## GASTON MANDATA N'GUEREKATA (\*)

## Some remarks on optimal mild solutions of the differential equation x'=Ax+t in Banach spaces (\*\*)

## Introduction

We consider in a uniformly convex Banach space X, the non-homogeneous differential equation

$$(1) x'(t) = Ax(t) + f(t), -\infty < t < \infty,$$

where the closed linear operator A with domain D(A), dense in X is the infinitesimal generator of a strongly continuous one-parameter operator semi-group  $T_t$ ,  $t \ge 0$  (see [2] for definition);  $f(t): -\infty < t < \infty \to X$  is a strongly continuous function.

This work is based on recent papers of professor S. Zaidman ( $[4]_{1,2,3}$ ); in Theorem 1 we show the existence and uniqueness of an optimal mild solution of equation (1); and then, assuming f(t) strongly almost-periodic, we prove weak almost-periodicity of the optimal mild solution in Theorem 2, generalizing somewhat Theorem 4.2 in  $[4]_1$ .

Let us recall some useful definitions.

Def. A strongly continuous function  $x(t) : -\infty < t < \infty \to X$  with integral representation

$$x(t) = T_{t-t_0} x(t_0) + \int_{t_0}^t T_{t-\sigma} f(\sigma) d\sigma,$$

for all  $t_0 \in R$  and all  $t \ge t_0$ , is called a *mild solution* of equation (1).

<sup>(\*)</sup> Indirizzo: Université de Bangui, Faculté des Sciences, BP 1450 Bangui, Rép. Centrafricaine.

<sup>(\*\*)</sup> Ricevuto: 1-VI-1981.

Now let  $\Omega_f$  be the set of all mild solutions x(t) of (1) which are bounded over the real line, i.e.  $\mu(x) = \sup_{t \in \mathbb{R}} \|x(t)\| < \infty$ , and assume  $\Omega_f \neq \emptyset$ .

Def. 2. We call an *optimal mild solution* of (1) every bounded mild solution x(t) such that

$$\mu(\tilde{x}) = \mu^* = \inf_{x \in \Omega_I} \mu(x) \; .$$

- Def. 3. A strongly continuous function  $f(t): -\infty < t < \infty \to X$  is called strongly almost-periodic if from every real sequence  $(s'_n)_1^{\infty}$  we can extract a subsequence  $(s_n)_1^{\infty}$  such that  $\lim_{n\to\infty} f(t+s_n)$  exists in X in the strong sense, uniformly in  $-\infty < t < \infty$ .
- Def. 4. f(t) is weakly almost-periodic if from every real sequence  $(s'_n)_1^{\infty}$  we can extract a subsequence  $(s_n)_1^{\infty}$  such that  $\lim_{n\to\infty} f(t+s_n)$  exists in X in the weak sense, uniformly in  $-\infty < t < \infty$ .
- 1 Theorem 1. Let us assume f(t) strongly continuous over the real line and the operator A the infinitesimal generator of a strongly continuous one-parameter operator semi-group  $T_t$  such that  $\sup ||T_t|| < \infty$ .

Suppose also  $\Omega_f \neq \emptyset$ ; then there exists a unique optimal mild solution of equation (1).

Remark. The proof is based on the following elementary fact: in a uniformly convex B-space X, if  $K \subset X$  is a non-empty convex and closed subset and  $v \notin K$ , then there exists one and only one  $k_0 \in K$  such that  $\|v - k_0\| = \inf \|v - k\|$  (see [2] Corollary 8.2.1).

Proof of Theorem 1. By the above remark, and because the trivial solution  $\theta \notin \Omega_f$ , it suffices to prove  $\Omega_f$  is a convex and closed set, then there will exist a unique element  $\tilde{x} \in \Omega_f$  such that  $\mu(\tilde{x}) = \|\tilde{x}\| < \|x\| = \mu(x)$  for all  $x \in \Omega_f$ , i.e.  $\mu(\tilde{x}) = \mu^*$ .

It is very easy to show convexity of  $\Omega_f$ . Consider two distinct bounded mild solutions  $x_1(t)$  and  $x_2(t)$ , a number  $0 \le \lambda \le 1$  and the continuous function  $x(t) = \lambda x_1(t) + (1-\lambda)x_2(t)$ ,  $t \in \mathbb{R}$ .

$$x_i(t) = T_{t-t_0} x_i(t_0) + \int_{t_0}^t T_{t-\sigma} f(\sigma) d\sigma,$$

for all  $t_0 \in R$  and for all  $t \ge t_0$ , i = 1, 2. Then

$$\begin{split} x(t) &= T_{t-t_0} \big( \lambda x_1(t_0) + (1-\lambda) x_2(t_0) \big) + \int_{t_0}^t T_{t-\sigma} f(\sigma) \, \mathrm{d}\sigma \\ &= T_{t-t_0} x(t_0) + \int_{t_0}^t T_{t-\sigma} f(\sigma) \, \mathrm{d}\sigma \,, \end{split}$$

which shows x(t) is a mild solution. x(t) is bounded over the real line because  $\mu(x) = \sup_{t \in \mathcal{K}} \|x(t)\| \leqslant \lambda \mu(x_1) + (1-\lambda)\mu(x_2) < \infty$ . Therefore  $x \in \Omega_f$  and consequently  $\Omega_f$  is a convex set.

Now let us prove  $\Omega_f$  is a closed set; consider an arbitrary sequence  $(x_n(t))_1^{\infty}$  in  $\Omega_f$  such that  $\lim x_n(t) = x(t) \in X$ ,  $t \in R$ ; it suffices to show  $x \in \Omega_f$ .

We have

$$x_n(t) = T_{t-t_0} x_n(t_0) + \int_t^t T_{t-\sigma} f(\sigma) d\sigma \qquad (n = 1, 2, ...).$$
Then
$$x(t) = T_{t-t_0} x(t_0) + \int_t^t T_{t-\sigma} f(\sigma) d\sigma$$
because
$$\lim_{n \to \infty} T_{t-t_0} x_n(t_0) = T_{t-t_0} \lim_{n \to \infty} x_n(t_0) = T_{t-t_0} x(t_0)$$

(we use the continuity of  $T_{t-t_0}$ ). Therefore x(t) is a mild solution. It is also bounded over the real line; in fact there exists a number M>0 such that  $||T_t|| \leq M$  for all  $t \geq 0$ . Let us write

$$x(t) = T_{t-t_0} x(t_0) + \int_{t_0}^{t} T_{t-\sigma} f(\sigma) d\sigma - x_n(t) + x_n(t) = T_{t-t_0} [x(t_0) - x_n(t_0)] + x_n(t).$$

Then we have  $\|x(t)\| \leq \|T_{t-t_0}[x(t_0) - x_n(t_0)]\| + \|x_n(t)\| \leq \|T_{t-t_0}\| \|x(t_0) - x_n(t_0)\| + \|x_n(t)\| \leq M \|x(t_0) - x_n(t_0)\| + \|x_n(t)\|$  and therefore  $\|x(t)\| \leq M \|x(t_0) - x_n(t_0)\| + \mu(x_n)$ . Choose n large enough such that  $\|x(t_0) - x_n(t_0)\| < 1$ . Then  $\mu(x) \leq M + \mu(x_n) < \infty$ . The theorem is proved.

**2** - Theorem 2. Let us assume the function f(t) is strongly almost-periodic; the operator A is the infinitesimal generator of a strongly continuous one-parameter operator semi-group  $T_t$  such that  $\sup_{t\geq 0} ||T_t|| < \infty$  and  $T_t^* \in L(X^*, X^*)$  for all  $t\geq 0$ , where  $X^*$  is the dual space of X and  $T_t^*$  the adjoint operator of  $T_t$ ; then every optimal mild solution of equation (1) is weakly almost-periodic.

We use here a technique similar to the one in [4]<sub>1</sub> to prove Theorem 2. Consider w(t) an optimal mild solution; then  $w(t) = T_{t-t_0}w(t_0) + \int_0^t T_{t-\sigma}f(\sigma)\,\mathrm{d}\sigma$  for all  $t_0 \in R$  and all  $t \geqslant t_0$ .

Let  $(s_n)_1^{\infty}$  be an arbitrary real sequence; as every uniformly convex *B*-space is reflexive, using the definition of almost-periodicity of the function f(t) and also properties of a reflexive *B*-space, we can find a subsequence  $(s_{n_p})_1^{\infty} \subset (s_n)_1^{\infty}$  such that:

$$\lim_{p\to\infty} f(t+s_{n_p}) = g(t)$$

exists in the strong topology of X, uniformly in  $-\infty < t < \infty$ ;

$$\lim_{n\to\infty} w(t_0 + s_{n_p}) = w_0$$

exists in the weak topology of X,  $t_0$  being fixed in R.

Consider the following (strongly) continuous function  $\tilde{w}(t) = T_{t-t_0} w_0 + \int_0^t T_{t-\sigma} g(\sigma) \, \mathrm{d}\sigma$ . Then we have

Lemma 1. Weak  $\lim_{p\to\infty} w(t+s_{n_p}) = \tilde{w}(t)$ , for every real number t.

Proof. Consider the following representation (see [4]2 Lemma 1)

$$w(t + s_{n_p}) = T_{t-t_0} w(t_0 + s_{n_p}) + \int_{t_0}^t T_{t-\sigma} f(\sigma + s_{n_p}) d\sigma \ (p = 1, 2, ...).$$

Let  $x^*$  be arbitrary in  $X^*$ ; then we get the equality

$$\langle x^*, T_{t-t_0}w(t_0+s_{n_p})\rangle - \langle x^*, T_{t-t_0}w_0\rangle = \langle T_{t-t_0}^*x^*, w(t_0+s_{n_p})-w_0\rangle,$$

which shows the sequence  $(T_{t-t_0}w(t_0+s_{n_p}))_1^{\infty}$  converges to  $T_{t-t_0}w_0$  in the weak topology of X. We have also

$$\begin{split} & \| \int\limits_{t_0}^t T_{t-\sigma} f(\sigma + s_{n_p}) \, \mathrm{d}\sigma - \int\limits_{t_0}^t T_{t-\sigma} g(\sigma) \, \mathrm{d}\sigma \| = \| \int\limits_{t_0}^t T_{t-\sigma} [f(\sigma + s_{n_p}) - g(\sigma)] \, \mathrm{d}\sigma \| \\ & \leqslant \int\limits_{t_0}^t \| T_{t-\sigma} [f(\sigma + s_{n_p}) - g(\sigma)] \| \mathrm{d}\sigma \leqslant \int\limits_{t_0}^t \| T_{t-\sigma} \| \| f(\sigma + s_{n_p}) - g(\sigma) \| \mathrm{d}\sigma \| \\ & \leqslant M_{t,t_0} \cdot \int\limits_{t_0}^t \| f(\sigma + s_{n_p}) - g(\sigma) \| \mathrm{d}\sigma \,, \end{split}$$

where  $\|T_{t-\sigma}\| \leqslant M_{t,t_0}$  a constant which may depend on t and  $t_0$ , two fixed real

numbers. Therefore

$$\lim_{p\to\infty} \int_{t_0}^t T_{t-\sigma} f(\sigma+s_{n_p}) \,\mathrm{d}\sigma = \int_{t_0}^t T_{t-\sigma} g(\sigma) \,\mathrm{d}\sigma \text{ in the strong topology of } X\,.$$

The lemma is proved.

Lemma 2.  $\mu(\tilde{w}) = \mu^*$ .

Proof. w(t) is an optimal mild solution, consequently we have  $\mu^* = \mu(w) = \sup_{t \in \mathbb{R}} \|w(t)\|$ . By Lemma 1, we have for arbitrary  $x^* \in X^* \lim_{p \to \infty} \langle x^*, w(t+s_{n_p}) \rangle = \langle x^*, \widetilde{w}(t) \rangle$  for every  $t \in \mathbb{R}$ . But for every p = 1, 2, 3, ...

$$\begin{split} |\langle x^*, \, w(t\,+\,s_{n_p})\rangle\,| &\leqslant \|x^*\|\, \|w(t\,+\,s_{n_p})\| \\ &\leqslant \|x^*\| \cdot \sup_{t\in \mathbf{R}}\, \|w(t\,+\,s_{n_p})\| = \|x^*\| \cdot \sup_{t\in \mathbf{R}}\, \|w(t)\| = \|x^*\| \cdot \mu^*. \end{split}$$

Therefore  $|\langle x^*, \widetilde{w}(t) \rangle| \leq ||x^*|| \mu^*$ , for every  $t \in R$  and consequently  $||\widetilde{w}(t)|| \leq \mu^*$ , for every  $t \in R$ ; finally we have  $\mu(\widetilde{w}) \leq \mu^*$ .

Let us suppose  $\mu(\tilde{w}) < \mu^*$ .

Remark  $\lim_{p\to\infty} g(t-s_{n_p}) = f(t)$  uniformly in  $t\in R$ . By the properties of a reflexive *B*-space we can extract a subsequence of  $(s_{n_p})_1^{\infty}$  (we write it the same way) such that the sequence  $(\tilde{w}(s_{n_p}))_1^{\infty}$  converges weakly to  $z\in X$ ; then we have

$$\lim_{p\to\infty} \tilde{w}(t-s_{n_p}) = T_{t-t_0}z + \int_{t_0}^t T_{t-\sigma}f(\sigma) d\sigma = z(t) ,$$

in the weak topology of X, for every real t. The function z(t) is a mild solution and, for the same reasons as above we have  $\mu(z) \leq \mu(\tilde{w})$  therefore  $\mu(z) < \mu^*$  which is absurd by definition of  $\mu^*$ .

Lemma 3. 
$$\tilde{w}(t)$$
 is an optimal solution, i.e.  $\mu(\tilde{w}) = \inf_{v \in \Omega_g} \mu(v)$ .

Proof. Let us suppose this is false; remark  $\Omega_g \neq \emptyset$  for  $w \in \Omega_g$ , and there is uniqueness of the optimal solution by Theorem 1. Let  $w_0(t)$  be this unique optimal mild solution, then  $\mu(w_0) < \mu(\widetilde{w})$ , with

$$w_0(t) = T_{t-t_0} w_0(t_0) + \int\limits_{t_0}^t T_{t-\sigma} g(\sigma) \,\mathrm{d}\sigma \,.$$

Exactly as in Lemma 2, we can find a subsequence  $(s_{n_p})_1^{\infty}$  and a function V(t) such that

$$\lim_{p\to\infty} w_0(t-s_{n_p}) = T_{t-t_0}z + \int_{t_0}^t T_{t-\sigma}f(\sigma)\,\mathrm{d}\sigma = V(t)\,,$$

in the weak topology of X.

Moreover we have  $\mu(V) \leq \mu(w_0) < \mu(\tilde{w})$  with  $V \in \Omega_f$ , which is absurd.

Proof of Theorem 2. It suffices to prove

 $\lim_{n\to\infty} w(t+s_{n_p}) = \tilde{w}(t) \quad \text{ in the weak topology of $X$, uniformly in $t\in R$.}$ 

In fact if this would not be true, there will exist  $x^* \in X^*$  such that the limit  $\lim_{p\to\infty} \langle x^*, w(t+s_{n_p}) \rangle = \langle x^*, \widetilde{w}(t) \rangle$  is not uniform in t. And consequently we can find a number  $\alpha > 0$ , a real sequence  $(t_p)_1^{\infty}$  and two subsequences  $(s'_{n_p})_1^{\infty}$ ,  $(s''_{n_p})_1^{\infty}$  of  $(s_{n_p})_1^{\infty}$  such that

(\*) 
$$|\langle x^*, w(t_p + s'_{p_p}) - w(t_p + s''_{p_p}) \rangle| > \alpha \quad (p = 1, 2, ...).$$

Again extract two subsequences without changing the notations; using the almost-periodicity of f(t), we get

$$\lim_{p\to\infty} f(t+t_p+s'_{n_p}) = g_1(t) , \quad \lim_{p\to\infty} f(t+t_p+s''_{n_p}) = g_2(t)$$

uniformly in  $t \in \mathbb{R}$ . As in the beginning of the proof we extract two subsequences and get the sequences  $(w(t+t_p+s'_{n_p}))_1^{\infty}$  and  $(w(t+t_p+s''_{n_p}))_1^{\infty}$  which converge respectively in the weak topology of X to the optimal mild solutions in  $\Omega_{\sigma_i}$  and  $\Omega_{\sigma_s}$ 

$$\widetilde{w}_1(t) = T_{t-t_0}\widetilde{w}_1 + \int_{t_0}^t T_{t-\sigma}g_1(\sigma) d\sigma, \quad \widetilde{w}_2(t) = T_{t-t_0}\widetilde{w}_2 + \int_{t_0}^t T_{t-\sigma}g_2(\sigma) d\sigma.$$

Now we have  $g_1(\sigma)=g_2(\sigma),\ \sigma\in R$ ; in fact  $\lim_{p\to\infty}f(t+s_{n_p})$  exists uniformly in  $t\in R$  and  $(s'_{n_p})_1^{\infty}\subset (s_{n_p})_1^{\infty},\ (s''_{n_p})_1^{\infty}\subset (s_{n_p})_1^{\infty},\ therefore \sup_{\tau\in R}\|f(\tau+s'_{n_p})-f(\tau+s''_{n_p})\|<\varepsilon$  if  $p\geqslant p_0(\varepsilon)$ , and consequently  $\sup_{t\in R}\|f(t+t_p+s'_{n_p})-f(t+t_p+s''_{n_p})\|<\varepsilon,\ p\geqslant p_0(\varepsilon)$  which shows the equality  $g_1(\sigma)=g_2(\sigma),\ \sigma\in R$ .

By the uniqueness of optimal mild solution we have  $\tilde{w}_1(t) = \tilde{w}_2(t), \ t \in R$ . But  $\widetilde{w}_1(0) = \text{weak lim } w(t_p + s'_{n_p})$  and  $\widetilde{w}_2(0) = \text{weak lim } w(t_p + s''_{n_p})$ .

The equality  $\widetilde{w}_1(0) = \widetilde{w}_2(0)$  contradicts then inequality (\*). Theorem is

proved.

I gratefully thank Professor S. Zaidman for suggesting to me the problem in Theorem 2.

## References

- [1] L. Amerio and G. Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold Co. 1971.
- R. Larsen, Functional analysis, Decker Inc., New York 1973. [2]
- [3] K. Yosida, Functional analysis, Springer-Verlag, New York 1968.
- [4] S. Zaidman: [·]1 Weak almost-periodicity for some vector-valued functions, Ist. Lombardo Accad. Sci. Lett. Rend. A 104 (1970), 720-725; [•]<sub>2</sub> Solutions presque-périodiques des équations différentielles abstraites, Enseign. Math. (2) 24 (1978), 87-110; [•]<sub>3</sub> On optimal mild solutions of non-homogeneous differential equations in Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 273-277.

