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The method of the small parameter
in the theory of differential equations
with impulse effect (**)

1 - Introduction

Systems with impulses are an adequate mathematical model of a number of
phenomena and processes of the concern of physics, chemistry, control theory,
radiotechnology and so on. The first contributions on the mathematical theory of
systems with impulses are the papers of V. D. Millman and A. D. Mishkis [1]; ».
The theory of systems of differential equations with impulses advances
comparatively slowly in spite of the considerable interest displayed to it. This is
due to a number of difficulties implied by some specific features of these systems.

One of the traditional problems considered by the qualitative theory of
differential equations is related to the existence of periodic solutions.

The present paper proposes the Poincaré method for finding the periodic
solutions of differential-difference systems with impulses.

2 - Statement of the problem. General assumptions
Consider the system with impulse effect at fixed moments

ey
(A®)pey, = Ii(2(ty), 2(t;— h)

(*) Indirizzo degli AA.: University of Plovdiv «Paissii Hilendarski», BG-Plovdiv.
(**) Ricevuto: 27-V-1986.
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wherexeR,f: RXEXR-—-R,I: RXR-»>R,ieZ,t;eR are fixed points such
that &>t E{g t;=t o0, (Ax)ey, = x(t; +0) —(t; — 0), Z is the set of integers.

Def. 1. A solution of system (1) will be called the piecewise continuous
Junction 1 9 — R with first order discontinuity points as t;€ &, which, for
te I, t+#t, satisfies the equation

=1, @), xt—h))
and for t=1¢ ¢ 9 it fulfills the jump condition
ot + 0) — 2(t; — 0) = L(x(@; — 0)), «(t;—h—0) where I cR.
Def. 2. Under value of the solution ¢(f) at the point + we will understand
oD =gz~ 0)=lme(z —e) .

In view of Def. 1 and Def. 2 the solution ¢(f) of system (1) is a piecewise
continuous function with first order discontinuity points at ¢;, for which

o) = ICIH)I ot — e .
Consider system (1) for =0

&= f{t, x(), x@) L+,
@)
Ay, = Ii(2(t), 2(t)) .

The system (2) will be called generating system of system (1). Denote one of its
solutions by ¢(f). Define the system in variations with respect to (?), as follows

y =9y L#t;
3
(Ax)—y, = Qiy(ti)
where
of(t
so=ZE2 2,
4)

alx, )
Q = (T)m=m), ieZ+
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Def. 3. The solution ¢(t) of system (2) is called an isolated T-periodic
solution if:

1. The function ¢(#) is T-periodic.

2. The inequality X(T) # 1, holds where X(¢) is the fundamental solution of
the system in variations with respect to ¢(%) (3).

Let the following group of conditions (A) be fulfilled:

Al. The generating system (2) has an isolated T-periodic solution ¢(t) and a
bounded open set D c R exists, such that (f) e D.

A2. The function f: R®*> R is defined, continuous, periodic by its first
argument with period T, it is twice differentiable by its second and third
argument in the domain G = {(t, z, ¥): te R, %, y € D} and its second derivati-
ves satisfy the Lipschitz condition.

A38. The functions I;; R®*— R are twice continuously differentiable in the
domain D x D, 1e Z.

A4. A number p>0 exists such that L, (x, y)=I(x, ¥), =, yeD and
tLip=4+T, 1€ Z.

Ab. For every ie Z the inequality 1+ Q;# 0 holds.

3 - Main results

I. Construction of subsequent approximations. We will ask for a solution of
system (1), periodic with period T, as a limit of a sequence of T-periodic
functions.

In system (1) we substitute the unknown function by the formula

® o) = y() + U@ .

The following equations for the function y(t) are obtained

g =10, ¢)+y@, $@ +y@) —fC, Ut), Ut)

+ Af(E, 2(@), x(t—h)) t#t;
©
(A=, = Ly (&) + (), y@) + @) — L), () + AL(x(), x(t—h)
where
AfE, (), =@ — )=/, @), 2t —h)— L, =@), 2@)
)

AL, @ —h) = L), »(t:i— h)— L), ) .
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Equations (6) can be written in the form

Y=gy +YE )+ A, x@), ©(-h) tF#1;
®

(DAY=t = Qiy (@) + Ty + ALi(t), @t —h))

where g(f) and Q; are defined by the equalities (4), while

Y@, p=10, 4@ +y, 4@ +y)—f, 4@, ¢B) gty

9
g Ty = LAE) +y, $&) +y) — LEE), $@)) — Q:y -
Besides, the equalities
AftE, @(t), w(®)=0 AL, () =0
133)1-;- Y@, ) =0 Y(t, 0)=0 T =0
hold.

Put %,=0 and define the approximation y,() as a T-periodic solution of the
system

Y=gy +Y(E, yo) + AR, L), $E—-h)  tFEL
(AYime = Qiy(E) + Tilyo) + ALY, Ut — ) or

Y=gy +aflt, by tFL

(10)
(A=, = Qs y(t) + AIXEL;, h)
where
Afo(t, h) = AfCE, ¢@), $E—R)
1

ARG, h)=AL(E), ¢~ R) .
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In view of condition Al, the system (10) has a unique T-periodic solution

(@)= ofT G(t, ) Afo(z, BYde+ 3 G, oA+ Q) TAINE, h)

o<l
where
XOA-X@MH 1 XY 0=<=t=T

12 G, 7) =
NXG+T)1-XT)XN) 0=t<<=T.

We analogously determine the K-th approximation yg(t), K=2 as a T-periodic
solution of the system

Y=gy + YU yr-) + A, b)) tFL

" (At = Qiy(t) + Tilyx—1(t)) + ALLN(E, h)
where
Afg1(t, h) = AfT, $@) + yx1®), ¢ — ) + yx-(t — k)
A, B) = ALGYE) + yr-1 (8D, Wt~ h) + yx 1t — h)) -
Then

1) ypa®=J G, AVE, Yes(@) + My, W]ds
+ S 6, B+ QI Tyt + A, ).

o<<T

So, we construct the sequence of T-periodic functions yx(t) K <1, defined by
equalities (14).

I1. Convergence of the subsequent approximations. Introduce the notations:

y=y(@) J=yt—h) =) b=t —h)
Y=yt Ji=yl:i—h) g = J(t) & =¢t; — k)
x=x() =z, —h).
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Then
Y@, v)+ A, x, & =ARE BD+gDG—9)+qDy+SOF+YE, ¥, §)
(15)
AT y) + AL, €)= AL, k) + Q7 —y) + Biyi + Si%: + TYss T

where Afy(t, h), AIl(E;, h) are defined by equalities (11) and

at”_ at;, at}’-‘ at;;
@ =& ai § R ai R aq; R a; 9)
R = ALy, &)  OLgs, ) S.— ALy, )  OLds )
L dx T dy 3y
- 7 o Oft, ¢, ¢
Y(ty Y, g) =ﬂt7 Sb+y7 ¢+'g) —f(t; Sl’i ‘/J)_ 'f—(—é—g'_i)_y
fct, ¢, ) N, ¢, D)
Ty VT h)

oIy, &)
TR Yi

L, &) . Iy, ) ,_
Ty T s @:i—y) -

Ty =L+ s G+ — L, §)—

The approximation yx(t), K=1, can be written in the form

(16) yx(t) = ofT G, INAf(r, )+ g@DYr-1(z —h) — yx-1(7))
+ ¢(®) Yg-1() + (D) Y1z — B) + Y (z, yx-1(2), Yx—1(z — )] d=
+ 3 G, A, k) + Qyx—i(t— k) — yx-1(tD)

o<t;<T

+ B yx-1(t) + S;yg—1(t; — h) +<7~i(yK—1(ti), Y& —h)] .

We will employ the following lemma which is a corollary of the theorem about
finite increments.

Lemma 1. Let the function g(t): R— R be piecewise continuous in [a, b] with
first order discontinwity points at t;e(a, b ) G=1, I), gt;+0) ~ gt;— 0) = o
and let it be continuously differentiable for t+1,.
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Then

lg® ) —g@|=|b —a|lM+IN

M = sup (g'(®) N = max|«| .
éela, b) 1=is
By

Lemma 2. Let the following conditions be fulfilled:
1. The conditions (A) hold.

2. The function y(t) is a T-period solution of the system

¥ =g®)y+f) t#t;
@anm
(AY)=y, = Qiy(E) + o 1e”Z .
Then, the estimate
(18) sup |y(®)| =M max(max [f(t)], sup |1 + Q) )
tef0, 71 0,71 ieZ

holds, where

M=s[ug(0leG(t, Idet+ S 1GE, B -

0<y<T
Proof. The solution of system (17) has the form
T
19) y(@) =0f G, VfD)de+ 3 GE, t)A1+Q) .
o<t<T

Equality (19) implies the estimate (18).

Lemma 8. Let conditions (A) be fulfilled.

97

where

Then, a number h>0 exists, such that for h<h the sequence of functions
{yx()}& defined by equality (14), is uniformly convergent by t and its limit is a

solution of system (6).
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Proof. Condition A3 implies that the derivatives F]}y(x, y) and 5}@(95, ),
teZ exist and are continuous. Then we can find a continuous function
Vi DXD— R(@ieZ) for which

Viu, B)Z| Iy, 7)| Vilu, ) Z | Ty, 7)|
Viu, %) Z| T3y, 9|

for u=y and a=4, w, 4, y, §eD.
Condition A2 implies that the derivatives 7, and 7, exist and hence we are in
a position to find a continuous function U: D x D— R for which

Uw, Z|YC, y, 9)| Uu, ®Z|Y.¢, ¥, 9)|
Uyu, ) Z|Y,G¢, y, 7

foru=zy and a2y, u, 4, y, yeD, tel0, T
Define the continuous function W: D— R for which

w(u) Z max (U(u, u) supViu, w)) wueD.
ieZ
Consider the equations
U = o+ Mla(hv + pN) + hbu + w(w)]
(20)
v=,3+a(u—a)+a(lw+pN)+ bhat + w(u)

where: a=sup |y:(®)| 8= sup |[7:(t)|
tef0, 7] tef0, 71

a Zmax (sup |g@)| sup Q) ,
te[0, T} ieZ

bhémax(tsgi%(lq(t) +s@®))) sup (R + IS .

The solution of system (20) is looked for by the method of subsequent
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approximations. Put
Uy=a v =
Uy, = o + Mlahvg_, + pN) + bhag_, + wug-_)] ,
21
v =B+ alug — ) + alhvg_y + pN1+ bhug_; + wlug_y) .

Equalities (21) yield that w, satisfies the equality
ug = o+ M {h[af+ (a®+ LZET) (g1 — &) + apN + bug_i1+wug_1)} -
Denote by % the upper bound of the values of h, for which the equation
(22) w=a+M{hlag+ (a2+7aw—-) ( — @) + apN + bu] + w(w)}

has positive solutions. In view of [2] for & <7 the limit }{1_{2 ug =4 >0 exists and

the number u is a solution of equation (22). Then, for & < £, in view of Lemma 1,
Lemma 2 and equalities (21) uxZ|yx(®)|, uxs1— ug = |[Yx+:1(E) — yx(@®)| for
tef0, T

Therefore, the sequence of functions {yz(t)}¢ is uniformly convergent by t,
and lim yx(t) = y(®), where %(t) is a T-periodic solution of system (6).

Lemma 4. Let conditions (A) be fulfilled. ~
Then, a number h>0 exists, such that for h<h and KZ1, the relation
xx(t) = yx(t) + () € D holds, for te[0, T].

Proof. For h=0, the solution of system (6) is equal to zero. Hence
(@3) sup [yx(t)|-—0 .
tel0, T1 —

Relation (28) implies that a number >0 exist, such that for 2 < handte [0, T,
the function xx(t) e D for every K= 1.

Theorem 1. Let conditions (A) be fulfilled. Then, a number H >0 exists,
such that for h < H the system (1) has a T-periodic solution x*(t) which for h=10
coincides with (t).
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Proof. Choose H=min(%, k) and construct the sequences of functions
{yx®}, defined by equality (14). In view of Lemma 3, the sequence {yx(£)}{ is
uniformly convergent by t for # < H and its limit y(¢) is a solution of system (6).
Introduce the denotation x*(f) =y(¢)+ (¢). The function is T-periodic and
satisfies system (1). In view of Lemma 4, for & = 0, y(¢) = 0 and hence x*(t) = (t).

Thus, Theorem 1 is proved.
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Summary

In the paper the Poincaré method is employed for finding the periodic solutions of
differential-difference equations with impulses, the constant delay being assumed as a
small parameter.



