GRAZIA ROMEO (*)

Sugli 1-ipergruppi (**)

Introduzione

Nell'ambito della teoria degli ipergruppi completi è stato dimostrato in [2] che la classe degli ipergruppi di associatività, introdotti da M. Koskas [3], coincide con la classe degli ipergruppi completi. Inoltre, si è osservato in [2] che il cuore di un ipergruppo completo H è il sottoipergruppo ω_H costituito da tutte le identità bilatere di H, e il prodotto di due elementi è una classe di equivalenza modulo β^* , dove β^* è la più fine equivalenza fortemente regolare di H [3].

In $[1]_4$ sono stati definiti gli 1-ipergruppi, cioè ipergruppi tali che $|\omega_H|=1$, e sono stati trovati legami tra essi e gli ipergruppi completi.

In questo lavoro si studiano gli 1-ipergruppi e si esamina la loro struttura pervenendo ad un metodo che ci permette di costruire tutti gli 1-ipergruppi con sostegno un insieme H, a partire da un gruppo G tale che $|G| \leq |H|$. Tale metodo permette, nel caso di insiemi finiti, di determinare in maniera rapida le tavole di Cayley relative agli 1-ipergruppi con sostegno H.

1 - Premesse

Si richiamano alcune definizioni e proprietà che saranno utili nel seguito.

Def. Sia H un semi-ipergruppo, sia n un intero positivo, se $x, y \in H$ poniamo $x\beta_n y \Leftrightarrow \exists z_1, \ldots, z_n \in H \colon x, y \in \pi z_i$.

^(*) Indirizzo: Istituto di Matematica, Università, Via C. Battisti 90, 98100 Messina, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.S.A.G.A. (C.N.R.). — Ricevuto: 25-I-1983.

Sia $\beta = \bigcup_{n \ge 1} \beta_n$ e β^* la chiusura transitiva della relazione β [3].

Def. Sia H un ipergruppo, φ_H la proiezione canonica, $\varphi_H \colon H \to H/\beta^*$, diciamo cuore di H, e lo indichiamo con ω_H , il ker φ_H [3]. È noto che H/β^* è un gruppo [3].

Def. Un ipergruppo H si dice 1-ipergruppo se $|\omega_H| = 1$ [1]₄. Si indichi con $\beta^*(u)$ la classe d'equivalenza modulo β^* dell'elemento u.

Def. Un ipergruppo H è completo se e solo se $\forall x, y \in H$ $x \circ y = \beta^*(u)$, dove $u \in x \circ y$.

Teorema. Sia H un 1-ipergruppo, allora posto $\omega_H = \{e\}$, si ha: (1) le classi modulo β^* sono i prodotti eoa, al variare di a in H; (2) H è regolare e reversibile; (3) $\forall x \in H$, $\forall x' \in i(x)$ risulta $i(x) = \beta^*(x')$ (dove i(x) è l'insieme degli inversi bilateri dell'elemento x).

Dim. Cfr. [1]4.

Teorema. Sia H un 1-ipergruppo; se $|H| \le 4$ allora H è un gruppo, oppure è un ipergruppo completo.

Dim. Cfr. [1]4.

Teorema. $\forall n \geqslant 5$, esistono 1-ipergruppi non completi di cardinalità n.

Dim. Cfr. $[1]_4$.

- Def. Sia H un ipergruppo, diciamo che H è regolare se ha almeno un'identità bilatera e ogni elemento ha un inverso bilatero.
- Def. Un ipergruppo regolare H si dice reversibile se soddisfa alle seguenti condizioni, $\forall x, y, z \in H$: (1) se $y \in a \circ x$, esiste un inverso a' di a tale che $x \in a' \circ y$; (2) se $z \in x \circ a$, esiste un inverso a'' di a tale che $x \in z \circ a''$ [3].
- Def. Sia H un ipergruppo regolare, $\forall m \in \mathbb{N}$ siano $a_1, ..., a_m \in H$, e siano $a'_1, ..., a'_m$ inversi rispettivamente di $a_1, ..., a_m$; allora l'insieme $a_1 \circ a_2 \circ ... \circ a_m \circ a'_m \circ ... \circ a'_1$ si dice prodotto di tipo zero $[\mathbf{1}]_3$.

Teorema. Se H è un ipergruppo regolare e reversibile, il cuore è l'unione dei prodotti di tipo zero.

Dim. Cfr. [1]3.

- **2** Proposizione 2.1. Sia H un 1-ipergruppo, se $a, b \in H$, $a \neq e \neq b$, $e \circ a \cap e \circ b = \emptyset$ si ha:
 - (i) Se $a \circ b = e$, allora $((a \circ e) \circ (a \circ e)) \cap (a \circ e \cup \{e\}) = \emptyset$.
 - (ii) $a \circ b \cap (a \circ e \cup b \circ e) = \emptyset$.
- Dim. (i) Se $a \circ b = e$, allora b è inverso di ogni $a \in a \circ e$. Supponiamo $e \in (a \circ e) \circ (a \circ e)$, esistono e, $d \in a \circ e$ tali che $e \circ d = e$; da $[1]_4$ segue $d \in i(e) = e \circ e' = e \circ b$, assurdo. Supponiamo sia $(a \circ e) \circ (a \circ e) \cap a \circ e \neq \emptyset$, segue che $\varphi_H(a) = 1$, assurdo.
- (ii) Supponiamo per assurdo esista $c \in a \circ b \cap e \circ a$, si ha $\varphi_H(c) = \varphi_H(a) = \varphi_H(a) \varphi_H(b)$, da cui $b \in \omega_H = \{e\}$.

Segue che $\forall a, b \in H$ si ha $a \circ b = \{e\}$, oppure $a \circ b \cap (\{e\} \cup e \circ a \cup e \circ b) = \emptyset$.

Proposizione 2.2. Sia H un 1-ipergruppo, $\forall a, b \in H$ si ha:

- (iii) Se $a \circ b = e$, allora $(a \circ e) \circ (b \circ e) = e$.
- (iv) Se $c \in a \circ b$, $\forall \alpha \in a \circ e$, $\forall \beta \in b \circ e$ si ha $\alpha \circ \beta \subseteq c \circ e$.

Dim. (iii) Si ha $(a \circ e) \circ (b \circ e) = (a \circ b) \circ (e \circ e) = e \circ e = e$.

(iv) Sia $d \in \alpha \circ \beta$ si ha $\varphi_H(d) = \varphi_H(\alpha) \varphi_H(\beta) = \varphi_H(\alpha) \varphi_H(b) = \varphi_H(c)$, segue che $d \in c \circ e$.

Segue che $\forall a, b \in H$, se $c \in a \circ b$, allora $\alpha \circ (b \circ c) = c \circ e = (a \circ e) \circ \beta$.

Siano H un insieme e G un gruppo tale che $|H| \geqslant |G|$; consideriamo una partizione di H in |G| sottoinsiemi A_i , $1 \leqslant i \leqslant |G|$, e la funzione polidroma $[\mathbf{1}]_1$ $f \colon G \to H$ definita $\forall i \in G$ $f(i) = A_i$. Definiamo in H un'iper-operazione $\langle \circ \rangle$ tale che $\forall i, j \in G$, $\forall x \in A_i$, $\forall y \in A_j$ sia verificata la condizione

$$(\mathbf{I}) \qquad \qquad x \circ A_i = A_{ii} = A_i \circ y;$$

in particolare, se esistono $x \in A_i$, $y \in A_j$, $z \in A_k$ tale che $x \circ y = A'_{ij} \subset A_{ij}$ e $y \circ z = A'_{jk} \subset A_{jk}$, supponiamo, inoltre, si verifichi

$$A_{i}^{\prime} \circ z = x \circ A_{i}^{\prime}$$

Teorema 2.1. $\langle H, \circ \rangle$ è un ipergruppo.

Dim. La funzione f definita sopra è un omomorfismo polidromo $[\mathbf{1}]_1$; infatti $f(ij) = A_{ij} = A_i \circ A_j = f(i) \circ f(j)$.

[4]

Per vedere che $\forall x \in H \ x \circ H = H$ basta dimostrare che $\forall x, y \in H$ esiste $z \in H$ tale che $y \in x \circ z$. Siano $x \in A_i, y \in A_j$; poichè G è un gruppo esiste $k \in G$ tale che j = ik, da cui $f(j) = f(ik) = f(i) \circ f(k) = A_i \circ A_k = A_{ik} = A_j \ni y$, segue che esiste $z \in A_k$ tale che $y \in x \circ z$. Che il prodotto $\langle \circ \rangle$ è associativo segue dalle condizioni (I) e (II).

Teorema 2.2. Se $|A_1| = 1$, allora $\langle H, \circ \rangle$ è un 1-ipergruppo.

Dim. Sia $A_1 = \{e\}$, $\forall i \in G$, $\forall x \in A_i$ $x \circ e = e \circ x = A_i = \beta^*(x) \ni x$, segue che e è un'identità bilatera di H. Supponiamo esista $y \in A_i$ $(j \ne 1)$ tale che $\forall i \in G$, $\forall x \in A_i$, $x \in x \circ y \in A_i \circ A_j = A_{ij}$. Certamente $A_i \cap A_{ij} \ne \emptyset$ e, poichè $\forall k \in G$ gli A_k formano una partizione di H, si ha $A_i = A_{ij}$, cioè i = ij da cui, poichè G è un gruppo, j = 1, assurdo. Segue che e è l'unica identità bilatera di H.

Facciamo vedere che H è reversibile. $\forall x, y \in H$ esiste $\{i, j\} \subset G$ tale che $x \in A_i$, $y \in A_j$, ed esiste $k \in G$ tale che i = kj, da cui $k^{-1}i = j$. Sia $x \in a \circ y$, $a \in A_k$, f è un omomorfismo quindi $f(j) = f(k^{-1}) \circ f(i)$, cioè $A_j = A_{k-1} \circ A_i$, segue che esiste $a' \in A_k^{-1}$ tale che $y \in a' \circ x$ dove a' è un inverso di a; infatti $a' \circ a = a \circ a' = A_1 = \{e\}$. Poichè ω_H è l'unione dei prodotti di tipo zero, si ha $\omega_H = \{e\}$, vedi $[1]_3$.

Osserviamo che, $\forall i \in G$, $A_i \subset H$ è una classe d'equivalenza modulo β^* , poichè $\forall x \in H \ \exists i \in G \colon x \circ e = e \circ x = A_i$. Si ha $H/\beta^* \simeq G$. Infatti, consideriamo la funzione $g \colon G \to H/\beta^*$ così definita: $\forall i \in G, g(i) = (\varphi_H \circ f)(i). g$ è un omomorfismo: $g(ij) = (\varphi_H \circ f)(ij) = \varphi_H(f(ij)) = \varphi_H(f(ij)) = \varphi_H(f(ij)) = \varphi_H(f(ij)) = (\varphi_H \circ f)(i) \cdot (\varphi_H \circ f)(j) = g(i)g(j)$.

Indichiamo con $1 - \Omega_H(G)$ la classe degli 1-ipergruppi con sostegno H costruiti, come sopra, a partire dal gruppo G.

Proposizione 2.3. Ogni 1-ipergruppo $\langle H, \circ \rangle$ appartiene alla classe $1 - \Omega_H(H/\beta^*)$.

Dim. Se $\langle H, \circ \rangle$ è un 1-ipergruppo, le classi modulo β^* sono i prodotti $c\circ x$ al variare di x in H, vedi $[1]_4$, le quali formano una partizione dell'insieme H in $|H/\beta^*|$ sottoinsiemi. Poniamo $c\circ x=A_{\overline{x}}$, dove $\overline{x}\in H/\beta^*$, e vogliamo far vedere che sono soddisfatte le condizioni (I) e (II). $\forall A_{\overline{x}},\ A_{\overline{y}}\in H/\beta^*,\ \forall a\in A_{\overline{x}}$ e $\forall b\in A_{\overline{y}}$ per la Proposizione 2.2 esiste $z\in x\circ y$ tale che $a\circ A_{\overline{y}}=A_{\overline{z}}=A_{\overline{x}}\circ b$, dove $A_{\overline{z}}=A_{\overline{x}}\circ b$. Inoltre, poichè H è, in particolare, un semi-ipergruppo vale anche la condizione (II).

Osserviamo che una condizione necessaria e sufficiente affinchè un ipergruppo H sia completo è la seguente

(*) $\forall x, y \in H \text{ esiste } z \in H \text{ tale che } x \circ y \cap \omega_H \circ z \neq \emptyset \Rightarrow x \circ y = \omega_H \circ z.$

Sia $\forall i, j \in G, i \neq j, |A_i| = |A_j|(\delta)$, consideriamo la funzione univoca $\psi \colon H \to G$ definita $\forall x \in A_i, \varphi(x) = f^{-1}(A_i) = i. \psi$ è surgettiva ed inoltre $\psi^{-1}\psi(x) = A_i$. Per [3] esiste su H una struttura di gruppo $\langle H, \times \rangle$ tale che $\forall x, y \in H \ \psi(x \times y) = \psi(x)\psi(y)$.

Teorema 2.3. Se vale la condizione (*) allora $\langle H, \times \rangle$ è una selezione di gruppo in $\langle H, \circ \rangle$ [3].

Dim. Se vale la condizione (*), H è l'ipergruppo d'associatività di qualche gruppoide [2], quindi per [3] esistono su H selezioni di gruppo. Facciamo vedere che $\langle H, \times \rangle$ è una selezione di $\langle H, \circ \rangle$. Se $x \in A_i$, $y \in A_j$ si ha $\psi(x) = i$, $\psi(y) = j$, $\psi(x)\psi(y) = ij = \psi(x \times y)$, da cui $x \times y \in \psi^{-1}(ij) = A_{ij} = x \circ y$.

3 - Esempio. Di un 1-ipergruppo non completo.

Sia $H = \{a, b, c, d, e, f, g, h, i, l\}$. Consideriamo la seguente partizione di H: $A_1 = \{e\}$, $A_2 = \{a, c\}$, $A_3 = \{b, d, h\}$, $A_4 = \{f, i\}$, $A_5 = \{g, l\}$. Scriviamo la tabella seguente tenendo conto delle condizioni (I) e (II).

0	e	a	b	c	d	f	g	h	i	l
\overline{e}	e	A_2	A_3	A_2	A_3	A_4	A_5	A_3	A_4	A_{5}
a	A_2	$\{b,d\}$	A_4	h	A_4	g	e	A_4	l	e
b	A_3	A_4	A_5	A_4	A_5	e	A_2	A_5	e	A_2
c	A_2	h	A_4	$\{b, d\}$	$A_{f 4}$	l	e	A_4	g	e
d	A_3	A_4	A_5	A_4	A_5	e	A_2	A_5	e	A_2
f	A_4	g	e	l	e	A_2	A_3	e	A_2	A_3
g	A_5	e	A_2	e	A_2	A_3	A_4	A_2	A_3	A_4
h	A_3	A_4	$A_{f 5}$	A_4	A_5	e	A_2	A_{5}	e	A_2
i	A_4	ι	e	g	e	A_2	A_3	e^{-}	A_2	A_3
ι	A_5	e	A_2	\boldsymbol{e}	A_2	A_3	A_4	A_2	A_3	A_4

 $\langle H, \circ \rangle$ è un 1-ipergruppo.

Bibliografia

222

- [1] P. Corsini: [•]₁ Hypergroupes réguliers et hypermodules, Ann. Univ. Ferrara, Sez. VIII Sci. Mat. **20** (1975), 121-135; [•]₂ Sur les semi-hypergroupes complets et les groupoides, Atti Soc. Peloritana Sci. Mat. Fis. Nat. Messina (in corso di stampa); [•]₃ Contributo alla teoria degli ipergruppi, Atti Soc. Peloritana Sci. Mat. Fis. Nat. Messina (in corso di stampa); [•]₄ Feebly canonical and 1-hypergroups, Acta Universitatis Carolinae (Math. et Phjs.), Praha (in corso di stampa).
- [2] P. Corsini and G. Romeo, Hypergroupes complets et T-groupoides, Atti del Convegno su «Sistemi binari e loro applicazioni», Taormina 1978.
- [3] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl. 49 (1970), 155-192.

Abstract

One studies the 1-hypergroups and determine their structure. Moreover one find a method allowing us to construct all the 1-hypergroups.

* * *