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Integral inequalities of Bihari type

for functions of two variables (**)

1 - Introduction

During the last few years the theory of integral inequalities of the type
of Gronwall-Bellman and Bihari marks a fast advance. The reason is that
these inequalities started to be actively used as a proof apparatus in the quali-
tative theory of differential equations, in the optimal control theory, for justi-
fication of asymptotic methods for various classes of equations and so on.

The present paper is the first to achieve a generalization of the Bihari integral
inequality for a scalar function of two arguments in the case when the integra-
tion domain is a compact which cannot possibly be represented as a Cartesian
product of intervals.

2 = Notations and definitions
Let the point (@, 3,) be arbitrary and let in the plane R? two continuous
rectifiable curves I3 and I, be given with initial point (2, 4,) and parametric
equations '
Ii: w=qu(s), y=wl(s), Iyt w=gu(s), y=1s),
where s is the natural parameter.

(*) Indirizzo: préf. Drumi Bainov, 23 Oborishte Str., 1504 Sofia, Bulgaria.
(**) Ricevuto: 10-XII-1980.
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It will be assumed that I} and I, satisfy the conditions (A) or the condi-
tions (B):

(A), For s, s s, the relation (pi(s)), ¥:(s1)) # (p(s2), Pils2)), i=1,2 is
fulfilled and I and I, have no other common point that the point (2, ¥,).

(A), The curves I and [, lie in the semiplane z > ,.

(B); For s, s, the relation (p.(s)), wi(s1)) # (@i(s2), wilse)), ¢ =1,2,
holds and I3 and I, have no other common point that the point (@, ).

(B), The curves I3 and [, lie in the semiplane o < @, :

Let I, and I satisfy the conditions (A). By I'7(I)) denote the set of these
points in the semiplane # > x,, which remain in the left under the motion
along the curve I([3) in the direction of increase of the natural parameter s.
The component of the set I Urhyr,) to the semiplane z > o, will be
denoted by I'T(I).

Analogously, if the curves [ and [, satisfy the condition (B), denote
by ]’1@ (I'2) the set of these points in the semiplane « < @, which remain in the
left under the motion along the curve [3(/%) in the direction of increase of the
natural parameter s. The component of the set I'° JI(I2 UI,) to the
semiplane @ < z, will be denoted by I'2(I'9).

Let (,, 9,) be an arbitrary point which is an initial point for the curves I
and I, and let the curves I3 and I3, satisfy the conditions (A).

Def. 1. A right emission zone of a point (@, ¥) € R? will be
called the set S+(zo, 4o) = LT N I) UIT N TY). The curves I and I, will
be called boundary lines of the right emission zone S*(a, 9,).

It is easily seen that if I, c I'], then S*(, y,) = Iy NI} and if I c I,
then S*(xy, y) = Iy N T

Let (w,, ¥,) be an arbitrary point which is an initial point for the curves I}
and %, and let the curves [y and [, satisfy the conditions (B).

Def. 2. A left emission zone of the point (x,, y,) will be called
the set S~(%p, 40) = TN I UTPNIP). The curves Iy and I, will be
called boundary lines of the left emission zone S—(w,, %,)-

For any point (x,¥y) € S*(w,,y,) we will consider the corresponding left
emission zone S—(z, y) with boundary lines

Iy w=qa(s), ¥ =1wls), Iy:w=qus), y=yls),

satisfying the conditions (B).
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Without loss of generality we shall consider that
Sta,y)=ITNIT and S-(w,y)=ISNTY.

Let g, and g, be two curves given by parametric equations by means of
their natural parameter.

Def. 3. Minimal common point of the curves ¢, and g, will be
called that common point (if such exists) which is obtained from the equations
of the curve g, for the smallest value of the parameter.

It will be assumed that for any point (w, y) € St(x,, 9,) there exists a left
emission zone S8—(wx, y) with boundary lines I'; and I', which satisfy the following
conditions (C):

(C), The curve [,(I) has at least one common point with I(1}).

(C); The inequality s, << s, is fulfilled, where s; and s, are the values
of the parameter s for which in the equations of I the minimal common point
of Iy with the lines I} and I, is obtained. (If I and I, have no common point
we set §, = + o0).

(C); The inequality s'<<s” is fulfilled, where s’ and s” are the values
of the parameter s for which in the equations of I, the minimal eommon point
of I'y with the lines I, and I is obtained. (If I, and I have no common point
we set s"= -+ oo).

Denote the minimal common point of I and I5 by (2, 9'), while the minimal
common point of I3 and Iy will be denoted by (2, 9").

Consider the closed set 2wy bounded by the ares from the curves Iy, 1%, [}
and I, lying between the points (@, ¥,), (@', ¥'), (@, y) and (=", y").

Def. 4. The compact set A wy will be called zone of the point
(@, y) € 8F(@y, o). .
(C)y For any point (&, ) e Awy the inclusion H#'ényc Awy is fulfilled,
where &y is the zone of the point (&, %) and (x, ¥) € Sz, ).

For an aibitrary point (», ) € B* denote:by Bzy the closed rectangle with
vertices (o, %), (@, Y), (%, %), (%, Yo)-

For any point (&, 7)€ Bay by Bfy denote the rectangle with vertices
(@05 Yo)y (o, ), (&, 4}, (&, 9,). Note that in order to define the rectangle By
only the first coordinate & is essential since for the points (&, 7:) and (&, #,),
where 7, # 7., the respective rectangles Bfy and Bé&y coincide.



350 D. D. BAINOV and 5. G. HRISTOVA [4]

3 ~« Basic result

Theorem 1. Let the following conditions hold.

1 — The functions f(z, y) and w(z, y): B* — R* are non-negative and locally
iniegrable for o> x,, y > v,.

2 — The function w(t): R* — R is non-decreasing, positive and locally
integrable for ¢ = 0.

3 — Ilor any point (&, ) eBacy/{w = wo} the inequality

(1) w(é,n) < ¢+ [f(s, T)w(u(s, 7)) dsde

BSy

holds, where ¢> 0 is a constant and the point (x,y) €R%, > Ly, Yy > 1, s
arbytrary.
Then for the point (z,y) € Q2 the inequality

() w(@, y) < G2 [6(6) + Ji(s, 7) ds dr]

Bxy
18 fulfilled, where
iod

(3) GO)=] o5, 126>0,

the function G-! is reciprocal to G and

Q= {(,y): ®> @y, y> 4o, G¢) + [f(s, T) dsdr e Dom G~} .

Bxy

Proof. Tor the proof of Theorem 1 we will apply the method proposed
in [1].
Let (,y) € 2 be an arbitrary point. Define in the domain (£, 7)€ Bxy
the function -
(&, n) = ¢+ Jf(s, T)w(u(s, 7)) dsdr .
By

The inequality (1) can be written in the form

(4) wé,n)=v(&,n) .

Differentiate the function (£, #) with respect to & and apply the in-
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equality (4)

av(géy) = [ (&, 7) wlatg, 7)) dz

< w(o(, 9)) [ (&, 7 dr.

The inequality (5) and the definition (3) of the function G imply that

Integrate the above inequality from x, to # and we get

G(v(@, 9)) — G(v(z0, ) < [ f(s, 7) dsdv
or

(6) v(@, y) < G1[G(e) + [f(s, 7)dsdr].

Bxy
The inequalities (4) and (6) imply the validity of the inequality (2) for the

point (z, y) € Q.
Thus, Theorem 1 is proved.

Theorem 2. ZLet the following conditions hold.

1 — The functions f(x,y) and u(x, y): B2— R are continuous and non-
negative in the domain S+(zq, y,) with boundary lines Iy and I, satisfying the
conditions (A).

2 ~ The function w(t): Ri~> R is continuous, positive and non-decredsing

for t=0.

3 — For any point (z,y) € S*+{(w,, y,) there exisis at least one left emission
zone S~(z,y) with boundary lines I'y and I'y which satisfy the conditions (B)
and (C) and the inequality

(1) u(z, ) < ¢ + [f(s, T)w(uls, 7)) ds dr ,
Hzy

where A'xy is the zone of the point (z,y).
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Then for any point (z,y) €D the inequality

(8) (@, y) < G [G(o) + [ f(s, ) dsdr]

A zy
is fulfilled, where the function G(t) is defined by the equality (3), G- is a function
reciprocal to G and

D = {(z, y) € 8+(@y, 9o): G(e) + [f(s, 7) dsdr € Dom G-} .
Ay

Proof. Let (z,y)eDc 8w, y,). Since the zone Hwy is a compact
set, then there exists a rectangle Bwxr with sides parallel to the coordinate
axes, for which the inclusion #wy c Brr holds. The conditions (A) and (B)
imply that the rectangle with vertices (,, 7,), (%, 7), (%, T), (%, T,) (Where
the points 7, and 7 are chosen so that the inclusion 'zy c Bxr should hold)
might be chosen so that two of its opposite sides should pass through the points
(@, ¥y) and (x, y), respectively.

Let (&, 1) € #xy be an arbitrary point. The conditions (B) and (C) imply
that the inclusion 26y c Bér is fulfilled, where &y is the zone of the point
(£,7), while Bt is a rectangle with vertices (w,, 7o), (@, T), (& ), (&, T0).

Define the functions

f(&,m)  for (&) elwy
#em =<
\0 for (&, %) e Bor\Awy,

/u(E, 1) for (&,n) et xy
uE, ) = \o for (£, 7) € Bet\{#wy U {z, 7} U {& = x,}}
u{w, yp  for (&) = (z, 7).

The inequality

(7) and the definitions of the functions #(&, n) and f(&, 7)
imply that for (&, )

eXwy U {», 7} the inequality

(9) (&, n) < e +[f(s, T)w(@(s, 7)) dsde

Bt

is fulfilled.

Since (&, 7) =0 and (&, 7) =0 for (£, 7) € Bar\{#wy U{(, 1)} U{(z=2,)}},
then the inequality (9) holds for any point {(&, 5)} € Brr\{o=y,}. By virtue
of Theorem 1, for (z,7)e D the following inequality will hold

(10) w(w, 7) < G1{G(c) + [f(s, ) ds dz},

Bzt
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where

D = {(#,7): > w5, 7> 7y, Gle) + [ f(s, T) ds dv € Dom G-} .

Bxy

But the definition of the funection f(£, 77) implies that

[Hs,t)ydsdr = f(s, 7)dsdx =f f(s, v)dsdr .
Bzt Hay U {7} Hwy

Therefore, if the point (z,y) e D then the point (2, v) e D and vice versa.

In view of the inequality (10) and the definition of the fanetions % and f
we get that for (x, y)eD the inequality (8) holds.

Thus, Theorem 2 is proved.

Theorem 3. Let the following conditions hold.

1 — The functions u(w, y), f(x,y): R*—>R are continuous and non-negative
tn the domain S+(w,, y,) with boundary Vines I', and I which saiisfy the con-
ditions (A).

2 — The function g(x,y): R*—R' is continuous and gle,yy =1 for
(z, y) € 8F(@, Yo) -

3 — The function ofo(t): R*—~R* is continuous, positive and non-decreasing
for t = 0, while for t =0 and r >0 the inequality (1 /1) ofo(t) < w(tfr) is fulfilled,
where the function w(t): R* — R is continuous, positive and non-decreasing
for t=0.

4 — The function q(», y): R*—>R* is continuous, positive and non-decreasing
for (@, y) € 8@, o).

5 — For any point (x,y) € S*(xy, y,) there ewists al least one left emission
zone 8~(2y, yo) with boundary lines I'y and I'y which satisfy the conditions (B)
and (C) and such that

(11) (@, y) < q(@, y) + g2, ) [f(s, v) Duls, 7)) ds dr
Hzy

where A'xy is the zone of the point (x,y).
Then for (x,y) € D, the inequality

(12) u(@, y) = q@, y) glo, y) GH[GA) + [ (3, 7)g(s, T)ds dr] ,

A zy

holds, where the function G is defined by the equality (3), G- is the reciprocal
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function of G and

Dy = {(@, y) € 8+(@o, Yo): G(1) + [ f(s, 7)g(s, T) ds A7 € Dom G} .
Hzy

Proof. From the conditions of Theorem 3 it follows that

u{x, y) <1+ gz, y) f f('g,f)olo(u(syr)) dsdr.

qz, y) = TP LG )
Therefore,
wo,y) 1 f(s,7) ofo(u(s,7))
(e, y) g, y) ~ gz, ) xj 9z, y) dsde
(13)

u(s, T)

= L6 D D G 6,

ydsdz .

We apply Theorem 2 for the function u(z, y)/q(z, ¥)g(z, v) and we obtain
the inequality (12).
Thus, Theorem 3 is proved.
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Summary

The paper considers two nonlinear generalizations of integral inequalities of Gronwall-
Bellman type for scalar functions of two arguments. ‘
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