waves;

(iii) a locally well-position of the Cauchy problem if the initial data belong to a
Sobolev space H®, with s>4 [3];

(iv) the determination of the constitutive functions is reduced to that of
functions J.

4 - Discontinuity waves for the adiabatic motion of an inviscid fluid

Here we will point out the main features of wave propagation compatible
with the hyperbolic model for magnetofluid dynamics obtained through the
analysis worked out in the previous sections.

It is noteworthy to remark that the classic governing system of the magneto-
fluid dynamics (in the case of an adiabatic motion of an inviscid fluid) is
hyperbolic only if sy— o, whereas the mathematical model (3.15) leads to finite
wave speeds also in the case of finite electrical conductivity.
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In what follows we choose the function J” characterizing the new evolution
equations in (8.15) of the form (3.18).

Let ¢(X, ©) =0 represent the wave front equation. We assume that the field
quantities are continuous across the wave surface while their first order
derivatives suffer a jump denoted by

3(-)=03/3¢ = 0*(-) —3/0¢ =07(-) .
Moreover we define [2];, [6]
A= —(3:¢/|Vg)) n=(V¢/|Vg]) .
Here the system ruling the weak discontinuity waves specializes to
— wdp + pdu, =0
— wéu + (1/p) a:nde + (Vdrp) n(H - 8H) — (H,,/4mp) 8H = 0
(4.1)

— wdH + Héu, — H, du + (c/ag) n AN &J =0

— wd — (COp/dnagpag) R ANSH =0 .

In (4.1) 6, represents the constant value of the (absolute) temperature.
Thus the wave speeds are

4.2) w=0  with multiplicity m =4

(4.8) w =% /(¢ Op/dnot pos) + (H2/Armp) .

It is simple matter to show that the corresponding waves of (4.3) are
exceptional.

Moreover if 65— o, then (4.8) reduce to the Alfvén speeds characterizing the
transverse waves.

The remaining velocities are given by

“.4) o= E (U2 (@ + i+ £ \/A))u»
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where
= (c*0p/4rct pag) + (HE /4rp) k%= (H%/47p)
=B —- 1+ 4a2h2>0 .

If 'gp— o from (4.4) the well known fast and slow waves of magnetofluid
dynamics are recovered [2]g, [6].

Now we aim to point out the role played in the evolution of waves by the
dissipative effects involved in the model we are studying herein. Let us consider
a plane wave propagating into a constant state with the velocity
(4.5) A= w+ Uy,
where

o= {(1/2) (a? + B+ h* + \/4)}1? A=(a%— -2 +4a2h2>0 .

In (4.5) X is an eigenvalue of the matrix ., given by

e on 0 0

4 (a®o)m U, I (1/47-rp) m®H-—-H,D 0
* 0 (H®n—H,I Ul (clog) e

0 0 = (€0 /Aoy pag) i My U, I

The left and right eigenvectors of .4, corresponding to X are

20,2 — @2
/= a( £D 1, pw . (o -—,82)7?, (H,/4rc) Hy),
2w2\/Z (e’ — B
w? _ Cw
470 (e? — Jid) Hy, 4rag aP(w® ~ D) Al
o= [1, ((CU _,81)77/ (Hn/47p) HT)’ ( . 2 )

olw® ﬁz)
_ Ceo w
4rag pz as(w® — ﬁ%)

’)’L/\HT]T .
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Moreover £ and  satisfy the normalization condition (/- & = 1). According
to the general theory of non-linear wave propagation (see [2];, [6]) we have

SU=Id, with U=l u, H JI¥.

The wave amplitude IT satisfies the following Bernoulli equation

iz

4.6) dt

+ AP+ BII=0.

In (4.6) ,(_% =3, +A;9; where

a*H,

A=2n+ @Mn)— {n- @)} n=own+u— H;

4row \/Z\—

represents the radial velocity. Moreover A and B are given by

A=V &)= {ep(® =B+ hP o' +2 \/A_wz(wz -5}

1
Zow \/A_(w2 )
2 h?

82 gop \/A_(cuz - B9

B=—{V(¢-f)- d}o=U7)

where © = (pazap/6y) is the relaxation time of the electrical conductivity equation
(3.15)s.
Integration of (4.6) leads to

BI1(0)
ATI(0){exp (Bt) — 1} + B exp(B?) ~

4.7 7 @) =

The wave amplitude becomes unbounded if there exists a «critical time» ¢,
such that the denominator in (4.7) vanishes.
From (4.7) it is easy to see that

A(0)

As well known at t =1, a discontinuity wave may evolve into a shock wave.
Bearing in mind that B >0, inspection of (4.8) shows that a real ¢, exists if the
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following conditions hold [8]

@H A>0 II0) < — (B/A) <0
4.9)
(i) A<0 )y > - (B/A)>0 .

Assuming p,, >0 [2]; so that A >0, hereafter we will consider only the case
(). However it is easily seen that in the case (ii) the analysis developed further
would lead to similar results as in the case ().

From the kinematical conditions of compatibility the initial amplitude I1(0) is
given by the initial jump of mass density

_ [8:61(0)

(4.10) o) = 3

Thus on account of (4.9); in order that a ¢, exists the following relation must
be fulfilled
[3:01(0) > A(B/A)

c2hfwh 1

=1/
47t2 ag (1/0(%) (Pp,:; 0539% -+ hZ (Z3Q% + 291 QgQg)

_ Ogczhz Qo+ asQs Uy,
4 o o? (op;e 2325 + P a3 Q5 + 20, 0, Qg)

where

Q1= {(aza® — (2 6y/drat o) — og(HY470))? + of AP (H% /r0) } 42
Qo= (1/2) { oz &% + (c? O/t o) + ag(H¥4rp) + Q1)
Qg = Qy — {(c* 0p/4ncf ) + ag(HE /Armp)} .

Moreover i, takes the form

t =72 87?20'0p .Ql.Qg [atp] (O)
“TTTER & ©5,010) — ABIA)
_ 82 og p3 [atP] (0)

24 Qg lg

CBeth? [8:01(0) — A(B/A)
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When +— 0, that is a;— 0, then the quantity A(B/A)— o so that a large initial
discontinuity is needed for the existence of ¢, and for the evolution of the
discontinuities. Meanwhile ¢,—> 0 and consequently the discontinuity wave may
evolve into a shock wave in a short time. In words we can say that when the
hyperbolic model approachs the parabolic one (a3— 0) then a stronger condition
on the initial jump is required for the growth of the discontinuities.
Furthermore when ¢y—> « then the condition (4.9); is written

[3:01(0)>0 .

Therefore we find the condition obtained in [2]; for the existence of a shock
wave in magnetofluid dynamics. In this case the critical time is

202’ R,R;VE;

"l (0) (ep Ri+ PR3+ 2R RyRy) |

te
where
Ry = {(a? — (H4rp))? + a*(H%/np) } V2
Ry = (1/2) {a* + (H4mp) + Ry} Ry =R, — (H3/4rp)

and 1A’ is the fast wave speeds.
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Summary

As is well known the classical system of magnetofluid dynamics [T] with finite
conducibility and viscosity effects is not hyperbolic. To avoid such a paradox the
procedure given in [10] is applied within the framework of the irreversible thermodyna-
mics. The propagation of weak discontinuities compatible with the hyperbolic and
conservative system so obtained is studied. Some results already known are found as
particular cases (if the electrical conductivity is infinite). The influence on wave
propagation of the different dissipative effects is studied.
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