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P.C. DAS ana M. VENKATESULTU (¥)

The alternative method for boundary value problems

with ordinary differential equations (**)

In a series of papers, Cesari [1];,;., Locker [6];, and Hale [4] developed
a process or alternative method, based on functional analysis, for the determi-
nation of harmonic and subharmonic solutions of nonlinear ordinary diffe-
rential systems, and for nonlinear boundary value problems for ordinary and
partial differential equations (selfadjoint or not selfadjoint, at resonance or
not at resonance) with nonlinearities which need not be small.

The method, denoted in [4] as the aliernative method, has been developed
on theoretical lines by many authors. Let us mention here Knobloch [5];,
and Locker [6],, for ordinary differential equations, Osborn and Salther for
ordinary and elliptic boundary value problems under monotonicity hypotheses,
Landesman, Lazer, Williams and Cesari for elliptic boundary value problems,
and Cesary and Kannan for hyperbolic problems. We just mention here that
Harris, Sibuya, and Weinberg used the method for straitforward proofs of the
theorems of Cauchy, Frobenius, Perron, Lettenmeyer in linear differential
equations theory in the complex field, and Cesari for a direct proof of Kowa-
lewsky’s theorem for partial differential equations. We refer to [1]; for the
large bibliography. We recall here from this bibliography, that, in the way
of exemples, Cesari[l], proved the existence of a solution to the equation
a” - @® = sint, 0<i<2n, with boundary conditions z(0)=x(2x), #'(0)=2'(27),
(a selfadjoint problem at resonance), and that Locker [6], ., Cesari [1],,, Cesari
and Bowman, and Bononcini considered other particular problems for ordinary
and partial differential equations.

(*) Indirizzo degli AA: Indian Institute of Technology, Kanpur, India.
(¥*) Ricevuto: 5-I-81.
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In this paper we first present in 1 a few points of the theory of selfadjoint
linear differential operators from [2]. In 2 we deal with the general framework
of the alternative method for selfadjoint boundary value problems of nonlinear
ordinary differential equations of order » based on 1 and on the work of Ce-
sari [1]; and Locker [6];,. Finally ,we indicate a numerical problem of the
form 2'+2* = p(t), 0<t<1, with #(0) = 0, (1) = 0 (a selfadjoint problem,
not at resonance). Elsewhere we shall apply the theory to show that this pro-
blem has indeed a solution. (Here Lz = &, ker L = 0, and yet we shall de-
compose the underlying space § = 1,{0, 1] into orthogonal spaces § = §,+ &,
8, of dimension 2. We take for ¢ a function which belongs to §;, the argument
we shall use is the same as in Cesari’s paper [1];, and we shall show that the
case @ € §; brings some simplifications in the argument).

1 - Preliminaries
Let L be the nth order differential operator given by

Ly = pya™ + pyat=1 - pyat=d + ...+ p,x,

where the p,’s are complex-valued functions of class O}, ’[a, b] and p,(?) 7 0
on [a,b]. Let U;x) be the linear form

Uj(x) = z M pa-V(a) + N ja%-(b) ,

k=1

where the M; and N, are constants, and let us denote the relationships
Uiw=0,5=1,2,...,n, by Uz = 0. The problem #: Lz =1z, Uz =10 is
called an eigenvalue problem. It is said to be self-adjoint if (Lu, v) = (1, Lwv)
for all u,ve C*[a,b] which satisfy the boundary conditions Uw = Uwv = 0.

Let (-,+) and ||| denote

9 =‘ff§dt$ Hf“ = (I lf]zdt)uZ’

a

for f, g € Ly[a, b]. Let us denote by & the space Ly[a, b]. If (f, g) = 0, then f

and ¢ are said to be orthogonal. The problem = always has the trivial solution.

If 7 is such that = has a nontrivial solution, then [ is called an eigenvalue of 7

and the nontrivial solutions of 7z corresponding to this 7 are called eigenfunctions.
We need the following results (see [2], pp. 192-201).
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(A) Let the problem z be selfadjoint. Then the eigenvalues are real and
constitute at most a denumerable set with no finite cluster point. Higen-
functions corresponding to distinet eigenvalues are orthogonal.

Consider the non-homogeneous problem
(1) Le=1l4f, Uzx=0, where f e Cla, b].

(B) If at least for one value of I the problem z has no solution except
the trivial solution (which is always true for the selfadjoint case), then there
exists a unique function G = G(t, 7, 1) defined for (¢, 7) on the square a <{,
r< b and for all complex I except the eigenvalues of m, with the following
properties:

i) oxG/otr, k= 0,1,...,n— 2, exist and are continuous in (¢, 7, 1) for
(t, 7) on the square a<i?, v<b and ! not an eigenvalue of z. Moreover,
or@[ott for k= n — 1 and n are continuous in (¢, 7, 1) for (¢, 7) on each of the
triangles a<t<r<b and a<r<i<b and I not at an eigenvalue of z. For
fixed (f, ) these functions are all meromorphic functions of 1.

(if) 8* 1@ otz + 0, 7, 1) — 01 G[6t" (v — 0, 7, 1) = 1/po(7)
(iii) As a function of ¢, & satisfies Lo = lo if t557

(iv) As a function of ¢, G satisfies the boundary conditions Uz = 0 for
a<<t<b.

The solution of (1) is given by the function % defined by

w(t) .—:f t, ) f(r

a

The funection G is known as Green’s function for z. Let us assume now, for
a moment, with Coddington and Levinson [2], that I = 0, and that 0 is not
an eigenvalue of the selfadjoint problem z. At the end of this section we shal.
consider the case where 0 is an eigenvalue.

Since I = 0 is not an eigenvalue of 7, G(t, 7, 0) exists. In the rest of our
congiderations the Green’s function for I = 0 will be denoted by @ = G(1, 7)
and it would be assumed that s is selfadjoint.

Corresponding to this Green’s function @, let the linear integral operator H
be defined for all f e Cla, b] by

b

= [ G, 7)f(r)d

a
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If f,9€Cla,b], then (Lu,v)= (u, Lv) applied to w = Hf, v= Hyg yields
(f, Hg) = (Hf, g). From this it follows that (Hf, f) is real.

The operator H is inverse of the operator I in the sense that LHf =/,
HLw = w are valid for all f € ([a, b], and w € C"[a, b] for which Uy = 0.

(C) The eigenfunctions of H are identical with those of % and the eigen-
values of H are reciprocals of those of .

(D) H is a completely continuous operator.

(E) Either [H| or — |H] is an eigenvalue for H, and there are an infinite
number of eigenvalues uy, ys,..., and eigenfunctions &y, Xgy .... Moreover

il > il =5 li] >0 as b >o0, 3 |m]?< oo,

r=1

Also, @ (k=1,2,...) can be assumed to be an orthonormal sequence which
is uniformly bounded on [a, b].
Finally, for 2= 1/u., we have |2,|<|4]<...,and

G(t, 1) = E At w(T)

(F) If f € Ly[a, b], then f = 3 (f, @)@, where the equality is understood

m k=1
in the mean sense i.e. lim [f — 3 (f, @)@ = 0.
m—>rw k=1

-]

Ezz I(f;mk)lg'

r=1

Furthermore, Parseval’s equality holds |f

Let us consider now the case we have omitted before, where [ = 0 and 0
is an eigenvalue of sz, say of multiplicity Mg, 1<<my < oo, in the sense that
there are m, independent eigenfunctions a;, with L, = 0, U, =0 (k= 1, ..., my).
Let m be any integer, m>m,, and let L1y +-ey & DE M — m, more independent
eigenfunctions relative to the eigenvalues, SAY, Amgiy vy Amy 0<< | Amgta] <.
< |Auwl, that is, La, = L@y, U= 0 (k = m, + 1, ...,m). We may well as-
sume that @, ..., z, are orthonormal in L[a, b]. Let S,= sp (z,, .y &y,) denote
the span of a,, ..., ®,, and let P: § — § be the orthogonal projection of S

m

onto S,. Then P is defined by Pf= 3 (f,a,)z, for all fe§. Let 8= Sy
E=1

in §. Then § has the decomposition §=§,+ §,, where §;= (I-P) § is the

Hilbert space of all elements fe 8 with (f,2,) =0 (k= 1,...,m), or equiv-

alently, 8, is the closure in the norm |-]| of the elements y e C[a, b] with
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(y, @) = 0 (k=1,...,m). Also, the operator L, restricted to S;, has the

eigenvalues Anty, Antay ooy With 0 << [Aptg] < [Awt2] <..., so that 0 is not an
eigenvalue of I vestricted to §,. Thus,

G, 7) = i At w(t) ()
E=m+1

is the Green function of L in §,, and H: 8§, — 8,, the operator inverse to
L|8,, is now defined by

Hf(t) = j'bG(t, Df(z)dr  for fe 8, = (I-P)S.

Now every fe 8 has the decomposition f = f, + f,, with

=PI =3 (, w5, fi= (IP)f = 3 (F, &) s
1 m+1

hence f = Y (f, #:)@, and (F) holds for any feS. Also, LHf = f, HLu = 4,
¥=1

for all fe Cla, b]N §,, and € C[a, b] N 8, for which TUw = 0. Hence, we
also have

LH(I-P)f = (IP)f, HBLI-P)u= (I-P)u,

for all f € Ofa, b], and % € C"[a, b] for which Us = 0.

2 - Solution of the boundary value problem

Let
L=p, D"+ p; D'+ ... + pn, D€ 0" Ha,b].

Let the problem 7 in 1 be selfadjoint, and let U denote the relative linear
form.
Let us consider the nonlinear boundary value problem of order =,

(2) Lz = q(z,t), Uzx=20,

where ¢ is defined for |z|<ZR, te€[a,b]. We suppose that there are certain
functions K(t), a<t<b, K € L,a,b] and (&), £>0, continuous and monotone
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with 5(0) = 0, such that

(@, 1) | <E(2),
[q(ay, t) — q(@s, 1) | <77( [, — ’”2[)K({) ’
for all ||, |w| <R, a<t<b.

b
Let us take K,= ([K2(t)dt)Y* and let § = L[a, b].

a

Let @, (k =1, 2,...) be the eigenfunctions of the operator z relative to the
eigenvalues 4, 2y, ..., with 0< || <|4]<.... If 0 is an eigenvalue, say of
multiplicity m,, then 0 = 1, = ... = Amy < | Am1| <.... For any f e § we have

&) = % by, b= (fym) (b=1,2,..).

x=1

By Parseval equality we have now

©

Il = (Z Jbi2)=.

k=1

For any integer n>m, let us define the operator P: § — & by

Pf - z bk.’Bk .
k=1

Obviously, P2= P, |Pf[| = (3 |b:|2)"2<|f||, i-e., P is a bounded linear pro-
k=1
jection of S onto the subspace S,= sp (#,, @, ..., #,,), the space spanned by

Ty, Ty ooy Ty and [P = 1. Also, we take S, = St=[fe 8, Pf= 0], so that
we have the decomposition § = §,-+ 8,. For any fe 8, we define the linear

b
operator H: §,— 8; by taking Hf(t) = [ G(t, ) f(v)dv for fe 8;, where G(i, 7)

is the Green’s function corresponding to I = 0 and the restriction of I to- 8.
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Obviously, H is well defined on 8,. Now, for f &8, we have
(4
(4) 18/ = |1 §6, ©)f(z) dz|

=] 3 3 et @u(o)(z) dz|

a k=m-+1

= Haj‘ L(_zﬂl—lxk(i (T )S%db, (7)) Az
il%ﬁlbkmh @] _L(%ll;m 2 [y [2) 2

< A |72 ]bkl2)1/2< a2

k=m-+1

i.e., ”Hf” < I)"rn‘*‘lx_l”f“'

Analogously, if M is the uniform bound for the eigenfunctions z,, we have

B) t){-—lfG(t )z dr|_[§z“1bkmk(t);

k=m+1

<M | libkl<M(Z VAR

k=m-+1 k=m-+1

fl = oMa(m)f] ,

where ¢2(m) = Z [Z:]|~% and o(m) -0 as m — co. Thus, |Hf(t)|<Mao(m)|f].
E=m+1
The reader may compare (4) and (5) with the analogous relations in Cesari’s

paper [1],.
For any fe 8, f— Pfe S;, and hence

15 = PAHl <] Awta |, |B(F— P | <Ma(m)]f] .

For any given R > 0 we shall denote by Sy the set S,= [fe S, |[f|<R]. Let
us now define the operators q, #, F in Sy as follows

qr = q(2(t), t) x € 8z,
hx = qw — Pqzx z €Sz,

Fx = H{qw — Pqz) zeSy.
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Clearly, for every x e Sz, we have hoe §;, Fre §,: Hence,
(6) PPz =0, Hhoe=H{I-P)qr, xcSz.

One proves as in[l], that there exists a monotone continuous function
7*(&), £€>0, 7*(0) = 0, such that

)

(1) ”(I(ivu 1) — q(w,, t)” <77*(”£L‘1—~ Py
for all @, w,€8,. We now have by (7)

|ha; — ha,

= “qxl'— qz.— P)qz, — (1502)" < ”qxl_ qmn” <77*(”x1"‘ xz“) .
Finally, by (4) and (5) we also have

(8) [Fa; — Fay|| = |H(he, — hay)

< | Awta |7 [hwy — ha|| < [Ata [T2* (s — @)
(9) | P, — Fap| < Mo(m)m*([o— a,]) -
Note that |qz| <X, for some constant K,, and hence |ho|< |qe|<XK,, and
(10) |Fa] < | Ansa | 1K, .
If we denote by u(x) the norm u(z) = ess sup «(t) for w € 8, then the restrie-
tion |2(t){ <R for all ¢ [a, b] can be rewritten as pl@)< R, and thus 8, can
be thought of as the subset of all such z with u(z)<R.
Now for every we Sz, we have
(11)  |Fz| = |H(qz — Pqw)| < Mo(m)|qz| and |Fz|<Moim)K,.
For given constants ¢, » > 0, let * be any element of §, with
(12) Je*] <e, le*|<r (< R).
(13) Let 8, = {w|we 8, Pe = o¥, |z <d, || <R},
where d is another constant with d > ¢. We may assume m large enough so that

(14) !lrn+1l—1Ko<d_ C, MO'(m)Kg<.R— T,
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and this is possible since both [A,.+,]|"! and o(m) approach zero as m— co.
Now let us consider the map 7', or y = Pw + Fo = Tz on §,. Obviously,
Py = PTw, P(Pz + Fo)= Pa + PFz = Pz = o*, and by (10), (12) and (14)
we have

lyl = [P2 + Fa|| <[Pa| + [Fo|<c+ d—c=ad.
Analogously, by (11), (12) and (14) we also have
ly| = |Px + Fao|<|Pz| + |Fe|<r+R—7r=R.

This shows that T: S, — 5. Obviously, the set S5 is closed, bounded and
convex. We can algo show that T(;S’:) is relatively compact. Indeed, let us
take any sequence y, € T(S8z). Then there are x;, € 8, such that y, = Pz, - Fa,
= g* - H(I-P)gw;.
As we noticed in 1, H is completely continuous, I-P is bounded, and hence
H(I-P) is completely continuous. Therefore, H(I-P)qx, have a convergent
subsequence. This readily implies that the sequence [y,] has a convergent
subsequence. Hence, T(S8p) is relatively compact in the topology of L,a, b].
Now by Schauder’s principle there is at least one fixed point of T, that is,
there exists y eS8 such thaty = a* -4 Fy with Py = Pa*, and y() = =*
+ H{qy — Pqy).
Since Pa* is a finite linear combination of z,’s and UG, 1) == 0, we have

(15) Uy = Us* 4 UH(qy — Pay) ,
that is, y satisfies the given boundary conditions. We have now

y(t) = Py + H(qy — Pqy) = Pa* 4 H(qy — Pqy),
(16)

b
¢ = H(qy — Pqy) = [G(t, 7)(qy(v) — Pay(z)) dv .
Since qy € Lj[a, b], then ¢ = H(qy — Pqy) € C*[a, b], and ¢»-2 is absolutely
continuous. By applying I, on both sides of (16) we have almost everywhere

in [a, b]

Ly = LPy + LH(qy — Pqy) = PLy + qy — Pqy .

Thus, Ly = qy + P(Ly — qy). In other words, y(¢) satisfies the nth order
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equation

(17 Ly = q(y(®), 1) + D,

where D = P(Ly — q(y(t),?)), and D is a Fourier sum of order m - 1.

Thus, in view of (15), () is a solution of the original boundary wvalue pro-
blem (2), say y(t) = «(2), provided

(18) P[Ly—a(y@, )] =0,
or equivalently, provided
b .
(19) V;=[[Ly — a(y(t), )]Z()dt = 0 (f=1,2,..,m).

©

Assuming y(f) = 3 bpa, we have Ly(f) = > Aubeay,. Moreover, if q(y(t), t)

© r=1 m k=21

=— > 6%, then D = 3 (A4b.+ ¢)», and equations (19) take the form
E=1 k=1

(20) Ifj: ;ijj“{— Cj=0 (?.:1, 2, ...,m).

If these equations are satisfled, then y(z) = 2(¢) is a solution of (2). Equa-
tions (20), are said to be the bifurcation or determining equations. Since ¢ is
a known funetion of y, the coefficients ¢, in the Fourier expansion of q are func-
tions of the Fourier coefficients of y. We obtain therefore a system of m equa-
tions in the variables by, b, ..., b,,. In other words we have proved the following
statement.

Theorem. QSuppose conditions (3) and (14) hold, then for every a*e S
satisfying (12) there exists at least ome fized point y of the map T: S, — .
This y(t) satisfies (16) with D given by (17). If it is possible to choose x* in such
away that the determining equations (20) are satisfied, then y(t) = x(t) is a solu-
tion of the boundary value problem (2).

Remark. To obtain an approximation, say am(¢) to the solution x(z)
of (2), we may replace y(¢) by am(¢)= #*(¢) in (19). Then system (19) becomes

b
(21) v; = [(Latw — g(xm(t), 1) %,() A = 0 G=0,1,..,m),

a
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where a*= 3 b.x;, with undetermined coefficients b, bs, ..., b,,. Equations (21)
k=1
are the usual equations for the mth-approximation x™(t) of the Galerkin’ method.

If one puts

g(z*(t), t) = — 3 dya,.,
=1

then equations (21) become
(22) v;= Aib;4+ d;= 10 (j=1,2,...,m).

We shall denote by @ the function #*(f) when its coefficients satisfy (22).
Elsewhere we shall apply the general process discussed above to a numerical
problem. Namely we shall show that the problem

— "=+ *— (V3[n)(1 — 4/n*)2 sinzt + (1/n) sin2pt, @(0) =0, x(l)=0,

has indeed a solution. In this problem we take Lz = — ', U,(z) = «(0),
Uy(w) = (1), J = [0, 1].
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