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Identification of a stochastic model

of the rhythmic activity of an estuarine population (**)

1 - Intreduction

Many animal populations living in estuarine environments show a perio-
dical activity [5]; this rhythmic behaviour is often a strategical adaptation of
the animals to cyclic changes of environmental factors promptly and with
high efficiency.

Therefore it could be of some interest to understand the processes giving
rise to these behaviours. In particular it is interesting to know how some
critical environmental factors can control the rhythmic behaviour of these
organisms and modify their role in the estuarine environment.

In this paper we consider the exploratory activity of Cyclope neritea, a
gastropod prosobranch playing the important role of scavenger in the trophic
web of Po Delta brackish lagoons.

C. neritea generally stays under the sand and moves to water in search
of food, prevalently during night (fig. 1).

It has a strong tendency to aggregation: in fact its spatial distribution is
patehy with tendency to aggregation especially on food sources.

It shows this behaviour mainly at sunrise and at sunset when most of
population get out or move into the sand. Consequently in these periods the
processes of interface (sediment-water) crossing are dependent on the number
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of individuals in emersion, while during the whole of the day and more evi-
dently during the night the probability of interface crossing is independent
on the number of the individuals in emersion (random walk) [2].

Exploratory activity is very important because it is strictly related to the
trophic role and it is highly affected by environmental factors [6].

‘We represent the processes of interface erossing by means of a stochastie
process; particularly we choose a generalized logistic model based on the
analogy of birth and death processes with migration.

2 - Mathematical formulation

In this model we represent the number of individuals in emersion at a
fixed time by means of a Markovian process in continuous time and discrete
space, i.e. the state of the system at time ¢ depends only on the state at
time ¢ — A¢.

The transition probabilities are of two kinds:

(2) one density dependent, defined as follows
(@~ byn)n At + o(dt), (as - byn)m At + o(dt)
(b) another density independent
kAt + o{A41).

In particular we refer to the phase of emersion of individuals from the
sand.

Let x(f) be the number of individuals in emersion at time ?, n, the number
of individuals in emersion at time ¢ =1{, and n,  the greatest number of
observable individuals.

We consider {x(f):t>1} as a Markov process with state space
S = {n: 0<n<n,,}, where n is a nonnegative integer.

We can formulate the model assumed in terms of infinitesimal transition
probabilities as follows:

(1), o —=>n k1) = 4, At -+ o(dt) = (@yn— byn? 4 k) At + o(42) ,
(1)e pr—n—1)= u, 4t + o(dt) = (dgfn + byn® 4 k) At - o(A2)

W =) =1— (A p) 4.
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We attempt the solution in probability of model (1) through the formula-
lation and solution of the differential form of the Chapman-Kolmogorov equa-
tions [4] that, for the process we consider, can be written as follow

@ Ponl®) _ 0,0 —1) — by — 1% -+ K] Py st

—[(ay 4 ax)n — (b; — by) n? F2k]P, (1) +[ag(n +1) Fbo(n 4-1)2 + E] Poryn(t),

APy, (¢
). onll) 9Py 1) 4 (a2 by 4+ B) PrlD)

with the initial condition

-Pn’nn(o) = (Sn’no

and the boundary conditions of n = 0 and n = n_ as reflecting states.

In this model the number of individuals in emersion is represented by the
first moment (n) defined as (n) = Y nP,, (t) and satisfying the follow-
ing equa)t10n allowed states

3) =y — Gy = (1 — ) n> — (b D) .

This equation is equivalent to the logistic deterministic model when
n?y = (ny? is assumed.

It must be noticed how the deterministic formulation can be misleading
not showing the stochastic fluctuations.

3 - Parameter estimation

Once a realization of the process (the experimental observations @y, @4, ..., @
taken at discrete timepoints i, t, ..., %,) is avaible we are interested in the
problem of estimating the parameters of the model.

This problem of parameter estimation is approached in the present study
by the maximum likelihood method consisting on the maximization of the
likelihood functional taking into account the probability differential model.
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If the set {w(f): t>14} is observed at (N41) distinet and equidistant time
points then the likelihood functional can be written as follows

(4) L = P{a(ty) == n,, u} ﬁ Plw(t;) = n;|a(t;_y) = n;_y, 4},

j=0

where P{x(t;) = n;|@(t;_;) = n;_,} is the conditional probability that the
experimental value z(¢;) observed at the j-th time falls in state n; when the
experimental value x(¢;_,) observed at the (j— 1)-th time falled in state n;_;
and % is the parameter vector.

Generally the problem of finding the maximum of the likelihood functional
is transformed into a minimization problem introducing the support functional

(4)’ g=—1loglL.
The support functional is subject to the following differential constraints

ap,
(5) d;(t) = f:(P(t), u) ,

with the initial and interface conditions

) Pi(t;) = 51‘117- (j=0,1,.., N),
s0 that the probability distribution functions P.(f) are generally continuous
functions with discontinuities of first kind at the points t= ¢;, j= 0,1, ..., N.
P(t) is a vector with dimension n_,_ given by the number of possible states
and % is the parameter vector with dimension m.

The solution of this problem may not be unique, therefore we have added
to the functional ¢ a stabilizing term Q(u) which takes into account of some
apriori informations on the solution, for instance given by equations (7), then
we have considered the extended functional

(4)" g% =g+ al(u).
In our case f; has the following form
fo= iy Piy(t) — (A — pa) Py(t) + pipa Pia(?)

li:(%1+u2i—ﬂ3i2), ,u;=(u1+u4i—{—u5'i‘~’),

U=k, Uy=a,, U=0by, Ug=ay, U3=D,.
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Our estimation problem will be that of minimizing the functional (4)” under
the differential constraints (5) and (5).
This minimization problem, through the calculus of variations [3], gives

rise to the following system of equations

(A) P—f(P’u):Oa 7.7:_777‘2“
gradg* =nf, + agrad 2 =0,

where f, is the matrix (of,/0P;) (i,j=1,...,n_), f. is the matrix (3f,/0u;)
(=1, 0, j=1,..,m), and 5 is a row vector with n__ components;
the state variable P and the adjoint variable 5 are subject to the following
interface and terminal conditions

(6) Pt = (51-"]., 7:(t7) = (S,-,,J,/P(m(t,-) =) .

Such conditions express the fact that the state variable and the adjoint
variable are piecewise continuous functions with discontinuities of first kind
at the points t=1t;, j=0,1,..., .

Usually the problem (A) cannot be solved dirvectly and an iterative pro-
cedure must be used.

In this ease we have proceeded as follows.

(1) An initial evaluation for the model’s parameters is obtained by a
least square estimate of the following semi-stochastic model of logistic type

d
Y (L — )W ) 70 - £(2),
dt
where &(f) is a random term which takes into account the environmental

variability and

(7) Noox = (@1 — @) [(b; + b,) r= (0, — a) .

max
(2) When a set of parameter values is achieved the o.d.e. system ig
solved; sinece an analytical solution is not possible a numerical solution via
the Crank-Nicholson method is obtained.
At each iteration we assume the following initial conditions

1 for j=mn;,

Plx(t;) = n;} =
totts) J AN for j =4 n;.

(3) The adjoint equations are solved in order to obtain the value of 7.
The system to be solved is

(8) 7;12'"77‘47
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that is integrated in the reversed time (r= —1); so the system becomes
) = nd and is solved as the state equations system,

(4) The gradient is computed.

Then we search the values of the parameters minimizing the functional g*
in a range containing the initial value 4, in the parameter space through a
gradient method.

4 — The results obtained for a particular set of observations are shown
in Fig. 2 where a simulation of the Markovian process (1) is compared with
the set of experimental data.

The proposed stochastic model allowed to clarify how the charvacteristic
parameters could depend on the various environmental factors. Particularly
we saw that the emersion rate is mainly dependent on the light intensity
variations and the fluctuations about the average values are strietly related
to temperature in that the second moment’s value inereases when the %’s
value increases. ‘

This work is a first attempt to get a quantitative description of the explo-
ratory activity of some estuarine populations which can allow to understand
how the trophic web can be affected by environmental pollution. In parti-
cular the knowledge of these processes may be of some relevance in the control
of environmental factors related to thermal pollution.
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Fig. 1. — Exploratory activity of Cyclope meritea: experimental data.
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Fig. 2. — Exploratory activity of Cyclope neritea: comparison between a simulation of
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the Markovian process with the set of experimental data.
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Abstract

Many animal species living in estuarine environments show a periodical activity; this
rhythmic behaviowr is often a strategical adapiation of the animals to changes of environ-
mental factors. Then it is of some interest to know how eritical environmental factors can -
affect these processes.

In this paper the exploratory activity of Cyclope mneritea, @ gastropod prosobranch
playing the important role of scavenger in the trophic web of the Po Delta brackish lagoons,
is considered.

A logistic stochastic model based on the analogy of the birth and death processes with
migration is proposed in order to represent the processes of interface (sediment-water) erossing.

The parameter estimation problem and the model identification are approached by
means of the maximum likelihood method.

The data analysis of experimental observations seems o confirm the relation between
some environmental factors, such as light intensity and temperatwre, and exploratory activily.
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