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Parameter eéstimation

in age-structured population dynamics (**)

Introduection

One of more complex problems in population dynamiecs is that of birth-
death parameters estimation from demographic data, taking into account the
age structure of the population.

In many natural populations the chronological age is not or hardly observ-
able, therefore a substitute of age seems to be necessary. Starting from the
Lotka equation we propose a lumped mathematical model which takes into
account the chronological or physiological age by means of developmental
stages or dimensional classes.

The main dynamical processes of the population are deseribed in term of
integral equations.

The parameter estimation is obtained from a constrained minimum problem.

The corresponding inverse problem is solved by means of statistical regu-
larization.

1 - Mathematical model

We assume that the population under consideration is large enough so
that is meaningful the concept of a population density function, that is its
size can be represented as a continuous functmn, of age and time, with con-
tinuous derivatives.

(*) Indirizzo: Istibuto di Matematica, Via Universita 12, 43100 Parma, Italy.
(**) Presented of the Meeting « Stochastic Methods in Life Sciences: genceral
aspecls and specific models», Trento, september 1980. — Ricevuto: 7-1X-1981.
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Moreover we consider only female individuals in the population, assuming
that similar considerations can be made for populations comprising both sexes
when the sex ratio is known.

Let n(a, 1) be the age density function of the population, that is n(a, t) da
is the number of individuals of the population whose age lies between a and
a -+ Aa at time 1. Thus the total population at time ¢ can be expressed as

1) N(t) :Tf:,((o, tyda .

0

The basic assessment of our population dynamics problem refers to the Von
Foerster equation (Von Foerster, 1959)

01 ,t on s ¢
(2) n(aC; ) + n(aa; ) = — p(a, t)n{a, t) (a,2>0),

with initial and boundary conditions

(3) n(a, 0) = pla) (a>0),
(4) n(0,) = A(a, 1) n(a, 1) da t>0),

0
where, u(a,t) is the specific death rate, Aa,t) is the specific fecundity rate.
It we assume u and A to be time independent functions the solution of the
equation (2) is given by

(5) n{a, t) = n(0, t— a) S(a) (t>a),

where S(a) is the survival function related to the specific mortality rate by
the equation

a8 .
(6) = S(a)-p(a), with S(0)=1.

The renewal equation (4) for large ¢ becomes
t
(7 b(t) = [Ma)b(t — a) S(a)da,
0

where b(t) = n(0,t) is the birth rate.
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The equation (7) is known as Lotka equation; if the product A(a)S(a)
is known, through experimental observations (e.g. by means of life tables),
then the birth rate can be estimated by solving eq. (7).

If an exponential growth of population and a stable age structure are assu-
med, then it is possible to estimate the malthusian parameter r by solving
the equation

i

1 =fMa)S(a)e™da,

0

-

which follows from (7) when b(¢) = e¢™ is assumed.

In general when we deal with populations in which it is not possible to
follow the cohorts it is difficult to estimate the survival and fecundity rates,
therefore it is of some interest to solve the inverse problem related to the
equation (7) starting from experimental observations of the birth rate b(¢).

However in many natural populations with continuous recruitment the
observation of age structure is practically impossible. When the chronological
or physiological age is not observable, the subdivision of the population in
age classes or developmental stages seems to be necessary.

In this work we refer to a population in which a subdivision into % develop-
mental stages may be possible, the last stage being the class of the adults.

Let n(a,t) and 7, i =1,..., k be the specific density and the develop-
mental time of the i-th developmental stage respectively (7, is the maximum
life lenght of the adults).

The following continuity equations hold

ona, )
ot

on,(a, )

(8) %

+

= — ula)nla,t) O<a<cT; i=1,..,k),

with initial and boundary conditions

(9), na, 0) = ni(a) (i=1,.., k),
(9), 1,(0, 1) :}ol(a) n{a, t)da,
(9)s Ni4a(0, 1) = 04(Ts, 1) (t=1,..,(k—1)).

If we indicate with N,(f) the total number of individuals in the i-th stage,
that is ‘

(10) Ni(t) = [nila, ) da (i=1,.., %,
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we can get the following set of integral equations which describe adequately
k~1

the dynamics of the population for ¢> > 7', and 1 as a constant
=1

(11) Nt) = [f:(a) Nt — a)da (i=1,..,k),

where
i~1

7,=0, Tep =1, T,= > T (=2, ..k,
j=1
i—-1
ful@) = 8y(a)-24,  fia)= 2-8(a)( ][ 8:(T)),
=1
Si(a) is the survival function of the i-th stage.

Here it has been assumed that the specific fecundity rate is age independent;
this restrictive assumption is adequated only for certain populations and for
particular environmental factors.

It is clear that if enough observations of populations density are available,
the solution of the inverse problem related to the equation (11) allows the
estimation of the demographic parameters A and S,(a) for i=1, ..., L.

2 - Parameter estimation

Our problem is how to solve this kind of equations by means of regulariz-
ing functions. The equations (11) are of the type

4
(12) 9(@) = [Bfl(@) = [E(@ — y){(y) dy ve[e d],

where « and f are known.
We consider the case that g(x) is not given analytically but a vector
G =1(G1, .-y Gu)T of approximate values of g(») at points =, ..., 2, € [¢, d].
Owing to measurement errors the quantities §; found from the measurements
are different from their ideal values g, given by equation (12). This stochastic
nature of the quantities observed is an inevitable feature of every actual
experiment, and it must appear explicitly in the formulation of the inverse
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problem. Therefore the algebraized from of the inverse problem related to
equation (12) is

(13) DHEfi=g=§,+9; (j=1,...,m),

Fe=1

where the f,s form a vector f in the space B* and are the values of f(y) ab
certain reference points i, ..., ¥,, K;; form a m-by-n matrix K and J, form
a random vector ¢ in the space B™ and are introduced owing to the errors of
measurements of the quantities g;.

The unknown quantities f; determine the quantities g;; some random pro-
cess gives us the observed values §; and the connection between g¢; and §; is §;.
Thus, if we make the usual assumption that the errors §; for different j are
indipendent and distributed according to the normal law with mathematical
expectation zero, the conditional probability of the vector T = A(Fry ey Gu)T
for a given vector f is known, because

(14) PG =g—0ff) = P(6) = det? (D~*/2m) exp [ | D-*(Kf — 7)]2/2] ,

where D is the diagonal matrix (ds, ..., d,,) and d; is the standard deviation
of §,.

The inverse problem related to equation (12) ecan be formulated in the
following way [5]: to look for the vector f on condition of the vector g which
is known only in probability. The idea can be to find the probability of f under
the condition that the measurements have given the results §, and therefore
assuming the expected value of f over this distribution as estimate of f.

The following observation is important to determine P(f/§).

The operator K in equation (12) has a very strong « smoothing » action, in
the sense that slight perturbation of g(w) might correspond to arbitrarily large
perturbations of the solution f(y). Therefore, it is clear that the errors of
measurement, though small, cause a solution which may be very different
from the true one. Thus, our problem can be regarded as effectively not fully
defined and must be completed by a priori information about the solution,
50 as to get a solution as close as possible to the true one. Thus, we use Bayes’
formula to get the conditional probability P(f/g)

) - P@HEG)
4 P = egn P @i’

because this formula allows the introduction of the a priori information about
f(y) by means of the probability density function P(f).

15
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This method to estimate f is particularly suitable for the type of inverse
problem related to equation (12) because it takes into account both the sto-
chastic error of observation, and the « smoothing » character of the operator K
which makes the problem an ill-conditioned one.

If we know that the unknown function f(y) is smooth, we may take, for
istance, as degree of smoothness the squared norm of its second derivative

(16) )] = (i) dy ,

Y1

and the a priori information is given by fixing a value w which represents
the expected value of J[f(y)] over an a priori distribution P(f). Thus, if
{f, 2f) is the algebraized form of (16), the a priori information is written

(17) [, 2N P(f)df = .

b
We choose among all funetions P(f) satisfying (17) that one which contains
the minimum of information about f, i.e. that one which minimizes the functional

(18) I(P(h) =[P(f)log (P(h)af,

which gives a quantitative measure of this information.
Thus the a priori probability P(f) is subject to a problem of conditional
extremum, and the corresponding Euler equation is

(19) log (P(f)) + " Qf2 + e+ 1=0,

where o and § are Lagrangian parameters.
The function P(f) is found to be [3]

(20) P(f) = det? (B2[2) exp (— ff* 2f/2)

where @ is a replacement of Q if Q is singular, such that @ = Q 4 X, where
X is a positive definite and symmetric matrix and & is an arbitrarily small
positive number.

By virtue of Bayes’ formula, the a posteriori conditional probability (15)
is then

_exp (= (B0 + 1D(E] — )[)2)
Jexp (= (B 2f +1Df — ) 19/2) 4

(21) Py(f/9)




[71 PARAMETER ESTIMATION IN AGE-STRUCTURED ... 219

and the Bayesian estimate f; of f is found to be the solution of the system
2 Y (1 -2 — Z T D-275
with p/2 = 1/8.
It has been shown [2] that the solution f, of the extremum problem
n—1 Wiy
(22) > [ (") a4 y| D(I] — g)|* —min,
=1 U
where p is an undetermined Lagrangian parameter, is a natural cubic spline
which satisfies the equation

(24) (QT2Q* + L KrD=K)f, (L K7 D7,

where: k=9, — ¥ (i=1,.., (n— 1)); T is a positive definite tridiagonal
matrix of order (n— 2): t,; = 2(h,, + h,)/3, g = biga s = hif3; @ is a
tridiagonal matrix with » rows and (n —2) columns: Qicae = 1/h;_y,
Qi = — (1/h;4) — (1/h;) Qivrc = 1/hi .

Moreover it is easy to see that the solution of the problem

(25) 7QT-1Q7)f + y| D-'(F — Ef)|* — min
is given by
(26) G E7 DK +Q1Q")f, =L KT D7,
so that it is natural to take
n-1 Yiqy
[ (Fro)dt=fm(Qr-1Q")f .
i=1

We get a form for @, that is Q = Q7-1Q, which is very suitable because in
this way the solution of (22) is the vector of the values of the cubic natural
spline at ¥y, ..., y, that may be taken as a natural extension of the Bayesian
estimation in all the range [y, ¥.].
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By the Cholesky decomposition of 71, 7-1= 8§87, and the positions
H = @8, y/2 = p*% it is easy to verify that the system (24) is the normal
system of the system

pD 1K pD —1g

(27) L =121,

It is known [1] that every m-by-n real matrix 4 can be decomposed
(singular value decomposition) into the form 4 = UXV?, where U is an
m-by-m orthogonal matrix, V is an a-by-n orthogonal matrix, and 2 is an
m-by-n matrix whose elements are o,; =0 for 7 sj and oy = 0,>0.

- We may use the singular value decomposition to obtain the Moore-Penrose
pseudoinverse A+ of 4, Av= VX+UT, where XZ* is an n-by-m matrix with
of=1fo; if 0,>0, or ¢F =0 if 0,= 0.

The solution of the system (24) is expressed as

pD- 1K] _ D74,

(28) fr=I ;

3 ~ Numerical results

We show how the described estimation method can be applied in the
study of the dynamics of some populations.

As a first study case we refer to a population of Ceratitis which may be
represented as having two developmental stages: the first stage of preimma-
ginals contains eggs, larval and pupae and will be indicated by I, the second
stages of adults will be indicated by A.

We try to identify the speeific fecundity and survival rate of the population.

To simulate the observations we have choosen

Si(a) = e™*1, (@) = e7Ha,

and we have obtained I(f) and A(f) by means of numerical integration of dif-
ferential equations with 7; = 14, 2 = 8.5, u; = 0.1 and u, = 0.02. We have
estimated f(a) = A-8:(a) and fi(a) = A-8:(T))S4(a) of the equations (11) in
the interval [0,14] for both preimmaginal and adult stages with age step
Aa =1. The optimum values for the Lagrangian paraimeters are

yr=0.01, y,=0.0001,
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with the corresponding mean square errors
=2, Fy=2.5.

As a second study case we have considered a population of Daphnia
represented by means of three developmentel stages: eggs, young and adults.

The simulation of the birth-deat process is been performed as in the pre-
vious case with the following parameters: Ty = 2, Ty = 5, 1 =5, uz = 0.02
=ty and uy = 0.

The problems of estimation has been solved in the intervals [0, 2], [0, 5],
[0, 7] for eggs, young, and adults respectively, with age step Aa = 0.5.

The optimum values for the Lagrangian parameters are

ve 0.1, Yy = 0.01, va = 0.001,

with the corresponding mean square errors

FE:?:, FY:1'57 .171;1:3.5.
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Summary

We propose a mathemalical model in integral form which describes the birth-death
process of populations wich may be subdivided in a switable number of developmenial stages.

The demographic parameters of such populations are estimated by solving the inverse
problems related fo the integral equalions by means of statistical regularization method
proposed by Turchin which takes into account the stochastic nature of the observations.

The estimated parameters have been obtained as natural spline functions.

Numerical results which refer to zooplanktonic and insect populations are presented.



