ROGER YUE CHI MING (*)

On regular rings and Artinian rings (**)

Introduction

This paper is essentially concerned with von Neumann regular rings and Artinian rings. Rings whose right ideals are quasi-injective (called right q-rings) are studied in [5], where they are characterised as right self-injective rings whose essential right ideals are ideals. (As usual, an ideal means a two-sided ideal). Our first theorem contains characteristic properties of regular left q-rings (([5], theorem 2.9) is here improved). Using recent results of Menal [8] on π -regular rings, we consider a class of rings such that for any finitely generated left module M, End (M) is a π -regular ring whose primitive factor rings are Artinian. A few nice characterisations of left continuous regular rings and semi-simple Artinian rings are given. For example, A is semi-simple Artinian iff the sum of any two cyclic projective left A-modules is injective.

Throughout, A represents an associative ring with identity and A-modules are unitary. J, Z will denote respectively the Jacobson radical and the left singular ideal of A. Q will always stand for the maximal left quotient ring of A whenever Z=0 (in that case, Q is a left self-injective regular ring and $_AQ$ is the injective hull of $_AA$). Following [9], a left A-module M is called semi-simple if the intersection of all the maximal left submodules of M is zero. Thus, A is semisimple iff J=0. Also, a right (left) ideal of A is called reduced if it contains no non-zero nilpotent element.

Recall that: (1) A is unit-regular if, for any $a \in A$, there exists a unit (invertible element) $u \in A$ such that a = aua; (2) A is a π -regular ring if,

^(*) Indirizzo: Université Paris VII, U.E.R. de Mathématiques, 2 Place Jussieu, 75251 Paris, France.

^(**) Ricevuto: 12-II-1981.

for any $a \in A$, there exists a positive integer n such that $a^n \in a^n A a^n$; (3) A is of bounded index if the supremum of the indices of the nilpotent elements of A is finite; (4) A has stable range 1 if whenever Aa + Ab = A, $a, b \in A$, there exists $c \in A$ such that a + cb is a unit; (5) A is a left V-ring if every simple left A-module is injective; (6) A left A-module M is p-injective (f-injective) if, for any principal (finitely generated) left ideal I of A and any left A-homomorphism $g: I \to M$, there exists $g \in M$ such that g(b) = bg for all $b \in I$. Following [12]₆, call A a left WP-ring (weak p-injective) if every left ideal not isomorphic to ${}_{A}A$ is p-injective. A is called a left wq-ring if every left ideal not isomorphic to ${}_{A}A$ is quasi-injective (wq-rings are studied in [10]_{1,2}). Write A is ELT (MELT) if every essential (maximal essential) left ideal is an ideal of A. ERT (MERT) rings are similarly defined on the right. Since the study of q-rings was initiated in [5], ELT rings have been considered by various authors.

It is well-known that there is no inclusion relation between the classes of arbitrary von Neumann regular rings and left V-rings. Since A is regular iff every left A-module is flat iff every left A-module is p-injective while a commutative ring is regular iff it is a V-ring, the notions of V-rings, flatness and p-injectivity are therefore closely connected to von Neumann regularity. Unit-regular rings and regular rings of bounded index have many interesting properties (cfr. [4]) and are therefore remarkable generalisations of strongly regular rings.

Let us first consider certain relations between the following generalisations of regular rings: (1) fully left idempotent rings; (2) rings whose simple left modules are flat; (3) left p-V-rings (rings whose simple left modules are p-injective); (4) left p-injective rings.

Lemma 1. Let M be a maximal right ideal of A which is an ideal. The following are then equivalent.

- (1) _AA/M is injective,
- (2) ${}_{A}A/M$ is p-injective,
- (3) A/M_A is flat.

Proof. The equivalence of (1) and (2) may be established by going through the proof of ([12]₄, proposition 2.1(1)).

(2) implies (3). Since A/M is a division ring, then M is a maximal left ideal of A and A/M is a simple p-injective left A-module. For any $0 \neq u \in M$, if Au = Mu, then $u \in Mu$. If $Au \neq Mu$, then $Au/Mu \approx A/M$ is a simple left p-injective A-module and the canonical map $Au \to Au/Mu$ yields u + Mu = ucu + Mu for some $c \in A$. Thus $u \in Mu$ again which proves that A/M is right A-flat.

- (3) implies (2). For any $0 \neq b \in A$, let $f \colon Ab \to A/M$ be a non-zero left A-homomorphism. Then $Ab \notin M$ (otherwise, since A/M_A is flat and M is an ideal of A, b = vb for some $v \in M$ and for any $a \in A$, f(ab) = f(avb) = avf(b) = 0 contradicting f non-zero) which implies A = M + Ab. If 1 = u + db, $u \in M$, $d \in A$, then b = bu + bdb so that f(b) = f(bu) + bf(db). But bu = cbu for some $c \in M$ which implies f(bu) = cf(bu) = 0. Thus f(ab) = abf(db) for all $a \in A$ which proves that A/M is p-injective.
- Prop. 2. (1) A MELT fully left idempotent ring is an ELT ring whose simple left modules are either injective or projective.
 - (2) A MELT fully left and right idempotent ring is von Neumann regular.
- Proof. (1) Let M be a maximal left ideal which is essential in $_AA$. Since A is fully left idempotent, then A/M is right A-flat which implies $_AA/M$ injective by Lemma 1. This proves that every simple left A-module is either projective or injective whence any proper essential left ideal E of A is an intersection of maximal essential left ideals of A. Therefore E is an ideal of A (since A is MELT) which proves that A is ELT.
 - (2) follows from $([12]_1$, proposition 9).
- ([12]₂, lemma 2.1) and Proposition 2 yield the following generalization of ([5], theorem 2.19).
- Corollary 2.1. If A is a MELT left continuous ring whose simple right modules are flat, then $A = B \oplus C$, where B is a (left and right) continuous strongly regular ring and C is a semi-simple Artinian ring.
- Corollary 2.2. A is ELT regular iff A is a MELT ring whose simple right modules are p-injective and flat.
- Corollary 2.3. A is an ELT and ERT regular ring iff A is a semiprime MELT and MERT ring whose simple left and right modules are flat.

The next result contains an improvement of ([5], theorem 2.9).

Theorem 3. The following conditions are equivalent.

- (1) A is an ELT left and right self-injective regular left and right V-ring of bounded index;
 - (2) A is a regular ring whose left ideals are quasi-injective;
- (3) A is a semi-prime π -regular left wq-ring such that the maximal left ideals of Q are quasi-injective;

- (4) any left ideal I of A satisfies one of the following conditions: (a) I is p-injective quasi-injective; (b) I is a proper p-injective left annihilator; (c) r(I) is a non-zero direct summand of A_A ;
- (5) A is a semi-prime ring whose faithfull left ideals are p-injective quasi-injective;
 - (6) A is a MELT left wq left and right V-ring;
- (7) A is a semi-prime ring whose maximal left ideals and left annihilators are quasi-injective.

Proof. (1) implies (2) by ([5], theorem 2.3).

(2) implies (3) obviously.

Assume (3). Then A is left non-singular semi-simple $[\mathbf{10}]_2$. If M is any maximal ideal of Q, then Q/M is a MELT simple ring which implies Q/M Artinian and proves that Q is of bounded index. A is therefore a semi-simple π -regular ring of bounded index and by ([3], theorem C), any primitive factor ring of A is Artinian. If A is not simple, then A contains a non-trivial central idempotent ([3], lemma 1) and therefore A is a left q-ring ([10], lemma 1.5). In any case, A is a regular left q-ring and (3) implies (4).

Assume (4). Then A is left self-injective. Let K be a complement left ideal such that $E = Z \oplus K$ is an essential left ideal. If E is p-injective, then Z is p-injective and for any $z \in Z$, if $i: Az \to Z$ is the canonical injection, then z = i(z) = zw for some $w \in Z$ which implies $Az \cap l(w) = 0$, whence z = 0 and therefore Z = 0. If r(E) = eA, $0 \neq e = e^2 \in A$, then $0 \neq e \in Z$, which yields a contradiction. Thus Z = 0 in any case and A is therefore regular. Then any proper essential left ideal of A must be quasi-injective which implies that A is a left q-ring and proves that (4) implies (5).

Assume (5). If K is a left ideal such that $E = Z \oplus K$ is essential, then ${}_{A}E$ is faithful (since A is semi-prime) which implies E (and hence Z) a p-injective left ideal. Then Z = 0 as before and since A is left self-injective, A is regular. Since ${}_{A}L$ is faithful for any essential left ideal L, then ${}_{A}L$ is quasi-injective whence A is a left q-ring and (5) implies (6).

(6) implies (7) by ([4], lemma 6.20) and ([10]₁, lemma 1.5).

Since a quasi-injective maximal essential left ideal in a left self-injective ring is an ideal, then (7) implies (1) by ([4], corollary 6.22) and Proposition 2.

We now look more closely at rings whose simple right modules are flat.

Lemma 4. If every simple right A-module is flat, then

- (1) any reduced right ideal of A is a strongly regular ring,
- (2) any reduced finitely generated right ideal is a direct summand of A_A .
- Proof. (1) Let R be a reduced right ideal of A, $a \in R$. Since aA is reduced, then $l(a) \subseteq r(a)$. If $aA + r(a) \neq A$, let M be a maximal right ideal containing aA + r(a). Then A/M is right A-flat which implies a = ba for some $b \in M$. Therefore $1 b \in l(a) \subseteq r(a) \subseteq M$ which yields $1 \in M$, a contradiction. Thus aA + r(a) = A and $a = a^2c$ for some $c \in A$. Now $a = a^2d$, where $d = ac^2 \in R$ and since $a ada \in R$, then $(a ada)^2 = 0$ implies a = ada, whence R is a strongly regular ring.
- (2) Let F = aA + bA be a reduced right ideal generated by two elements a, b of A. From (1), a = ada for some $d \in F$ and therefore aA = eA, where e = ad is idempotent. Now aA + bA = eA + (1 e)bA = eA + uA, where (1 e)bA = uA, $u = u^2 \in F$ since $(1 e)b \in F$. If we set v = u(1 e), then $v \in F$, vu = u, $v^2 = v$ and uA = vA. Therefore F = eA + vA = (e + v)A is a direct summand of A_A as before. Then (2) follows by induction on the number of generators.

Call A densely nil if every non-zero right ideal contains a non-zero nilpotent element [2].

Corollary 4.1. If A is a prime ring whose simple right modules are flat, then A is either a division ring or densely nil.

Apply (([12]₅, proposition 6)).

Since (1) A fully left idempotent ring whose maximal left ideals are ideals is strongly regular; (2) A MELT left p-injective ring whose simple right modules are flat is an ELT left p-V-ring, then using the proof of ([12]₅, proposition 8(2)), we get the following decomposition result.

Theorem 5. The following conditions are equivalent.

- (1) A is a direct sum of a semi-simple Artinian ring and a strongly regular ring with zero socle;
- (2) A is a MELT ring with finitely generated left socle such that every cyclic semi-simple right A-module is flat;
- (3) A is a MELT left p-injective ring with finitely generated left socle such that every simple right A-module is flat.

If A is a right continuous regular ring (in the sense of Utumi [11]) and $A = B \oplus C$, where B, C are ideals of A, then both B and C are right con-

tinuous regular rings with identity. A densely nil right continuous regular ring is right self-injective ([11], theorem 3). Following [2], write MDSN for the minimal direct summand of A_A containing the nilpotent elements of A. The next decomposition theorem extends that of right continuous regular rings given by Utumi ([11], p. 604).

Theorem 6. Let A be a ring whose simple right modules are flat such that any reduced right ideal is essential in a finitely generated right ideal. Then $A = B \oplus C$, where B is the densely nil MDSN and C is a (left and right) continuous strongly regular ring.

Proof. If I is a reduced right ideal then any essential extension of I_A in A_A is also reduced. By Lemma 4, any reduced right ideal is therefore essential in a direct summand of A_A and by ([2], theorem 12), $A = B \oplus C$, where B is the densely nil MDSN and C is a reduced abelian Baer ring with identity. Now C is a reduced right ideal of A and by Lemma 4, C is strongly regular. Since C is a Baer ring, then C is left and right continuous.

It is well-known that if $E = \operatorname{End}_A(M)$, where AM is injective, J(E) the Jacobson radical of E, then E/J(E) is a left self-injective regular ring and $J(E) = \{f \in E | \text{kerf is essential in } AM\}$. With suitable modifications, the proof of that result yields the next lemma. Set $B = \operatorname{End}_A(A)$ and let J(B) denote the Jacobson radical of B.

Lemma 7. If A is a left p-injective ring whose complement left ideals are principal, then B/J(B) is von Neumann regular and $J(B) = \{f \in B | \text{kerf is essential in } _AA\}$.

We are now in a position to give some new characteristic properties of left continuous regular rings.

Theorem 8. The following conditions are equivalent.

- (1) A is left continuous regular;
- (2) A is a left non-singular left p-injective ring whose complement left ideals are principal;
- (3) A is a left non-singular left f-injective ring whose complement left ideals are finitely generated;
- (4) A is a right f-injective ring whose complement left ideals coincide with left annihilators of elements of A.

Proof. It is easy to see that (1) implies (2), (3) and (4).

Assume (2). Since Z=0, then J(B)=0 in Lemma 7 and $A\approx B$ is therefore regular. Then any complement left ideal is a direct summand of ${}_{4}A$ which implies A left continuous and therefore (2) implies (1).

Similarly, (3) implies (1).

Assume (4). Then Z=0. For any $a \in A$, Aa is a left annihilator by Ikeda-Nakayama's theorem which then implies that Aa = l(u), $u \in A$. If K is a complement left ideal such that $E = Aa \oplus K$ is an essential left ideal, since K = l(v) for some $v \in A$, then $E = l(uA) + l(vA) = l(uA \cap vA)$ which yields E = A (since Z = 0) and proves A regular. Since any complement left ideal is the left annihilator of an element (and therefore a direct summand of A), then (4) implies (1).

We now know from [3] that prime left non-singular left p-injective rings need not be primitive. However, the next remark holds (([12]₂, proposition 1.6) is thereby improved).

Remark. A prime left p-injective ring is primitive with non-zero socle iff it has a maximal left annihilator.

The next proposition is motivated by [8].

Prop. 9. Let A be a semi-simple left WP, π -regular ring such that every maximal left ideal of Q is quasi-injective. Then A is a regular left and right V-ring of bounded index such that for any finitely generated left A-module M. End_A (M) is a π -regular ring of bounded index. Consequently, End_A (M) has stable range 1 and M cancels from direct sums of left A-modules.

Proof. Since Z=0, Q is left self-injective regular of bounded index by Theorem 3, which implies that A is of bounded index. If A is simple, then A is Artinian by ([8], theorem C). If not, then A contains a non-trivial central idempotent by ([8], lemma 1) which implies that A is von Neumann regular ([12]₆, Lemma 1.3). Thus A is a left and right V-ring such that for any finitely generated left A-module M, $\operatorname{End}_A(M)$ is a π -regular ring whose primitive factor rings are Artinian and the last part of the proposition then follows ([8], theorem D).

Similarly, ([8], theorems C and D) yield the next result which is related to a question of J. W. Fisher: Are π -regular V-rings regular?

Prop. 10. Let A be a Melt π -regular fully right idempotent ring such that every maximal left ideal of Q is quasi-injective. Then A is an elt unit-regular left and right V-ring whose primitive factor rings are Artinian.

Finally, we turn to characteristic properties of semi-simple Artinian rings.

Theorem 11. The following conditions are equivalent.

- (1) A is semi-simple Artinian;
- (2) A is a semi-prime ring whose faithful left modules are injective;
- (3) A is a semi-prime ring whose faithful proper left ideals have non-zero right annihilators;
- (4) A is a regular ring whose faithful non-singular left modules are projective;
- (5) A is a left self-injective ring such that the sum of any two cyclic injective left A-modules is injective;
- (6) the sum of any two cyclic projective submodules of every left A-module is injective;
 - (7) every semi-simple left A-module is p-injective and quasi-injective;
- (8) A is a MELT ring whose projective and quasi-injective left modules coincide;
 - (9) A is a left p.p. ring whose essential right ideals are right annihilators.

Proof. Obviously, (1) implies (2) while (2) implies (3).

The proof of Theorem 3 shows that (3) implies (4).

Assume (4). Since A is regular, then a theorem of I. Kaplansky asserts that any finitely generated submodule of a projective left A-module is a direct summand. Therefore, ${}_{A}Q$ projective implies that ${}_{A}A$ is a direct summand of ${}_{A}Q$ whence A=Q is left self-injective regular. Then A is left hereditary (cfr. the proof of Theorem 3 (4)) and we may conclude that (4) implies (5).

It is easy to see that (5) implies (6).

Assume (6). Then A is left self-injective. Let $B = A_1 \oplus A_2$ be a direct sum of two copies of A, $B_1 = \{(-a, 0) \in B | a \in A_1\}$, $B_2 = \{(0, a) \in B | a \in A_2\}$. For any left ideal I of A, write $K = \{(a, a) \in B | a \in I\}$. Then $B_1 \approx A_1$, $B_2 \approx A_2$ and the canonical homomorphism $B \to \overline{B} = B | K$ yields $B_1 \approx \overline{B}_1$ and $B_2 \approx \overline{B}_2$. Since $\overline{B} = \overline{B}_1 + \overline{B}_2$, then \overline{B} is injective by hypothesis and $\overline{B} = \overline{B}_1 \oplus T$ implies $\overline{B}/\overline{B}_1$ left A-injective. If $\overline{(b_1, b_2)} + \overline{B}_1 \in \overline{B}/\overline{B}_1$, then $\overline{(b_1, b_2)} + \overline{B}_1 = \overline{(b_2, b_2)} + \overline{B}_1$ which yields $A/I \approx \overline{B}/\overline{B}_1$, whence A/I is a cyclic injective left A-module. Therefore (6) implies (7) by ([9], theorem 3.2).

Assume (7). The fact that every semi-simple left A-module is p-injective

implies A von Neumann regular whence every left ideal is semi-simple. This implies that A is a left q-ring and by Theorem 3, A is a left V-ring. But then every left A-module is semi-simple by ([9], theorem 2.1) which proves that every left A-module is quasi-injective and therefore every left A-module is injective and projective. Thus (7) implies (8).

Assume (8). Then A is left self-injective and any maximal essential left ideal (being an ideal of A) is quasi-injective and therefore projective. Thus every maximal left ideal of A is projective and (8) implies (9) by ([12]₃, remark 6).

Finally, assume (9). Since a maximal right ideal is either a direct summand of A_A or an essential right ideal, then every maximal right ideal of A is a right annihilator. If I is a finitely generated proper right ideal, M a maximal right ideal containing I, then $l(M) \neq 0$ implies $l(I) \neq 0$. Since A is a left p.p. ring, by ([1], theorem 5.4(, every principal left ideal is a direct summand of ${}_AA$ which proves A regular. Then every maximal right ideal, being the right annihilator of an element, is a direct summand of A_A which proves that (9) implies (1).

Semi-group analogues of certain results on injectivity and p-injectivity have been considered in [6] and [7].

Question. Are there semi-group analogues of Theorems 3 and 11?

Acknowledgement. We are indebted to the referee for many helpful comments and suggestions leading to the present version.

References

- [1] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [2] G. F. BIRKENMEIER, Baer rings and quasi-continuous rings have a MDSN, Pac. J. Math. 97 (1981), 283-292.
- [3] O. I. Domanov, A prime but not primitive regular ring, Uspehi Mat. Nauk. 32 (1977), 219-220.
- [4] K. R. GOODEARL, Von Neumann regular rings, Monographs and studies in Maths., 4, Pitman, London 1979.
- [5] S. K. Jain, S. H. Mohamed and S. Singh, Rings in which every right idelal is quasi-injective, Pac. J. Math. 31 (1969), 73-79.

- [6] C. S. Johnson and F. R. Mc Morris, Completely cyclic injective semi-lattices, Proc. Amer. Math. Soc. 36 (1972), 385-388.
- [7] J. K. LUEDEMAN, F. R. Mc Morris and S. K. Sim, Semi-groups for which every totally irreducible S-system is injective, Comment. Math. Univ. Carolin. 19 (1978), 27-35.
- [8] P. Menal, On π-regular rings whose primitive factor rings are Artinian, J. Pure Appl. Algebra 20 (1981), 71-78.
- [9] G. O. MICHLER and O. E. VILLAMAYOR, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201.
- [10] S. Mohamed and S. Singh: [*]₁ Weak q-rings, Canad. J. Math. 29 (1977), 687-695; [*]₂ Weak q-rings with zero singular ideal, Proc. Amer. Math. Soc. 76 (1979), 25-30.
- [11] Y. Utumi, On continuous regular rings and semi-simple self-injective rings, Canad. J. Math. 12 (1960), 597-605.
- R. YUE CHI MING: [•]₁ On generalizations of V-rings and regular rings, Math. J. Okayama Univ. **20** (1978), 123-129; [•]₂ On von Neumann regular rings, III, Monatsch. Math. **86** (1978), 251-257; [•]₃ On annihilator ideals, II, Comment. Math. Univ. St. Paul, **28** (1979), 129-136; [•]₄ On regular rings and V-rings, Monatsh. Math. **83** (1979), 335-344; [•]₅ On V-rings and prime rings, J. Algebra **62** (1980), 13-20; [•]₆ Von Neumann regularity and weak p-injectivity, Yokohama Math. J. **28** (1980), 59-68.

Abstract

Some characteristic properties of the following classes of rings are given: (1) Regular rings whose left ideals are quasi-injective. (2) Left continuous regular rings. (3) Semi-simple Artinian rings. Connections between several generalisations of von Neumann regular rings are also considered. Known results are improved.

* * *