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GASTON MANDATA N’ GUEREXKATA (%)

Some remarks on optimal mild solutions

of the differential equation »'=42+f in Banach spaces (**)

Introduction

We consider in a uniformly convex Banach space X, the non-homogeneous
differential equation

(1) (1) = Aa()) + (1), —oco<i< oo,

where the closed linear operator 4 with domain D(4), dense in X is the infi-
nitesimal generator of a strongly continuous one-parameter operator semi-
group T, t>0 (see [2] for definition); f(¢): —oo <t < oo — X is a strongly
continuous function.

This work is based on recent papers of professor S. Zaidman ([4]1’,_,,3); in
Theorem 1 we show the existence and uniqueness of an optimal mild solution
of equation (1); and then, assuming f(f) stronlgy almost-periodic, we prove
weak almost-periodicity of the optimal mild solution in Theorem 2, general-
izing somewhat Theorem 4.2 in [4],.

Let us recall some useful definitions.

Def. A strongly continuous function @(#): —oco <t << oo — X with in-
tegral representation

i
w(t) = T, @(t) +[Tisflo)do,
to
for all t,e R and all t>1,, is called a mild solution of equation (1).

(*) Indirizzo: Université de Bangui, Faculté des Sciences, BP 1450 Bangui, Rép.
Centrafricaine.
(**) Ricevuto: 1-VI-1981.
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Now let £, be the set of all mild solutions ®(¢) of (1) which are bounded

over the real line, i.e. u(z) = sup |z(f) ] < oo, and assume Q,5= 0.
IER

Def. 2. We call an optimal mild solution of (1) every bounded mild so-
lution x(t) such that

Def. 3. A strongly continuous function f(¢): — co < t << co — X is called
strongly almost-periodic if from every real sequence (s))? we can extract a sub-
sequence (s,)7 such that lim f(t + s,) exists in X in the strong sense, uniformly
in —oo<<t<<oo. e

Def. 4. f(t) is weakly almost-periodic if from every real sequence (87,1);”
we can extract a subsequence (s,);” such that lim f({+ s,) exists in X in the
weak sense, uniformly in - oco <t < co. nore

1 - Theorem 1. Let us assume f(i) strongly continuous over the real line
and the operator A the infinitesimal generator of a strongly continuous one-para-

meter operator semi-group T, such that sup||T,|< co.
20
Suppose also ;== O; then there exists a uniqne optimal mild soluticn of

equation (1).

Remark. The proof is based on the following elementary fact: in a uni-
formly convex B-space X, if K ¢ X is a non-empty convex and closed subset
and v ¢ I, then there exists one and only one k€K such that |v— k|
= inf o — k|| (see [2] Corollary 8.2.1).

kEK

Proof of Theorem 1. By the above remark, and because the trivial
solution 6 ¢ Q,, it suffices to prove £, is a convex and closed set, then there
will exist a unique element & e 2, such that u(®) = |&] < |o]= u(x) for all
we Ly, ie. p(@ = u*

It is very easy to show convexity of £,. Consider two distinct bounded
mild solutions @,(t) and x,(t), a number 0<A<1 and the continuous function
@(t) = Aay(t) + (L— A)m, (1), teR.

wi(t) = Ty :(to) +jtT[_af(6) do,
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for all {,e R and for all t>14,, 1 =1,2. Then

o) = Ty, (Fnlty) + (L— Dy(1) + I Teof(0)do

to
¢
= Tz_:om(to) +f171_6f(0) do,
to

which shows 2(f) is a mild solution. x(t) is bounded over the real line because
w(@) = sup je(t)| < Ap(s) + (L — ADp(r,) <oco. Therefore xze€ £, and conse-

tEK
quently £, is a convex set.
Now let us prove £, is a closed set; consider an arbitrary sequence (w,(1));
in Q, such that lim «,(t) = z(t) € X, t € R; it suffices to show x e Q,.

We have T
@u(t) = Ty walto) T af@)do  (n=1,2,..).
to
Then w(t) = T\, 2(ty) —i—jtT,_qf(o') do
to
"because m 7'y, #a(te) = Loy, Hm @, (t) = Ty, (k)

n—>0 n—> ®

(we use the continuity of 7'._,). Therefore x(t) is a mild solution. It is also
bounded over the real line; in fact there exists a number M > 0 such that
[T <M for all t=0. Let us write

B) = T 2l + 1o 10)do— @t) + 5,00) = To_yJolle) — aalte)] + @aD):
Then we have [o(t)] <[ T [@(t) — @alte)]] + 20| <Ly, | 2(t0) — @ulte) ||
+1@a)] < M2(te) —wa(ta) |+ Joa(®)]  and thevefore |a(t)] < M o(ty) — (1)
-+ u(®,). Choose » large enough such that [a(f) —@.(f)[<1. Then u(x)
<M + p{z,) <oo. The theorem is proved.

2 — Theorem 2. Let us assume the function f(t) is strongly almost-periodic;
the operator A is the infinitesimal generator of a strongly continuous one-para-

meter operator semi-group T, such that sup||T,||<< co and TfeL(X*,‘X*) for
t=0
all t>0, where X* 1s the dual space of X and T:‘ the adjoint operator of T's; then

every optimal mild solution of equation (1) is weakly almost-periodic.
We use here a technique similar to the one in [4], to prove Theorem 2.

¢
Consider w(t) an optimal mild solution; then w(¥) = T'._, w(l,) + (T s f{o)do
for all t,e R and all i>t,. to
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Let (s,)7 be an arbitrary real sequence; as every uniformly convex B-space
is reflexive, using the definition of almost-periodicity of the function f(t) and

fesl

also properties of a reflexive B-space, we can find a subsequence (sn )2 C(8a);
such that:

lim f(t + 5,) = g(t)

p—ro

exists in the strong topology of X, uniformly in — co <t << oco;

lim w(t, -+ snp) = W,

p—>©
exists in the weak topology of X, 1, being fixed in R.

Consider the following (strongly) continuous function @W(¢) = Tioi00

4
+ [T sg(c)de. Then we have

to

Lemma 1. Weak lim w(t + Sn ) = W(t), for every real number t.

P>

Proof. Consider the following representation (see [4], Lemma 1)
t
w(t + 8, ) = T 0(t + §n,) + [T sf(o + s, )do (p=1,2,..).
te
Let o* be arbitrary in X*; then we get the equality
Koy T'e_y w(ty + 8n )0 — &*, Ty o) = <T:=_to @*, w(ty + YS'nz)) — Wy

which shows the sequence (T,w,ow(tﬁ— s,,p)) . converges to _’Z‘,_,Dw0 in the weak
topology of X. We have also

IJTaf(o + 5 da~JTt (o) dof=] fTu (o + 52,) — glo)] do]
< [T slf(o + su) —~.¢J(0‘)]Ild6<ﬂ|1't_oﬂ (o + 5.)) —g{o)|do

<ﬂ_’[t,{ J‘“ o +871 _{l ”do"

where [T || < M,, a constant which may depend on ¢ and #,, two fixed real
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numbers. Therefore

i t
lim [T, sf(c + 8 ) do= {1, sg(c)ds in the strong topology of X.

P> ® {y to

The lemma is proved.
Lemma 2. pu(@) = u*.

Proof. w()is an optimal mild solution, consequently we have p* = u(w)

= sup [w(?)|. By Lemma 1, we have for arbitrary «* € X* lim (z*, w(t+s,)>
tER P>

= (&*, @(t)) for every te R. But for every p =1,2,3,...
[<oy w(t + 8,0 |< @] [w(t + sa)]

< Jlo* ] -sup Jw(t 4 5,) [ = ] -sup Jeo(d) | = [a*]- p*.

Therefore |<{z*, ®(1)) | < |#*|u*, for every e R and consequently [@(?)]<u*
for every te R; finally we have u(®)<py*.

y

Let us suppose u(®) << u*.

Remark lim g(t——s,,p) = f({) uniformly in teR. By the properties of a
p—>@

reflexive B-space we can extract a subsequence of (s%)1 (we write it the same
way) such that the sequence (7,71(8,,1,)):o converges weakly to 2 € X; then we have

H
lim @(t—s, )= T, 2+ [T of(0)do = 2(t),

P> to

in the weak topology of X, for every real . The function #(¢) is a mild solution
and, for the same reasons as above we have u(e)<u(®) therefore pu(z) < u*
which is absurd by definition of u*.

Lemma 3. @(t) is an optimal solution, i.c. u(®) = inf u(v).
Ve,

Proof. Let us suppose this is false; remark £, ¢ 0 for w e 2,, and there
is uniqueness of the optimal solution by Theorem 1. Let w,(?) be this unique
optimal mild solution, then u{w,) < u(®), with

]
wy(t) = T_; wolle) + [T'1_cg(0)do .

to
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Exactly as in Lemma 2, we ecan find a subsequence (8,)7 and a function
V() such that

t
lim w,{t — §,) = T2 + [T, _sf(c)do = V (1),

p—rco to

in the weak topology of Y.
Moreover we have w(V)<pu(w,) < u(®) with V e £,, which is absurd.

Proof of Theorem 2. It suffices to prove

limw(t + 5, ) = (7)) in the weak topology of X, uniformly in te k.
p—>rwm
In fact if this would not be true, there will exist #* € X* such that the limit
lim {a*, w(t ~{—.s',lp)> = {&*, ®(1)> is not uniform in ¢ And consequently we

p=rco
I3
can find a number o > 0, a real sequence (#,); and two subsequences (8,01

(szp)f’ of (s, )y such that

*) [, w0(ty, + 5, ) —w(t, -5, D|>a  (p=1,2,..).

Again extract two subsequences without changing the notations; using the
almost-periodicity of f(¢), we get

lim f(t + ¢, + s;p) =g(t), Hmf(t+1,+ sjjp) = g,(1)

P> P>

uniformly in te B. As in the beginning of the proof we extract two subse-
quences and get the sequences (w(t+41, -+ S;p));o and (w(t + 1, + s,':p))l‘” which
converge respectively in the weak topology of X to the optimal mild solutions
in 2, and Q,

¢ t
Wy (1) = Tl—fuwl +IT1_691(U) do, Wy(1) = Tt».toﬁ)z +ITI—G.(]2(U) do.

to iy

Now we have ¢,(c) = ¢.{0), € R; in fact lim f(¢ + s,,,p) exists uniformly in

. p>c0

teR and (s, )7 C (3.)7, (s::p)f C (s,,)y, therefore sup|f(z +s, ) —f(z+s, )<e
TER

if p>po(e), and consequently suplf(t + ¢, + s, ) —f(t + 1 + 5, )| < & P>po(e)

tE€R

which shows the equality ¢,(¢) = ¢.(0), o €R.
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By the uniqueness of optimal mild solution we have @, (1) = Wy(t), t € R.
But %,(0) = weak lim w(t, + S;P) and @,(0) = weak lim w(z, -+ s::p).

P->0 p—rco
The equality @,(0) = @,(0) contradicts then inequality (*). Theorem is
proved.

I gratefully thank Professor S. Zaidman for suggesting to me the problem
in Theorem 2.
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