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CARLO SEMPI (¥)

On the space of distribution functions (**)

1 - Introduction

The aim of this note is to study a few properties of the set of distribution
functions. To this end a definition of distribution function is adopted which,

while not new (see [10] and [12]) is not common in the literature on pro-
bability.

Definition 1. A function F: R* —[0,1] is said to be a distribution
function (d.f.) if it fulfils the following conditions:

( F is non-decreasing, i.e. &' < 2" implies F(z') <H(2");

(ii) F is continuous on the right on R: F(x +0) = F(z);
(lii)  F(—o0) =0V (F):=lim P (x);
(iv)

F(+ 00) = 1> 1"(F): = lim F(x).

z~>+-

The set of d.f’s will be denoted by #. Here R*= R U {— oo, }oo}.

The notation :== is used to define the Lh.s. by means of the ».h.s.

It should be noted that a function that is constant on the reals, i.e.
F(x) = ¢ (we R) is a d.f. provided ¢ [0, 1], F(— oo) = 0 and F(+ co) = 1.
If ¥ is the d.f. of a random variable X then P[X = — co] = I'(F) and
PlX = 4 oo] =1 —1"(¥), whilst F(z) = P[X<a] if € R. The definition
of d.f. just given allows to consider random variables that take the values
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— co andjor 4 co with non-zero probability; these latter random variables
are excluded by the usual definition that stipulates

(v) lim ) =0 and lim P(x)=1

z—> -~ z—>- 0

instead of (iii) and (iv) respectively. We shall denote by #, the subset of %
composed by the d.f.’s that satisfy (v).

There are situations in which P[|X|= -+ oco] > 0, viz. the probability of
a random variable taking an infinite value is not zero. Such examples are
encountered in renewal theory, in a theory of physical measurement ([12])
or in the theory of probabilistic metric spaces ([11]). Moreover d.f’s that
agree with Definition 1, except possibly for (ii}, occur in the theory of finitely
additive probabilities.

One is confronted with a variety of different ways of defining weak con-
vergence for d.f.’s. With the usual definition of d.f. those definitions turn
out to be equivalent (see, e.g., [4], § 9). That need not continue to be so, as
will shortly be seen, if Definition 1 is adepted. One will therefore have to
choose among the several possible definitions of weak convergence. We shall
adopt the following

Definition 2. A sequence {F,},.xC.Z will be said to converge weakly
to the df. F,e & if

1) lim 7, (2) = F(») Yo e O(I)

where C(F) c R* is the set of continuity points of F'; viz. # € R belongs to C(F)

iff Fl#—0)=F@@+0); —oocCF) iff V'(F)=0; and -+ coe C(F) iff
U(F}y =1. The weak convergence of I, to F will be denoted by F,—F.

2 - Properties of weak convergence

Helly’s sccond theorem still holds, with the same proof, e.g., as in[5]
(pp. 282-283).

Theorem 1. If F, =~ F{F,,FeF), if a,bes CF)NR and if ¢:
[a, 8] — R is continuous, then

lim | @dF,= fpdF.

n—>o [g,b] [a,b]
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Theorem 1 admitted of an extension and a converse (see[5], p. 283;
[4], p. 33) as follows: T, — F(F,, Fe F,) if, and only if, for every bounded
continuous function g: R — R one has

(2) Iim [q¢dF,= [@dF.
R

n—>w R

This result ceases to be valid as is shown by the following

Example i. Let {a,; and {b,} be two convergent sequences of reals
such that

i) O<a,<b, <1 (neN); (i) lime,=a<<b=Ilimbd,.

n—rxo n—rw

Let ¥, e & (neN) be defined for e R by

a, r<l—n
(3) P (z) = £ a, + (by— a,)(@ + n)/2n z € [—n, n)
N b, e>n.
Then if
4) Pl@)=(a+b)/2 (@eR)

one has F, — F. However for ¢(1) =1 (z e R) one has
[ pdP, ={b,—a,)2n} [dv=0,—a, >b—a>0,
R -n

whilst f@dF = 0. This shows that F, — F dees not imply (2). Conversely,
B

that (2) does not imply F, — F can be immediately seen by taking, e.g.,
Fox)=a, (neN), Flz)=1>b (z e R).

Theorem 2. If F, — F(F,, FecF), then

(5) Hmsupl'(#,) <V (F)
n-—r N

and

(6) liminf1"(F,) > 1"(F) .

> 0
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Proof. One need only prove (5) since the proof of (6) is analogous. By
definition, for arbitrary &> 0, there exist ,e O(F) and n, e IN such that
V(F) > F(w,) —e/2 and | F,(w,) — F(2,) | < &/2 whenever n> 1. Thus, for n>n,
and for every x <, one has I'(F)> F(x,) — &/2 > F,(w,) — & > Fo(@) — ¢,
whence I'(F,) < lI'(F) + ¢; now (5) follows on account of the arbitrariness of .

Corollary 1. Under the assumption of Theorem 2 if U(F) =0, then
Hm V' (F,)=0, while if I"(F)= 1, then liml"(F,)=1.

Example 2. Let F, and ¥ be defined by (3) and (4) respectively. Then
V) = @ny V(F,)=0b,, V(F)=1(F)= (a +b)/2 and therefore lim I'(F,)

n-> o
= a <UV(F) and lim I"(F',) = b > I"(F), which shows that the inequalities in (5)
n—>&®
and in (6) can be strict.

Helly’s first theorem holds with the usual proof (see, e.g. [1] or [7]); it
can be stated in the form

Theorem 3. Any sequence of d. f’s {F.},.xCTF contains (at least) one
subsequence {F,u} .y that converges weakly to a FeF.

3 - I’ as a metric space

It will be shown presently that a metric can be introduced in F. To this
end, let a,be@ (viz. a and b are rationals) with @ < b; then define
Pw: B* —[0,1] by

Y 1 &< a
Pa(®): =—\—(b—a)—1 (b —ux) e [a, b)
0 ¢>b,
1f meR, (pab('_ OO) = 1, (])ab(-*— OO) = 0‘-
The set of functions {pe: a,be@, a <b} is countable and can be enu-

merated as {0,,0,,...}. It is now easy to prove

Theorem 4. The function dp: P XF — R defined by
M dx(F, G): = Y 27| [0,dF — [0,4G | (F,Ge F)
=1 R¥ R

28 a metric on F.
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The distance (7) is a slight alteration of that used in [6].
Theorem 5. Comvergence in the distance (7) is equivalent to weak con-

vergence, that is I,— F if and only if dn(F,, F) 0.

Proof. For every Ge & one has

(8) R:[q)ab 46 =1'(a) 'f;{f(pandG =U(6) + {— [Gdgu + [G@)pa ()72}
=1(G) + (b— a)‘lj& de—1{@) = (b— a.)—lbe da

where use has been made of the formula of integration by parts for Stieltjes
integrals ([9] p. 118).
Now let F,, Fe # (neN) and set

(9) o(ryn): = |[0,dF,—f0,dF| (r,neN).
R* R#*

Assume dp(F,, F) —0. It follows from (7) that 0<d(r, n)<27dx(F,, F)
(ry m € N), so that lim §(r, n) = 0 for every r e N. Because of (9) and (8) this
means e

b b
lim [F.de=[Fd=

n>®  a

and therefore F,— F as in [6] (p. 317).
Conversely if F,— F then lim é(r, n) = 0 for every re NN, in view of (8).

Since 6(r,n)<2 (r, ne N) one has lm du(F,, F)=lim Z 2-76(r, n) = 0 by
N3 05 n—r p==1

the dominated convergence theorem applied to the counting measure on

{1,2,..}.

The proof of Theorem 5 is 2 modified version of that of theorem 12.2 in [6].
Convergence in the Lévy distance (see [4] or [8])

AP, @): =inf{h>0: Fle—h)—h < G@) < F(x -+ %) +h Vo e R}

is not equivalent to weak convergence in %, although it can proved, in the
usual way, that d.(F,, I) >0 implies F,— F. In the following two examples
sequences in J are given that converge weakly but which do not converge in
the Lévy distance.
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Example 3. If F, is defined as in (3) with a, =0 and b, =1 (ne NN)
and consequently F(x)=1% (z € R), then a simple calculation yields d (F,, F)=1}
so that d,(F,, ') does not tend to zero as n goes to infinity although F,— F.

Example 4. If H, is the right-continuouns Heaviside function with
jump at &=, i.e. if

0 xz<n
" /

n(@) = TNl z>a

then H, — N, where N € # is identically zero on R. Now d, (H,, N) =1,
so that {H,} does not converge to N in the Lévy metric. However since
fpwdH, = @,(r) one has, explicitly for (7)

n*

dp(H,, N)= 29"’”0 dHd, }—-Z‘)“'O (m) .

r=1 r=1

Thus given ¢ > 0, let k be the smallest natural such that 2-* < ¢; one can then
choose n large enough, say m>v, to have 6,(n) =0 for r =1, 2, ..., k and,
as a consequence

ae(to, N) = 3, 2 < 3 2r=9-i<e.
Pk

r=k+1

Theorem 6. The melric space (F, dp) is complete.

Proof. This theorem is a consequence of Theorem 7 below, but it can
be proved independently as follows. Let {I,} .yC & be a Cauchy sequence,
i.e. for every ¢ > 0 there exists n(¢) € N such that de(#,, F,) < e whenever
n, m>n(e). By Theorem 3, {#,} has a subsequence {F,.u} that converges
weakly to e #. It follows from the previous theorem that lim dp(F,qy, F)=0.

J—>»

The triangle inequality can now be used to show that limdx(F,, I') = 0.

n—rw

Contrary to what happens with the usual definition of d.f. (see, e.g., [1]
p. 329, [6] p. 319, [2] p. 160) the space (F, dy) is compact. (F, is complete
but not compact; see [8]).

Theorem 7. The metric space (F, dy) is compact.

Proof. The space (&, dy) is sequentially compact; but a metrie space
is sequentially compact if and only if it is compact (see, e.g., [3] (3.16.1)).
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The metric (7) is different although equivalent to that proposed by
Sibley ([13]) and medified by Schweizer ([10]). It is, however, worth noticing
that the metric proposed here renders evident an important property of weak
convergence, namely that it is compatible with the existence of a norm. To
be sure, it would not be proper to speak of a norm on & since this space is not
linear. But it is easy to regard & as a subset of the linear space BV (R*) of the
functions of bounded variation on R*. Tt is a simple task now to verify that
the map | |: BV(R*) — R* defined by

|7 =X 2| f6.aF] FeBV(RY
r=1 R*
is a norm on BV (R*) if the functions of BV (R*) are supposed to be continuous
on the right.
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Riassunto

Si studiano le proprieta della convergenza debole per le funziond di ripartizione usando
wna definizione che, pur discostandosi da quella usuale, presenta il vaniaggio di includere
anche variabili aleatorie che assumono i valori — oo efo -+ oo con probabilite non nulla;
essa risponde inoltre alle proprieta richieste alle funzioni di ripartizione nella teoria delle
probabilile finitamente additive. La convergenca debole equivale alla convergenza in wn’op-
portuna metrica e si mostra che, dolato di tale metrica, lo spazio delle funziont di riparii-
zione risulla essere compatto e completo. St pud inolire far discendere la metrica introdotta
da uwna norma.
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