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MAZEN SHAHIN (%)

A nonlinear boundary problem on infinite interval

with countable set of interface conditions (**)

1 - Introduction

‘We are interested here in proving the existence of solutions to the boundary
value problem with interface conditions

(A) t— Az = F(t, ),
(B) T (@) = a(t!) — Boa(t]) = C, (r=1,2,..,
(T) To=Her,

where 4 is a continuous n X% matrix valued function of ¢ on the non com-
pact interval [a, b[, — co << a << b< oo, I is a continuous n vector valued func-
tion of (¢, ) on [a, b] x B*, B, are real n xn non singular matrices, 0, € R,
for r =1, 2, ..., the internal interface points ¢, form an infinite point set of
first species G, T is a continuous linear operator defined on a subspace of
C[[a, b[, R*], the locally convex space of all continuous R*-valued functions
on [a, b[, and H is a continuous operator defined on subspace of C[[a, b[, RB*].
Further

2(t}F) = lim a(¢) , 2(t;) = lim a(?) .

t-—>l+

r Lasars
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We apply the equivalence theorem for the nonlinear operator equation
due 10 Zezza [8] in order to ensure the existence of solutions of the problem
(A), (B), (T). Applications of the above theorem to system (A), (T) were
given in [2]; ,.

The present results extend to infinite intervals with a countable set of
interface points Gonnelli’s result [4], who considered the same problem on a
finite interval with a finite number of interface points. For related discussion
on interface problems, the reader is referred to Conti [3] and references cited
therein.

2 = Preliminaries

Let @={t,,7r=1,2,..} be a countable subset of [a, b[,— oo < a < b< oc.
such that

(2.1) A<t <l < <yl <D

so that [a, b)[\G = 0 consist of the countable collection of intervals [a, ?,[, ...
ey [try tegal,y oo In what follows, 4 = [a, b[. By (, we denote the Banach
space of all bounded = e C[4, R*] with the norm

|]c, = sup [a(t)]

where |-} denotes the norm in R~

We denote by CG = CG[J, R»] the space of all continuous R*valued func-
tions for every t e d, such that 2(ff), 2(f]) exist and are finite. By C,G we de-
note the space of all bounded » e CG. C,G is a Banach space under the norm

(2.2) lell, = sigdp ()] .

Now let (.G (or C,) denote the space of all functions = e 0,& (or 0,) such
that lim »(f) exists and is finite. Then C,@ (or () is a closed subspace of C,G

>

(or Cy).
Let X(¢) be the fundamental matrix of solutions of the homogeneous system

(A.0) T— Az =0,

(B.0) w(th)— Ba(t) =0,
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i.e., let
(2.3) X)) =UMAW) = UQ) T () B, UR) ... U™(t) B, U(hy)

on the interval 1t;, ?,.,[, where U(?) is the fundamental solution of (A.0).
The solution ¥ (¢) of the nonhomogeneous system (Q), (B),

Q) &— A(t)e = Q1)
on It., i, is represented by [7]

(24)  T(t) = X(t) X~'(a) Y(a) + X(2) z Xt O X (1) X (0)Q(x) de .

a

We assume that the following hypotheses hold:

(i) A(t) is an nxn real matrix function defined and continuous on /
and such that [|X(f)|<p (a non-negative constant).

{(ii) The operator T: dom 7 = C,G — R™ (m<mn), will be assumed to
be continuous and linear such that T'(D) = R», where D is the space of all
solutions of (A.0), (B.0).

) (iii) H (u)‘is a continuous (not necessarily linear) operator H: C,G — R™
such that '

2.8) 1 Hul <hyju] + by, | he, ha€R .

If we define the linear operator L: dom L= C, N C'[[a, b[, R"]
NdomZ,Ndom 7T, L:domL—>COxRxR, a-(— AT (2),T2),
and the continuous operator N: dom Nc C,G — OCXR*XR», = — (F(t,x()),
c,, Hw), then the problem (A), (B), (T) may be written as

2.6) Lo = Nu.
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The equation (2.6) is equivalent to [8]
(2.7) o=Mar=Pr} K,Nv,zvedom M ={we (,G: NeeIm L} = N-(Im L),

where P is a projector operator: C,& —Ker L, Kp = [Lfdom L N Im (I — P)].
The following theorem will be cruecial.

Theorem A (Zezza [8]). Let Q be an open region containing 0 € X, real
Banach space. Let Qc dom M and

Lz ANz A0, 1], z€2Q.
Then the operator M has at least one fized point in Q.
We construct the operators P and K, in a similar manner as in [2],.
Let ¢y, ..., @ be a basis of Ker L and ¢y, ..., @1, @ry1, ooy @ & basis of D,

p;€ 0,G, i=1,..,n The operator P: C,G — Ker L. may be defined by
P = P,0P;, where

P: (G —>D, Py = X(@t)XYa)y(a) ,
n 4 E
P,: D—~>KerlL, Py y(t) = > hipi— > Jigp; leR.
=1 i=1

Then from the definition of P since X (1) = U(t)A(t) we have

Proposition 2.1. The operator P is a topological projector and for
fixed (Q(t), C,, x) € Im L there exists only one solution ze dom L of the system

— A1) 2(8) = Q1) , #(t7) — B,2(7) = C,, Te=y 7 ERm™

such that Pz ==
From (2.4) and Proposition 2.1 it is easy to see that

#(t) = KEpNf(t) = X(O)J T[4 — TX(- }_‘X t+)0~—TR( H]

i=

X() S Xt Ot R(t, ),

i=1
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R(t, ) = [ X(8) X-(x) P, f(z)) dv,

J: Lim— Rn, (Y15 005 V) =0y o0y 0y iy ooy B)

,8}:-{-5 =¥Yi; (J = 1’ 2, ceey m) and To = (T(pn_m+17 veey T(pn).

3 - Main results

In addition to the assumptions (i), (ii), (iii) we also assume that the fol-
lowing ones are satisfied

(iv) Fe C[dxR" R*] and such that |X-)F(, v)|<p) |u] + ¢@),

b b
where p, g€ C[4, B.] and W=[p(t)dt < oo, V =[q(t) dt < oo.

(v) “i X-1t¥) 0] < K (positive constant).

=1

(vi) Qld T3 (hs + o T||W) exp [oW] < 1.

Theorem 3.1. Let the assumptions (i), (i), (iii), (iv), (v) and (vi) be sat-
isfied. Then there exists at least one solution to the problem (A), (B), (T) in C,GQ.

Proof. Let {d} (s=1,2, ..., a<<d;<d,,) be a sequence of points such
that limd, = b= 4 oo, d;5%t; (5,1 =1,2,...). Let 4, = [a,d], d, be the

§=+ ©

interval A, without the interface points included within A,, and let the sub-
norm of O[4,, B*], CG[J,, R] be |-|, and |-], respectively. Assume that
fe CG[d,, B*] and consider the funetion

. f(?) ted,,
(3.1) foy = <
fa)  telds, .

Then the set of all such funetions f is a Banach space &, with norm

(3.2) Ifla, = 171, = sup |1(0)] -

€8,

15
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Now consider the operator M,: @, — @, with M sf = &, where
(3.3) z(t) = Mf @)= Pf )(1) —LKPNf

Let

(3.4)  #) = (KN = XOITTHf - TX() S X O TR, )]

=1

LX) I IO ARG ted,.

=1

Let {7}, f be in @,, lim |fu— g, = lim |fu— f|,, = 0. Then for Z,= K,Nf.,

n—r n—>c

%= K,N} it follows from (3.4), (i), (iii), (iv) and Lebesgue’s theorem that

(3.5) |Za—Z] 2, = sup [2a(t) —2(®)] — 0,

since P and M, are continuous.
Now let 0 be a bounded set of &, with bound px. The uniform boundedness
of the functions Z = K,Nf, fe0 follows from

(36)  [Zlo, = Il <ol T [hape -+ bt [ TIeK + | T|(We + V)]
+ oK + o(Wp+ 7).

Consequently, since P is a linear operator with a finite dimensional range,
M,(0) is uniformly bounded. Moreover the sequence {K,Nf(f)}, which is de-
fined as

(I NT)(t) = (KpN1)(E) teft, tual,

(Ip NT)(t) = (NN, (K, Nf) (o) = (K, N0
is equicontinuous on every [f,, t...]1c d,. In fact for ¢',¢" €[t,, t,,;] we have

) —2() |2, <B|X() — X ()] + K[| X(¢)— X (2]
+ [ X() — X (Wa + V) + o(u T2 &t + [a(0) 1),

whore f = (T + kot oK || + ol TI(Wu + 7).
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Since P is a linear operator, and applying the criteria for compaectness
in C,6, analogous to Ascoli’s theorem [7], it follows that M.0 is equiconti-
nuous. Consequently M, is completely continuous in Z,.

In order to apply the fixed point Theorem A, it is enough to prove that
Zo5t AKpNZy, Z,€00, A€10,1[. If there exists 2€00: Z = AK,N% then for
A €10, 1] we have

le® <e|TT | [nlZ] @, + he -+ | T K + | Lo(WZ|a, + 7)]
Fo(E+T)+o ftp(r) J2(7)[| d= for every ted .
Applying Gronwall’s inequality we obtain

l=(2)

<[l T [{]Z]g, + ka4 [T oK + | T)o(W[Z]g, + V)i +o(E+V)] exp [0TV].

Thus
1Z]g, = | A, NZ]q,

< |K, Nz],, = | K, N

o= 2l <[1— ol JTT (R 0| )W) exp [oW]]

LelITT 1 (he 4 | THoX + | T)0V) 4 (K + V)] exp [oW] .

Consequently, according to Theorem A, there exists ab least one solution
=M% in 9,.

Then there exists a sequence {x,} (s = 1, 2, ...) of solutions of (A), (B), (T)
such that Z,€ 2,. Now it is not difficult to see that ([51, p- 1027), for fixed
¢> 0 and y(t) = Ma(?),

lim [, (8) —y(2) ]| = 0 tefa, c],

where @, is a subsequence of {z,({)} and converges uniformly to #(f) on every
finite interval of A. Since ¢ is arbitrary, y(t) = My(t), t € 4 which completes
the proof of the theorem.

In the result which follows we extend Theorem 3.1 to the ecase in which
T and H are defined on 0;@. Let us now suppose that the following assump-
tions are satisfied.



220 M. SHAHIN [8]

(ii)’ 7': ¢, — Rmis a continuous and linear operator such that I'(D) = R™,
(iiil) H: 0,G —Rm: |Hul,<hi|lul, + k.

(vil) lim X (1) = v, exists and is finite.

>

(viii) 3 X-4(t}) O, converges and |> X () 0| < K, (positive constant).

=1 i=1

Theorem 3.2. Asswme that the hypotheses (1), (i), (il), (iv), (v), (vi),
(vii) and (viii) hold. Then the problem (A), (B), (T) admils at least one solu-
tion in C,G.

Proof. Consider the operator M: C,G — C,G with (Mf)(t) == (Pf)(t)
+ (EpN1)(@).

Tt is known that a set I'c C, is relatively compact if and only if it is uni-
formly bounded, equicontinuous, and uniformly convergent in the following
sense: for every &> 0 there exists &(e) > 0 such that

[ im f(t) —f(&)]| < e for every 1>d(e), fel

(cfr. Avramescu [1]).
Let @ be a bounded set of ¢;G with bound u. M@ is uniformly bounded
and equicontinuous. We have

i (22, 57)(0)— (K NP0

< X [T [Hf — TX(-) 3 X5 C— TR(-, ]|

i=1

£ lim X)) S Xt 6— X(0) 3 X1t ¢
t—=>b 1 =1

§==

+1 lim R(t, f) — R, il
<[y —XOI TR ES] 4 [ TeX + [T]e(Wu + V)]

+ [y — X [!ZX“W?) O + el EX“(t?) Cil +llw— X[ (Wu+V)

b

+ o(u [ p(r) az + fq(r) dz)

t

< Ipi— XOIIIT (VS + | Z]eE -+ [ Z]e(Wa -+ V) + Fat (Wa + 70}

+olZ X204 + olu [ p(x) dv + a(x) dr) .
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It follows that given e> 0 there exists l(e) >0 such that | lim (K,Nf)(t)

t—rh
— (Kp N/))|| < & for every &> f,(¢) and every fe @. Consequently {K,Nf}
is a uniformly convergent family. Then {M7} is velatively compact in ¢, G 1.
The rest of the proof follows as in Theorem 3.1.

Remark. We remark that the extension to an infinite interval with
countable set of interface points, of the interface problems considered in [6]
and [7] are special cases of Theorem 3.1. In this case m — n, P=0 and
equation (2.7) yields
@ = Ky No = X(O)(TX())[Ho— TX(-) > X-t}) Ci— TR(-, )]

=1
+ X(t) > X1(]) 0, - R, @) .

==l
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