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A new curved element

for solving transient heat conduction problems (**)

1 - Introduction

It is well known that curved isoparametric elements (Mitchell, [7];
McLeod, [6]), always have linear precision in the original space. This method
involves a reduction in the order of the finite element method, and an ap-
proximation to the curved boundary. As the reduction in order cannot be
avoided this method is restricted in its practibility to elements which are
slightly distorted by comparison with their straight-sided counterparts. Nu-
merical results in [2] underline the faet that isoparametric elements are ex-
tremely sensitive to distortion from the standard straight-sided elements.
Furthermore, it is still a disadvantage that the function describing the boundary
shape is not continuously differentiable at the common nodes of two elements,
sinee this might disturb the thermal-stress solution in the near vicinity. It may
be noted that there are several engineering problems in which this region is
of high interest.

These difficulties can be overcome by the new curved quadrilateral element
proposed by the authors who match boundaries exactly. In this way the method
can be of any specified order and the function describing the boundary shape
is continuously differentiable. Any finite region in two-dimensional space can
be divided up into quadrilateral elements which are either straight-sided within
the region or have one curved side round its perimeter.

(*) Indirizzo degli AA.: M. CarriLi, Istituto di Matematiche Applicate, Univer-
gitd, 56100 Pisa, Italy; R. LazzereTTI, Istituto di Macchine, Universitd, 56100 Pisa,
Italy.

(**) Ricevuto: 15-1-1981.
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This paper applies the curved element to the solution of parabolic initial
boundary value problems. Computational procedure is outlined. Optimal
error estimates in the L® norm is derived for the Crank-Nicolson finite element
method and stability is considered. A numerical example carried out on
cooled turbine blades with listings of the FORTRAN program can be seen
in Caprili and Lazzeretti [4],.

2 - Statement of the problem

The problem consists of cooling homogeneous and isotropic solid material,
in which heat is being generated at a constant rate by passing fluid through
a system of dumcts running through the solid. The fluid is assumed to enter
ducts within the solid at a given constant temperature and with a given con-
stant velocity. It is assumed that the temperature is two dimensional, i.e. the
temperature is the same for all the normal sections of the solid. To calculate
the temperature, which is assumed to be varing with time, it is necessary to
solve the parabolic initial boundary value problem

ou O . Q%

(1) ﬂ(w,y)—égza—wﬂL—a—y—z (,y,1) € 2% (0, T],
ou

(2) = T @Y u=9@Y)  (z,y,t)e I'x(0, T],

(3) u(w, ¥, 0) = u®(@, y) (z,y) e Qf

where £ is a multiply-connected bounded domain in the x, y plane with boundary
I, Bz, y) is positive and continuously differentiable away from the zero
function on 2, «(z,y) and g(x, y) are positive continuous functions on [
w(x,y) is a continuously differentiable function on £ and dlon is
outward normal differentiation. Furthermore, we suppose that 77 consists of
& finite number of simple closed curves I, (¢= 0, 1,...,s) belonging to the
class O*"4(0 < 2 <1); the curves I, (¢ =1,2,...,7) lie inside I, and do not
intersect.

The problem (1)-(3) has one and only one solution w(x, y,¢) which is con-
tinuous in 2 x [0, 7], and has second order spatial derivatives and a first order
time derivative which are continuous in Q x (0, 71, [5].

Before formulating the given problem in weak variational form, let us
introduce some notations. By H™(2) we denote the Sobolev space of real
functions which, together with their generalized derivatives up to the m-th order
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included, are square integrable in Q. The norm is defined by

lu]m,e = LE [ (D=u)*dzdy}?,

lojm 0

and the seminorm by

[ me ={ > [ (D*u):dedy}?.

jol=m 0

Remark. For simplicity, we will sometimes write |- ],, and |- |, instead of
[*lme and |- |, e, respectively.
If X is a normed space with norm |-|, and ¢: [0, 7] — X, then

9l zooy = sup (i) .
[ Rty g

Multiplying (1) by v»e HY(£2) and using Green’s theorem and boundary
condition (2) we obtain the identity

(B, 1) 52 ,0) + ol v) = g, 1,0y (e HYQ), Le (0, T,

(4) _

w(z, y, 0) = u’(z, y) (,y)e 2,
where

ou
(5) (Blz, ) atﬂ?) = fﬂ (@, %) 8 Lo dedy,
a(u, v) = [ ( au ov  ou ow da da f N dl
(6) V)= 8w3%+8y8y) wdy + { oz, y)uvd
M gl y), o> = [ gla, y)oal.
;

Hence the variational principle corresponding to the initial boundary value
problem (1)-(3) is to find for each time ¢ e (0, 7] the funection » € H(2) that
satisfies (4).

It is worth noting that, because of the symmetry of the bilinear form (6),
the variational formulation (4) is equivalent to the problem of finding, for
each time ¢ € (0, 7'], the function « € H2(L2) that, besides the initial condition (3),
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minimizes the functional

3O f et

; 0
®) 0 =3 [ {g)+ )+ 2oy} asdy

b

1
+ [ {5 ey )00 — glay )0} dl.

Both these formulations of the problem will be useful in the discussion which
follows.

To formulate the problem in terms of the finite element method, we must
perform the spacewise discretization of functional (8). We shall use finite
element spaces which are subspace of H*(£2). This means that, since I"is curved,
we have to consider curved elements which exaectly match the curved boundary.
We denote the finite element space to be used, S;.

The finite element discretization of (8) in space gives for each time ¢ € (0, T
the w(w, y,1) function from §; such that

I(w) < I(v) ves;,
9)

wiz,y,0) = W(z,y) @, y)e St

@%@, ) is an approximation of u%(x, y) and the simplest way is to choose the
interpolation of u%(x, y) for it. It must be noted that the time variable is left
continuous and the determination of w(z, 4, 1) requires the solution of a initial-
value problem for a system of ordinary differential equations.

To define a computable approximation we must diseretize with respect to
time in some fashion. Since the differential system, as will be proved exact.y
later, is stiff we shall use the second order, 4-stable, Crank-Nicolson algorithm.

3 - Approximate solution

3.1 — Spatial approvimation. We begin by covering the domain 2 by 2
finite union of finite elements which are of two possible types: elements which
have no points in common with the boundary I are quadrilaterals whose sides
are all straight, whereas those which are constructed by using the parametric
equation of the boundary I" are generally curved quadrilaterals, i.e., a quadri-
lateral one of whose sides can be distorted in a prescribed way. Two adjacent
elements have a common side and the open elements are disjoined. Let ¢ be
the generic quadrilateral of the finite element partition of Q. Let us suppose
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that the quadrilateral whose sides are all straight and which has the same
vertices as ¢ is convex, and let us denote by &, and %, the greatest and the smal-
lest sides of this quadrilateral.

If h = max h, and % = min h,, we suppose that A/h>c¢ where ¢ is a posi-

eCcs? ec

tive constant (notice that in all cases ﬁ/h<1).

We denote by I, the given partitioning of Q and by P, = (z,, ,) (r =1,
2, ..., 1) its nodes. We will only consider the partitioning such that & is less
than one and 0, the smallest angle of all those defined by a diagonal and a side
of any quadrilateral (in the case of a curved quadrilateral we mean the quadri-
lateral whose sides are all straight sides and which has the same vertices),
is bounded away from zero by 0, when h tends to zero.

Let P, = (=, ¥,,) (r; positive integer; i=1,2,3,4) be nodes belonging
to an element, and we denote by Z the square of vertices R, = (0, 0), B, = (1, 0),
R, = (1,1), R, = (0,1) in an auxiliary space &, #.

Let ¢, be a quadrilateral whose sides are all straight. In Strang and Fix [9]
appear the

Theorem 1. The equations

&= wo(éy 77) = wrl (mr2 - $71)§ + (mr4_' mrl)'r] + (xrl"' mrz "l_ mra - mr4)§77
(10)

Y="Y&N) = Yr, + Wry— ¥ ))&+ Wr,— ¥ )0+ e, ~ Yoy + Yo, — V2,07
map the closed square E one-to-one on the closed quadrilateral e,.

Now, let ¢, be the curved quadrilateral with three straight sides and one
curved side. Here the curved side is a part of the boundary I. These authors
in [4], have proved the

Theorem 2. If h, is sufficiently small the non-linear mapping

(11) z = x(&, 1) = x,(&, n) + P&, ¥y =y(& 1) = yl& n) + (&),

where
(D(E) = (p[(sra - 8r4)'§ + Sr4] - mr4“' (mrs - $,~4)§,

P(&) = W[(Srs - 814)5 -+ 874] — Yy (?/r;, - .q/r4) &,

maps B one-to-one onrec, the Jacobian J(&, ) = o(x, y)[0(&, n) do not vanish
in B, the sides RiR,, R.Ey, B, R, are mapped linearly on the sides PrlPrz,

P, P, P, P,, respectively and the side E; R, is mapped on the arc PP, .
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The @ = @(s), y = y(s), s,,<8<s.,, are the parameiric equations of the
regular are 13/,3?,4 and @, = @(s,), @, = @(s.,); Yr, = p(s;,) and y,,= p(s.,).
Moreover, the functions @(s) and w(s) are supposed to be continuous along
with their first and second order derivatives.

Turthermore, in actual caleulation it is not necessary to obtain the inverse
mapping of eqgs. (10) and (11).

The first-degree polynomial in any variable &, 7

(12) w (€, n) = ay F 0. + asn + 0,67

is defined by the values W7, W7, W; and W7 which holds at the points R,
R,, R, and R,, respectively. In fact, the conditions w?(R,) = W7, (¢ =1, 2, 3, 4),
given to the polynomial (12), yield, in formula, a linear system of four equa-
tions in the unknouns @,, 4., a;, @, whose matrix is non-singular.

Equation (12) can now be written

4

(13) wE(Ef )= Z N (&, 7) Wf’

where )
1\71(5;77):(1—5)(1’“‘77)7 Ng(f,ﬂ)Zf(l—‘?]),
(14)
No(&, n) = &n, N, n)=(1— §&)y.

Hence the function

(15) we (@, 1, t) = D N[, y), nl@, ¥)] W)

{1

defined in e, or ¢, by the inverse mapping of {10) or (11), respectively, assumes
the values W, (1), W,,(¢), W, (t) and W, (t) at the vertices P, , P,, P, and P,
respectively.

It may easily be proved that the function w(z, v, t) defined in O, for each
te (0, T'], which is equal to the function we(x,y,?) in every element ec 2,
is continuous on Q. This condition, with the properties of the equations (10), (11)
and (13) is sufficient in order that the trial function w(z, y, t) belongs, for each
te (0, T], to the Sobolev space HY(Q). '

From Caprili and Lazzeretti [4], the functional (8) can be written in the form

4 1 1
(16) L(Wyy Wey oo, W) =42 A4, W, W, +3138,.W,.W,—~3SFW,,

r,5=1 rys=1 r=1

where the dot denotes the derivative with respect to time.
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Since 4 = [4,,]and § = (8. ] (ry8=1,2,...,1), are constant symmetric and
positive definite matrices [4];, then the vector W(t)= [W,(t), W.(1), e W
which minimized (16) is the solution of the initial-value problem of I linear
differential equations

(17) W=—8-14W + §1F, W(0)=We,

where WO = [u9(@s, 1), 4@z, ¥a), .., ©8(@:, ¥)I".
To obtain a computable solution we have to discretize (17) in time.

3.2 — Time approzimation. An important property of the matrix S-14
is that its eigenvalues u are positive. Furthermore, as will be shown below,
the system (17) is stiff, so that a method with a region of absolute stability
containing the interval (— oo, 0) must be used to solve it. Such a method
is unconditionally stable.

If we let the approximate value of the vector Wi(n t), where At is the
time step, be denoted by W=, then the value W»+! obtained by the Crank-
Nicolson algorithm is determined by solving the linear system

(18) (8 —!—%tfl)W“+1 =(S—%—tA)W”+AtF.

The solution of system (18) required the solution of a system of linear
algebraic equations at every time step.

Thus, since the matrices 4 and S are symmetric and definite positive, the
matrix @ = S 4 (4¢/2)A has the same properties for any ¢> 0, and its
spectral condition number, as is shown below, is 0(4th2). The system (18)
is therefore normal and no exchanges of rows by the Gauss method are neces-
sary for its solution. In this case, elimination without row exchanges is not
only possible but also numerically stable. :

4 - Error estimates

In the following we will use 0, C,, C,,... to represent positive constants
whose values may change when their position changes. Let us now assume

Lemma 1. Let u(x,y,t) be a function which belongs to HXQ) at any
fized T € [0, T and 4(x, y) the function in St that assumes the same nodal values
as w(z,y,1) in Q. Then

(19) Jt— a0 < Ohufsa-
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Proof. As #e HYL), we need only prove (19) for a single element. We
will prove (19) in the case of a curved quadrilateral element e, as follows

(20) Ju—df, . <Cih|u].,, .
The inequality (19) for a quadrilateral element e, is a special case of (20).

For equation (11), let us suppose that (&, », 1) = u(@(, n), y(& n), 1) and
#(& n) = @(x(&, ), y(& n)); then considering that according to [4].

¢ P ,

(21), ’ag? :J?;1= o(h?), 15§1= o(h) , ]—a%i = O(h),
02 o2 2

(21), I5al= 000, Igal =00, légx = o,
0 o2 o2

(21) "a—q;/;lza(h)? 8—7;:0’ an‘z=07

by using simple caleculations we obtain
(22) lu— a5 < Calr — 7150 -

To estimate the quantity |r— 7], ,, we may now define the linear fune-
tional on H*(F)

(23) : )= (r—7,8),z,
where s € HY(Z). As re H?(F), it is true that

(24) max |r] < Cylj7 s,z

for Sobolev’s lemma, [9].
At the vertices of FE, the polynomial #(£, 5) takes on the values »(¢, 7, 1),
so that, by means of (24), we easily obtain

(25) [#l1,z<Cslrfem -
So, applying (23), we obtain

1B | < lr— Fluelslz<lslz(lrlz + 17],2)
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and, using (25),
[F(r) < Cslls[yzlr]ez -
The functional (23) is therefore linear and bounded and, given that the
interpolating function 7 e 8§} is unique, it is equal to zero for each polynomial

of degree <1 in every variable, so it follows for Bramble and Hilbert, [3], .,
that

o, o,
(26) P)| < Calls b {lgge ot I 150

If we choose s = —# (23) and (26) yield

n o2y . o2 .
I =l < Co{lggalbat gslia

If we now return to the plane », ¥ and use (21), we obtain
lr—FlLe<Cob{lull, + ul;.} .
If we now make use of (22), we find that
27) I~ 4., < C. O 1 {]uls,, + v},
and thus also (20). If we now sum (27) on all the elements, we obtain
lu— 25 o< C. CR2{Ju |} 5 + [ 5.0} s
and thus also (19).

Lemma 2. If weH} Q)N C(D) is such that

(28) a{w, v) = ({,v)  for each ve H(Q),
then
(29) leofse< Clig]o,0-

Proof. From the book of Agmon [1], since I'e (%, it appears that

(30) loolse < Ci(ligTo,0 + leo o) -
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If we let v = w in (28), then since a(z, %) is a continuous positive func-
1,8

tion on [, we obtain ||} , < (£, @) and aw, w) < ({, w) where o, = min oz, ¥).
(z,v)el’
From Friedrichs inequality we obtain |olff , < Cy(<w, )4 ||} ,), Wwhich to-

gether with the two last inequalities, gives [w]o o< Cuy(l 4 1/0)|[C]o e Wwhere
we have used the Schwarz inequality. Thus, on combining the last inequality
and (30), we obtain (29) with C = C;C,(1 4 1/e).

Let us now estimate the global error, that is, the error due to spatial ap-
proximation plus that due to temporal approximation. To do this, we use the
fact that the function w(z,vy,t) which satisfied (9) is such that

(31) (ﬂ(‘% y) %,%]7 7’) -+ a(w, v) = {g{z,v), ¥ Yoe S;ln te (0, I].

Furthermore, the scalar product (6) defines in H({2) a norm equivalent
to |+ ], (WNecas [8]); in other words, we may conclude that

(32) Cillv]; o <alv, ) < Cofo]} Yvoe HY(Q).

Given these premisses, we obtain

Theorem 3. Ifallthefollowing conditions hold: the exact solution u{w,y,1)
to the problem (1)-(3) belongs to H*($2) when t € [0, T, 2%u[0t® is continuous when
(@, y,t) € O x[0, T], |u],<C when t [0, I, u°(z,y) belongs to H*(L2), the func-
fons a(z, y), gz, y) are continuous and positive when (v,y) €l and Bz, y) is
a continuously differentiable function bounded from below by a 3, positive number
when (#,y) € Q, then, when At and b are chosen arbitrarily,

(33) max Jjur— wr|, < Oy hjud], + Coh -+ Cy(diz 4 h?)
0T/ At

and also

(34) Jum — wh ]| ooy < Oy (R - 422)

where w* = u(x, y, n At), and w* = w(x, ¥, n At) belongs to S, for every 0 <n< T (A1
and satisfies the condition w(w:, y;,, ndt) = W?, (i =1,2,...,1), and the con-
stants Oy, C,, C; and C, are independent of At and h.

Proof. TFor convenience, let us suppose that u» = ¢» -+ {*, where ¢* is
the orthogonal projection, for every given 0<n<T/4t, of u* over 8} in the

norm (a(-,-))%. Thus, applying the Lemma 1 and (32), we obtain

(35) 18 = Jur— ¢l < Oubfur ],
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It is also true that

(36) e o< Coh]iC

In fact, if weH¥Q)N 01(2) is such that a(w, v) = (&7, v) Vv e HY(Q), then,
if we choose v = {7,

(37) 121G = alw, i) = alw— &, ),

where @ € 8} is the interpolating function of w. From (37), Lemma 1 and (32)
we obtain I]C"{]"<03Hw— A< Cih|w|.]¢*],. For Lemma 2 we find
12715 < Ceh[ig7]o] &)1, which, if simplified, yields {(36). Besides this, (35) gives us

(38) £ o< Calitfur]s

From (4) we find that

n

e
(39) (Bley ) S5 v) + aldr, v) = (g2, ), > Yoe s

If wn indicates the function w at time t=mndt, n=0,1,2,.., then the
global truncation error at time ¢ = n At is

@0)  Jur—wrli<fur— @l + g — wrl < CrbJunfy + g — wr), .

We must now examine |¢*— w|,. By applying the Crank-Nicolson method
and using (31), the following recwrring relationship is obtained

(41) (Blw™t —wm), v) - g—t a(wmt - we, v) = At{g, v) Vv e St.

As the local trunecation error in the Crank-Nicolson method is

At
yr o= gt g (un-i-l -+ u") = @(Ata max ] I) )
e{0,7]

we find that

(42) ly o< Codt?
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and, besides, using (39)
At
(43) (B(gmt—¢m),0) + 5 a(gmt + ¢, 0)

= At{g, vy + By, v) — (B —{), v) YoeS;.

If we subtract (41) from (43), given that g(z, ¥) is not dependent on ¢, we obtain
n+1 0 At n-+1 +1 7 1
(44)  (Blem—em),0) + 5 alemitem v)=(fy"y v) — (B(ErE —Ln),0)  Vwe sy,

where ¢» = ¢»— w".

Since a({, v) = 0 for any v e §; and for every te (0, T'] then, if it is dif-
ferentiated with respect to ¢, we find that a({,v) = 0 Vve 8. Thus d=u—7¢
is the projection of # over §; in the norm (a(-,-))* and, applying (38), we
obtain

(45) [E]o< CoR2]jet] .

In addition, {1 — {r» = (3,"[0t) At, where 7i = n -+ O4f, 0 <O <1 and so,
using (45), we find that

ol .
(46) [Emtt — g, = ];_8%“0 At < Oy Ath?|ur], < OC, Ath®.

If we choose » = g™t — ¢» and use the inequality |ab|<a?/20 -} §b2/2
where ¢ and b are real and § is positive and arbitrary, (44) becomes

At
(ﬂ(grrl-l — 8"), gntl 8") + _2__ a(e"“ + 8", gntl . 6“)

= (By", et — &%) — (B(L™ — 1), 71 —e7)
and also

‘50 "87:+1_ & ”‘2) + _Zzl_t (a(e"“, 6n+1) — a(en, 8n))

< 1By~ lollemsr —enllo + 1B(E™+ —Cm) o [ev+* —en o
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and, in conclusion, indicating the norm (a(-,+))* by [|-]l, we find that
; At .
(47) Bollerr —er[s + - (e ll> — flenll?)
1 2 6 1 2 1 1 2
llﬁ?"!lo 55 |l8"+ —etlo + 5 B+ =L [E + 55 et —enf5.

Let us choose § ==1/f,; then, after simplification, (47) yields
At z .
5 (e —fenli®) < 5;—0 Iy -+ 1&mr—2=]5),

where f§, = max f(z, ).
(2,0)e2

At this point, application of (42) and (46) yields
flem+I* < lle’lll* + Cy(ndte + n Ath*) .

Besides, since 0 <n<7'/4t the final inequality may now be expressed as

(48) llem+2ll= < flle®lil® + Co(det + 1%).

Considering that at_the initial time &° == ¢° — w® = ¢° — 4° and that ¢° is the
orthogonal projection of «° over St in the norm ||-||, then, using Pythagoras’s
theorem,

(49) llelll < lllee® — ol -

Substituting (49) in (48), and considering that |- || is equivalent to the norm

I ], we now find that
Nenlly < Crollue — o), + Cu(At* 4+ h2),  O<mn<T|dt.

This, together with (40) and (19), yields

(50) Jur— w, < CihJurl, + O Cphju], + Cpu(dtz + 1%, O0<a<T/4l.

Finally, as |u"|,< Cy; when 0 <n<T/4t, by using (50) we obtam (33), and the
theorem has now been proved.
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5 = Speetral condition number

We will now demonstrate that system (17) is stiff. For a given partition
of 0, we will use v;, s, ..., v, to signify a base of the subspace §; which possesses
the property v,(P;)=90.; (¢,j=1,2,...,1); it is clear that a function v(z, y)
(¢=1,2,...,1) may be generated by means of the functions N(¢,#)
(i=1,2,3,4) and equations (10) and (11) in such way that it is non-
vanishing only for the elements which share the nodal point P;: We will now
postulate the lemmas.

Lemma 3. The system of functions {v;}'_ has the property

alv;, v;)

; > Ch~2
fo:

(51)

6.2
as I tends to zero.

Proof. Since the norms (a(-,-))* and |- |, are equivalent, instead of (51)
we may prove, as h is sufficiently small, the following

v; |2
(52) Jodia g

[0:18, 2

If ¢;1, ¢, ..., 6,4 arve the elements on which v,(w,y) is nonvanishing (in the
present paper 4 is equal to 2 or 4)

d
(53) 0il20 = 3 I0il2,, -
=1
Clearly, from (10) or (11), the restriction of v,(z, ¥) on an element ¢ (j=1,..,d)
is equal to
1
a N [&(@, y)y n(z, 9)],
where it has been assumed that the nodal ¢ in the element ey (J=1,..,4d),

corresponds to the vertex ¢ in the unit square E.
“We now find that

g 1 oN, 06  ©oN,on,  ON, 06 0N,
(54) lv’ll"’i,;‘ - az Ef {( ag ox + 877 '8—5) + ('é—g" 'a—y_ + 877 @

)? 1 | A€ dy.
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Counsidering that ¢&/dx = (dy[on)lJ, 0&[oy = — (dz[on)/J etc., and using (21),

it may be concluded that (54) is equal to ¢(1) when % tends to zero. Analogously,
again using (21), we find that

1
“'Ui”lzl,ei’j = i Ej N (&, n)? iJ]dEd"?> Cyh?

when & tends to zero.
From (53), since d is equal to 2 or 4, we obtain (52) and (51).

Lemma 4. Given v =29 + 2,0, + ... + 2,0, with 2, 2, ..., 2, real num-
bers, if h is sufficiently small, then

(55) C,h2|

22 < fols,0 < CuP?[2]*,

where ||z]* =2} + 2 + ... + 2.

Proof. Let »* be the restriction of v on ¢, and v%(¢, n) = v:(x(§, 1), ¥(&, 7))
the polynomial which for (10) or (11) corresponds to o¢. Furthermore, let
P, P, P, and P, be the vertices of ¢. Then, since v*(P, )=z, (i=1, 2, 3, 4),
from (13), we find that

vE(&, n) = NT(& n) 2,
where 2 = [z, , 2,,, 2., %,]* and

(56) lo°l5,0 = J07(& m)* I |d§ dp=(=)" [ N(§, ) N7(§, n)|J |d& .

Considering that [v¢[] ,>0 and that it is equal to zero if and only if v = 0,
then the symmetric matrix

Ae= J.-N(S’ N N7, n)|J|dédy

E
is positive definite.
Also, since the functions N(&, n) (¢ = 1, 2, 3, 4) are positive in F, we obtain

Ae={|J|d&dyBe,
E

where the symmetric matrix B¢ is positive definite.
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In [4], has been shown that, when & is sufficiently small,
Cihr< f|JdEdn < Cyhe.
E

Then, since the eigenvalues of the matrix B¢ are positive and not dependent
on h, we geb

O3 hefjze

< ol < Ol

Finally, since a vertex is common to a limited number of elements, we
obtain (53).

Lemma 5. For every function ve Sy and for small h

a(v, v
o3, o

~

(57) < Ch2.

Proof. Given (32), it is true that

a(v, v) )3, 2 [v]3 0
— < O, i = O, (v—5— +1).
lie = “Polie~ % gz, ™Y
From (53), we easily see that
Iv]1e<Cil2]®,

where C, is independent of » and v = 2,2, + 2,9, -+ ... + 2,0,.
Thus, using Lemma 4, we get

[olhe _ Plia l2l®
Plie = Tel* Tolsa

< O ht,

and, as h tends to zero, the (57). » ;
Let us use x4 to denote an eigenvalue of the matrix 8—14 and z to denote
the associated eigenvector, that is

2TAz oTAZ 2z
(58) R=78 = 7z &8

Let {u;}:_, be the eigenvalues of S724 and 0 < gy <p<..<p; let {14},
be the eigenvalues of 4 and 0 < Af<Ai<..<Af; -and let {AS}'_, be the
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eigenvalues of S and 0 < 2{<1]<...<<A7. Where an eigenvalue of multiplicity
»>1 is repeated » times with a different index, then, (38) yields

H_ooono o M A
¥ ) s Uy <= .
Zs\'u’\ﬁ ‘ FERNDARE:

Thus, for the spectral condition number u,/u;, we may now say that

} 25 u,, 298
(89) WA ST

Sinee norm (2fv, »)! and norm |- |, » are equivalent, that is
? | N q Y

(60) 2B v

0.0 < (2P0, 0) <2B1[0]5 0

then, using Lemma 4, we find that A¥/2¥ = 0(1) as I tends to zero. ‘Besides,

this calculations similar to those of Lemma 3 show that the elements

@i = a(v:, v;), (4§ =1,2,...,1), of the matrix A are O(1) as % tends to zero

and in every row of 4 there is a finite number of non-zero elements indepen-

dently of %; if we now use Gerschgorin’s theorem, Al = 0(1) as h tends to zero.
The lowest eigenvalue A7 of A is given by

TAz . a(v,v) ||k, Jv ”o.
4 = min?
e T e Tolie Tel* uﬁ%o;g ﬂvnog s Tl

where v = 219, + 2,0, + ... + 2,0,.

Then, from (60) and using Lemma 4, we find that M >28,0,h%u,. Further-
more, choosing z to be the eigenvector corresponding to . we obtain
My = 2" Az[2" 8z and hence A<y, 278z/|z|2. Then equation (60) and Lemma 4
vield Af <28, Coh2y, .

We may now state

Theorem 4. Matriz S—'A has real positive eigenvalues and the spectral
condition number is given by

(61) Mfpn = Ch=2,

that s, if h is sufficiently small, the differential system (17) is stiff.
Furthermore, if o is an eigenvalue of the matrix @ = § + (dtj2)A and =
the corresponding eigenvector, then @z = oz; if we again suppose that
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V= 2% -+ 2,0, + ... + 2,7, then

_ 8z | AtzTAz (2fv,0) | At a(v, v)
: 2 Jal®

el o2 fer e

Then, using (60) and lemmas 4 and 5, and assuming that 0<e, <o, <... <0,
we find that o, <28, C:h® + 0,(dt/2), and Lemma 4 gives us o7>28, 0 h2. If
we esclude the uninteresting case Ath—2 — 0 then we may conclude by as-
serting

Theorem 5. The spectral condition number for the matriz Q is such that
(62) g1foy = O(Ath-2).

For system (18) to be solved, (62) must not be too great; in practice, its value
must be between 1 and 10.

Remark. In Caprili and Lazzeretti [4], a computer program based on
the analysis given in the previous sections has been prepared and used to
determine the temperature distribution in a cooled rotor blade.
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Sommario

8i considera il problema della conduzione di calore atiraverso wn solido con fori di
raffreddamento cilindrici. 8i descrive un metodo per la risoluzione approssimaia del pro-
blema fondato sulla decomposizione del solido in elementi quadrilateri curvi. Si trova una
stima dell’errore.
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