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Universal solutions for elastic shells (¥%)

1 - Introduction

The problem of statie universal solutions for thin two-dimensional continuum
media, finitely deformed, has been discussed by several authors (see for example
[2], {56], ..., [9] and their references).

We recall that the equilibrium solutions are universal if they are equilibrium
configurations for every isotropic elastic material.

We already studied in [1] the problem of universal solutions in the case of the
linear restricted theory for shells.

The aim of the present paper is to study the static universal solutions for
every elastic shell initially homogeneous and isotropic within the framework of a
direct theory, both in the non-linear and in the linear case.

Our first purpose is to determine and to analyse the set of conditions which
restrict the class of universal solutions for elastic membranes (see [5]) to the
class of universal solutions for elastic shells in the non-linear theory. As we
already did in [1], we refer essentially to the procedure used in [5] by Naghdi and
Tang in the case of finitely deformed elastic membranes.

Secondly we extend the results already get in [1] to the case of the linear
complete theory for shells.

In 2a we recall briefly the geometric and kinematic variables for a shell in the
non-linear restricted theory as well as the equilibrium equations and the
constitutive relations appropriate for the direct theory, as proposed in [4] and [3]
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(n. 7). In 2b we specify the assigned force and we give the explicit conditions to
be imposed in order to obtain all universal solutions. Since one set of conditions is
the same as one given in [5], in 2¢c we make use of the solutions for the two
fundamental forms of the deformed surface given by Naghdi and Tang in [5]. We
observe that the only universal deformations are from planes or right circular
cylinders into planes or right circular eylinders and from spheres into spheres. In
3 we examine the case of infinitesimal deformations in the complete theory. We
refer to [1] for the procedure in order to find explicit solutions and we observe
that the only possible deformations are: a plane into a plane, a right circular
cylinder into a right circular cylinder, a sphere into a sphere. Finally we point
out that deformations along the director are possible.

2 - The non-linear restricted theory
2a. Basic equations

Let us consider a material surface s embedded in a Euclidean 3-space and
identify the material points of the surface with convected coordinates 6
(a=1, 2). We denote the position vector of s with r = r(6*, ), where ¢ is time; let

X .
a,.=r, be the base vectors along the #*-curves on s and a3=[—::lﬁ]— the unit
1 2
normal to s. In the above formula and throughout the paper a comma stands for
partial differentiation with respeet to ¢*. Let us remember the following
relations

a, a;,=aq a=det(a,z >0 ;=58 a:-af=qa*
= Olog = s = Op

™ @y = & a=a"a, a,-a;=0 ad=a;.

In the above relations a,, and a* are the components of the first fundamental
form of s and its conjugate, & is the Kronecker symbol in 2-space. The surface s
with a normal vector field a; represents a shell in the restricted theory and its
motion is characterized by

r=r, t) a;=as(F, 1) .
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Let b,; denote the components of the second fundamental form of s
bc:,’3= _aa'a3’5=a3'aa’§ .

Then the mean and Gaussian curvature of s are, respectively

_ det (b
 det(a,)

@.1) H=~é—b¢a”3 K

We also recall the formulae of Mainardi-Codazzi and Gauss
2.2) gy = byis Ry =K det(ay)

where a vertical bar (|) stands for covariant differentiation with respect to the
metric tensor a,; and Rz, is the only independent component of the covariant
surface curvature tensor.

Let R = R(6") denote the position vector of the (initial) undeformed configura-
tion S of the shell. In the following we use capital letters to represent the duals of
quantities associated with s in the reference surface S. The base vectors, the unit
normal vector, the components of the first and second fundamental form, the
mean and Gaussian curvature of S will be denoted by A,, 4s, A.s, B.s, H, K. Then
the formulae of Mainardi-Codazzi and Gauss for S are

(2.3) | Bgj, = Buys Rpp=KA

where Riyps is the only independent component of the covariant surface
curvature tensor and A stands for det(A4,).

In (2.3); and in the following the double bars (||) stand for covariant
differentiation with respect to the metric tensor A4,.

We now introduce the kinematic variables in the case of the nonlinear
deformations

@.4) 0= %(aﬁ A =6,  #a=By—by=u,.
The equilibrium equations in the absence of body force are
N#,— b, M9 — 20,2 M9, + oFF =0

2.5)
M+ by N# — b bf M6 + oF% =0
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where p denotes the mass density of the surfaces s, F*¥ and F? are the components
of the assigned surface force F for unit mass, referred to the base vectors
(a,, ay). The above equations correspond to (15.20) (p. 552) of [4] in the static
case; for the boundary conditions appropriate to these theory see [4] ((15.24),
(15.25), p. 553).

The local equation for conservation of mass can be expressed as

(2.6) pa} = po‘Ai

where g, denotes the mass density of the reference surface S.

Restricting attention here to the isothermal theory of elastic shells, we
assume that the strain energy density ¢ does not depend explicitly on B,; (see
[5]). Therefore ¢ takes the form

= @(61{3’ xaﬁ) .

When the shell is initially isotropic with a center of symmetry, ¢ may be
expressed as a function of the following joint invariants (see [3], (7.25))

Il = Aaﬁ 6@3 IZ = A“YA'BG\ eayg ey\,'; 13 — AayAﬁc‘ 6,3 9&‘7,3

2.7

I4=A“'Bxaﬁ I5=A“YA3$‘(Z)1,390.,; .
Therefore
(2.8) e=q¢ly, I, I3, I, I5) .

The constitutive equations for N* and M“ are

N 3 s 3, . 3 5 al
2. N = 2P = — @ =92 = ;3 -
@.9) o, P2re de, M Fou,, o2 #row,
where Py = S s=1, ..., 5.
s aIs , s s

2b. Formulation of the problem

Let us now study the static universal solutions for every isotropic elastie shell
in the framework of a non-linear restricted theory. We assume that the strain
energy density (2.8) depends on each argument in distinet way. We suppose the
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initial mass density g, uniform across S, i.e.
(2.10) oo = const .

Let the components of the assigned surface force be
(2.11) Fr=y F?=const .

We assume, moreover, that the components of the first fundamental form,
both of the initial surface and the deformed one, are tensor functions of class C®,
while the components of the second fundamental form are tensor functions of
class C,

If the set of variables (A, B,) of the reference surface S and the
deformation variables (e, «,) describes the static universal deformations
resulting from the assigned surface force (2.11), as well as appropriate edge
loads, then (4,5, B,y), (e, «,) must satisfy:

the continuity equation (2.6) with g, = const,
the equilibrium equations (2.5),
the compatibility equations (2.2), (2.3)

for every choice of the response function ¢ in (2.8).

Let us consider now (2.5); in which N# and M“® are given by (2.9). In order
that (2.5); be satisfied by the variables A, B, e,; and x,; for every choice of &,
it is necessary and sufficient that the coefficients of each distinet derivative of ¢
in (2.5); vanish independently. Equating to zero these coefficients we get a set of
restrictions which we will specify afterwards. We restrict now our attention to
one of the conditions of this set

2.12) A%l =0 .

Since (A*) is non-singular, (2.12) yields
(2.13) I;=const s=1, ..., 5.

In view of the relation (see [5], (2.14))

& _l@-I) with L=A%a,  L=A"A%q,a,
A~3 o ot Wy

by means of (2.6), (2.10) and (2.13), we deduce

(2.14) e = const .
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Let us turn now to (2.5); in which N and M“ are given by (2.9). We
differentiate (2.5); with respect to ¢ and we use (2.11),, (2.18), (2.14); we
proceed in the same way as for (2.5); and we get a second set of restrictions.
Then, with the use of (2.4), (2.7), the mentioned restrictions imposed by (2.5); 2
yield the following conditions:

i1=Cl jg"—"Cz A“ﬁbzﬁ=03 AaYA',ﬁa/ngarg=C4
(2.15)
(VAla A#),=0 (VAla A A¥%q.9, =0
and
H=A%B,,=const B#b,— A AP b ;b,,= const
B3 B?—2B" b+ A A® b, b, ;= const B*a,, = const
A= b?b,,= const Bbfb,—A*A"b,. b b,s=const
2.16) :
A*A"a,bfb,= const B4, — (A" A¥b,),. =0
A7bA, =0 B*bA, —A*A”b bf, =
A®A"a,bf, = A%, = const
B#;— AT AP b 4., = const A" APq ., = const .

2¢. Universal solutions

The conditions (2.15) are the same as (4.8) in [5]. The system of equations
(2.15)1,2,5,6 yields the solution for the first fundamental form in two different
cases, according to whether or not the Gaussian curvature K is zero. The
remaining equations (2.15)3 4 yield the solution for the second fundamental form

in the cases K=0and K= ;3 We refer to [5] (sect. 5) for the explicit form of
Cy

these solutions; we must nevertheless verify if the solutions for a,; and b,, satisfy
the conditions (2.16).
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() K=0. In this case condition (2.16), implies that the undeformed surface S
must be a plane or a right circular cylinder (see [5], Theorems 6.1.-6.3.). The
solutions for the components of the first and second fundamental forms yield
therefore (see [5], formulae (5.17), (5.27)

2.17 @, = const b.s = const .

From (2.17); we deduce Rp2 =0 and by (2.2); K = 0; from (2.1) with the use of
(2.17) we get H = const. The deformed surface s must therefore be a plane or a
right circular cylinder. By observing that in this case the covariant differentia-
tion on s is reduced to the ordinary partial differentiation, the remaining
conditions (2.16) are verified.

- 2
@ii) K=2£36—> 0. In this case, S is a spherical surface; condition (2.16); is
1

satisfied and from (5.7), (5.26) of [5] we get
(2.18) @ =—Db, .

With the use of (2.18), formula (2.1), gives K = (%”-)2>0, that is the deformed
1

surface s is a sphere. The remaining conditions (2.16) are satisfied.

- 2 - _
(i) K< écZ— If K = const, the integrability condition (5.25) of [5] yields K=0
1

(a case already discussed above).

If K + const, by substituting the solution for b, the conditions (2.16), » and
the identity B,,B*=4H?~2K in (2.16);, we obtain K = const which is not
consistent with the hypothesis.

We observe here that the only families of universal deformations for an
isotropic elastic shell in the framework of the non linear restricted theory are the
families considered in sect. 8 of [5], that is:

family 1 - S and s are both planes;

family 2 - S is a sector of a right circular eylinder and s is a plane;

family 8 - S is a plane and s is a sector of a right circular cylinder;

family 4 - S and s are both right circular cylinders (or sectors of these surfaces);
family 5 - S and s are both spheres (or sectors of these surfaces).

We refer to sect. 8 of [5] for a detailed discussion of the possible deformations
of S.
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3 - The complete theory

Let s be a material surface representing the shell in the deformed
configuration. We assigne to every point of s a deformable vector d, called
director, which is not necessarily along the unit normal a; to s. The motion of the
shell in the complete theory is characterized by

3.1 r=r(¢, t) d=d@, 1) @ Xay-d>0

with a, base tangent vectors on s.

We refer to [2], (sect. 2) and [3], (sect. 4-5) for the basie equations of the non-
linear isothermal shell theory. If the elastic shell is initially isotropic with a
center of symmetry, the strain energy density can be expressed as a function of
twenty-five joint invariants associated to the deformation variables.

We could study the static universal solutions in this case by applying the
same procedure as in the previous sections; nevertheless we leave this problem
for future works because of the too high number of conditions involved.

Let us therefore study the problem of static universal solutions when the
deformations of the shell characterized by (3.1) are infinitesimal.

3a. Basic equations of the linear theory

If R=R(¢") and D=A; denote respectively the position vector and the
normal field vector in the undeformed configuration S of the shell, the
displacement u and the director displacement & are given by (see [4], (6.1), (6.2),
p. 456)

3.2) u=r—R u=u'A;=uA 6=d-D s=¢8A".

We suppose that the components of u and 8 and their derivatives are small so
that we may neglect squares and products of these quantities compared with

their first powers.
The linear isothermal deformations of the shell are characterized by the

kinematic variables (see [4], (5.81)-(5.34), p. 452)

eaﬁ=%(aaﬁ—A%@) xa’g_—')\,ﬁ‘*’Ba‘g .'L‘31=)\3,

3.3)
Ya=da ')’3=d3""1.
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The expressions for the kinematical quantities introduced in (8.8) can be found in
[4], (sect. 6). The compatibility equations which are necessary and sufficient
conditions for the existence of single-valued displacement u and é are given in [4]
(formulae (6.60), (6.61), pp. 465-466).

The equilibrium equations, in the absence of body force are (see [4], (9.69),
(9.70), p. 501)

N4, — BV + 5o FP =0 Vi + BuN* + 2 =0
3.4)
M ’“3"1 + o [f=V? IW“?’H,( + o0 Li=V3

where g, is the constant mass density on S, while F* and L are the components,
referred to the base vectors A; of the assigned surface force and of the surface
director force per unit mass, respectively.

In the linear theory the local equation for conservation of mass can be
expressed as (see [4], (6.14), p. 457)

(3.5) o= pol—e)

¢ being the mass density on s. _

Restricting attention here to isothermal deformations, the strain energy
density ¢ for an initially homogeneous isotropic elastic shell with a center of
symmetry assumes the form (see [4], (16.21), p. 557)

(3.6) ¢/=l{%[alﬁ + oz Ig + oy I§ + a5 I + (o + o) I + g L]
fo

+ (Z212+ (191119 + oc101115 + 2&11]3 +0612[519+ alglq} .

The coefficients a«y (s=1, ..., 13) are constant (see [3], p. 303). They are
moreover arbitrary, within the framework of the direct theory (see [4], p. 598).
The joint invariants I, (r=1, ..., 9) are defined as follows

Il = A* €. I2 = AayAﬁaeag (2% Ig = A“YA'%@“@ Ly I4 =A“YA'B°‘9615 Lys
3.7
I5=A°"3x,ﬁ 16=A°(’3x33x3’9 17=A¢Yax3’g 18=Aa'@}’a‘)/'g Ig=)’3.

In the equilibrium equations (8.4) we set

(3.8) Ve=N2=m*+B M* V:=m’—B,M* N*=N*—M=Bf.
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Then the constitutive equations which must be added to (3.4) are (see [4], (16.7),

p- 554)
o a0 Y -
o e NJB2 = = P Ot e —_—
3.9) Nt = NP =y =g Mo =g

3b. Formulation of the problem

In order to study the static universal solutions for every linear elastic shell,
initially homogeneous and isotropic, whose strain energy density is specified by
(3.6), let us now suppose that the components of the assigned surface force
density and of the surface director force density are, respectively

(3.10) Fr=0 F® = const LF=0 L?=const .

We assume, moreover, that the components of the first and second
fundamental form of the undeformed surface S and the set of deformation
variables (3.8) are sufficiently smooth.

If the set of the variables (4,5, B,s) of the reference surface S and of the
deformation variables (e, ., v:) describes the static universal deformations
resulting from the assigned force (3.10) as well as appropriate edge loads, then
(A, B.), (e, i, y) must satisfy:

the continuity equation (3.5),
the equilibrium equations (3.4),
the compatibility equations (2.3) and (6.60)-(6.61) in {4],

for every choice of the response function ¢ in (3.6).

Let us remark that this requirement about the response function ¢ is
equivalent to assuming that a deformation is possible for all arbitrary values of
the coefficients oy t0 o435 in (8.6).

By means of (3.6)~(3.9) and by observing that F®=const and L®= const
if and only if F3,=0 and L3?,=0, we obtain from (3.4) a set of non trivial
restrictions on the variables A, B.s, €. %i, v: (see 2b). This set of restrictions,
with the use of (8.3), becomes

H = const K = const 3 = const y,=0

a1 I,=A"q,,=const H = const A7 APy, =0
3.11

ATAPD g, =0 B*#q,,= const B#b,,= const

B;B*aq,, = const B;B*B,,(1—y;)— B;B*b,, = const .
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In (3.11), we have taken in account that x,= B,(1 — ys) — b,, because is
ys = const.

3c. Universal solutions

In order to study the problem of universal solutions, we can proceed exactly
as in the restricted linear theory and we refer to [1] for the explicit caleulations.

As in the linear restricted theory, we remark that the only families of
universal deformations are:

family 1 - S and s are both planes;
family 2 - S and s are both right circular cylinders (or sectors of these surfaces);
family 3 - S and s are both spheres (or sectors of these surfaces).

From (3.2); we get the expression for the deformable director relative to
every point of s in each of the above families

3.12) . d=A;+4.
With the use of (3.8),5 the components ¢; of & in (3.2), are given by
(3.13) 6‘1 = Ya -+ ,Ba 33 =Ys .

We can deduce that B, (x=1, 2) vanishe for the universal deformations
characterized by families 1-3, therefore (3.11),, (3.12), (3.13) yield

d= (1 + ‘}’3)A3 .

The condition (8.1); or equivalently d;>0 implies y;>—1.

Let us observe that in the linear theory a plane cannot deform itself into a
sector of a cylinder or viceversa; moreover the inversion both of the e¢ylinder and
the sphere is not consistent with the linear theory (see [1], sects. 3, 4).

We could finally calculate the expressions for the components N, V* V3, M,
F? and L? as in [1] (sect. 5) but we omit their final expressions since the
calculations are straightforward.
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Sommario

Nell'ambito della teoria diretta delle volte alla Cosserat, vengono studiate le

soluzioni statiche universali per deformazioni isoterme di una volta elastica isotropa, siq
nel caso della teoria ristretta non lineare che in quello della teoria lineare.



