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JEAN MARIE M OR VAN (%)

Cylindricity (**)

Introduction

In this work, we generalize the usunal notion of «eylinder » in Euclidean
space. Roughly speaking, we call a strongly cylindrical submanifold, a sub-
manifold of a Riemannian manifold, such that the second foundamental form
is cylindrical in one normal direction, (in sense of B. Y. Chen [3]), null in the
others, and such that we can define a « Frenet frame », using the derivations
of the eylindrical direction.

In the first paragraph, we study the Gauss-Codazzi and the Codazzi-Ricei
equations of a cylinder. In the second paragraph, we study the strongly
eylindrical :submanifolds in space forms. In the third paragraph, we study
the strongly cylindrical submanifolds in Kaehler manifolds. In the fourth
paragraph, we use this notion of cylindricity to study immersions which
are products of immersions, in the case where the first principal normal space
has dimension 2. ‘

We shall use the following notations. Let i: M» — J**» be an isometric
immersion of a n-dimensional manifold M» in a # 4 p dimensional manifold
M+, We denote by TM» and TH[»» the tangent space of M= and Hwte,
V and V denote the Levi-Civita connections on M» and J»+», T+-M» denotes
the normal bundle, and V+ the Riemannian connection induced by V on 7+M".
o THM*xTM» - T+M is the second foundamental form defined by V,¥

(*) Indirizzo: Faculté des Sciences d’Avignon, Dept., de Math., 33 Ruc Louis
Pasteur, 84000 Avignon, I'rance. '
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= VY 4+ o(X, ¥), VX, Ye TM*; R and B are the curvature tensors of Mn»
and M. We have the following equations (Gauss-Codazzi-Ricei)

<E(X7 YWz, W)= CB(X, X)Z, W) + (o(X, W), o(¥Y, Z2))— {o(¥, W), o(X, Z)>,
(B(X, X), Z,& = ((Vxo)(Y, Z)— (Vo) X, 2), £,

VX, Y, 2, We TM», Vee T4M»,
where V is defined by

(Vxo)Y, Z) = Vig(Y, Z)~ o(Vx Y, Z)— o(¥, V2 Z) .

If M+ is a Kaehler manifold, we denote by J the complex structure.
Tt is well known that

X, V> =X, d7> VX, Perilrr, ViJ¥7=JV:T VX, Terilm».

Following [2], [6], we give the following definitions.

If, at every point me M», JT, M»= T, M~ M* is called a holomorphic
submanifold.

If at every point me M», JT, Mrc T M=, M» is called a totally real sub-
manifold.

If at every point me M», JT+ M»c T,, M, M* is called an antiholomorphic
submanifold.

If there exists a differentiable distribution 2: m > 2,,c T,, M satisfying
the following conditions: (x) J2 = 2 at every point, (8) JZ*c T+M" at every
point, then M» is called a C.R. submanifold.

We shall now define the notion of principal normal spaces, introduced in
(8], [4];2, and eaternal curvatures [4];2-

Def. 1. Let me M. Let E, be the subspace of T:M defined by
E, = [Imgl, (i.e. the subspace spanned by Im ¢). E, is called the first prin-
cipal normal space.

By induction, we define the i-th principal normal space B, in the following
way. If dim F,_, is constant on a neighborhood of m, then B, = [Eim], where
E, ={neT:MB3XeT, M, IcB,, such that 1 = prg,,.(VEE),} .

i<i

Remarks. (B), = {0} = (#,,). = {0}. By construction, the sum of

these spaces is direct.

Def. 2. Let meM. If By, B , .., I, are defined, we call
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J-th external cwrvature (j =1, ...,4) at me M, or j-th-Frenet curvature at m,
the scalars (k;)U defined by

m

j=1: (75&,1))111 = Sup |o(X, V)|,
I, FeEr ™
lixll=rli=2

j>2: by induction, we define first the applications

(7‘;;')m: (Ej-—-l)m e R+ b 77 = Sup “p7'(@E,).L V}?]H y
<y

Xerm®

[{xll=1
then (B) e = Sup ki(n)u -
NE(Esey)m
=1

1 - A definition of a strongly cylindrical submanifold

Def. 1. Let M" a n-dimensional submanifold of the FEuclidean
space Ertr- M is called a cylinder if and only if M» is the Riemannian pro-
duet of a curve ¢ and an open set U of the Euclidean space E»t (i.e. M»
= OxU).

We shall give some obvious properties of a cylinder in the Euclidean space.

(1) M»= OxU is flat. Moreover, if M= is simply connected, complete,
then M* is isometric to E=,

(2) Let I' be the tangent vector field of €. It is clear that 7' is parallel
in M», and that the second foundamental form of the immersion, associated
to M», has the following expression

o X, Y)=aw(X)w(Y)§ VX, YeTM",
where w is the 1-form defined by w(X) = <X, T'>, where « is a function C*
on M», and & is a normal vector fleld on M». Moreover, we have a system
of equations.
_ System 1.
If 520, Vi = 1,(X)é&,
if 7,50, Vi, =7, ,(X)én— (X)L, P=2,...,j—1),

if 7;#0, Vi&=— 14(X)§,,
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where 7y, ..., 7; (j<p) are j — 1 closed 1-forms proportional to w, and &, ..., &
are orthonormal unit vector fields in the normal bundle. Clearly, the Frenet
frame of the curve is the restriction of &, ..., & on (, and the Frenet curva-
tures of C are |af,, |7, where 2<j<i. This leads us to introduce the
following

Def. 2. Let ¢: M» - M»» be an isometric immersion of a #-
dimensional manifold, in a (n - p)-dimensional manifold.
We suppose that the second fundamental form ¢ has the following expres-
sion :

(%) g X, Y) =ao(X)w(Y) & VX, YeTM»,

where « is a C* function on M*, w is an unit 1-form on M=. Then, M= is called
a strongly ceylindrical submanifold. N

Moreover, suppose that o= 0, and that there exists j — 1 non null 1-form
Tay ...y Tj, closed and proportional to w, and j unit orthonormal vector fields
in the normal bundle &, ..., & such that System 1 is satisfied. Then M= is
called a j-non degenerated strongly cylindrical submanifold (s.c.-submanifold).

Remarks. This definition is local. Of course, a eylinder can be ¢;-non
degenerated on an open set U; and i,-non degenerated on an other open set U,,
iy 5= 1.

Using Chen’s terminology, [3], condition (%) means that the direction &,
is cylindriecal.

Using [7], it is easy to see that if JI"+» = E»+» g complete strongly cylin-
drical submanifold which is 1-non degenerated is a cylinder.

A cone, a tangent bundle of a curve, are strongly eylindrical in E°.

The ¢-th principal normal space F; of a strongly cylindrical submanifold
is-[£.], the space spanned by the direction &;. ,

The external curvature of a strongly ecylindrical submanifold M are
B = |a|, K = 15, ooy B0 = J7,]. .

Since dv, = 0, the theorem of Frobenius implies that a 2-non degenerated
strongly cylindrical submanifold of M+ is foliated by totally geodesic (n— 1)-
dimensional submanifolds of Jf»+»,

Now, we shall deduce from the definition and the Gauss-Codazzi equa-
tions some relations between the curvature of M+ and the curvature of M+,
We have the following

Proposition 1. Let i: M» — M2 an isometric immersion such that M»
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is a strongly cylindrical submanifold of Mn+»,
1) B(X, V2, Wy =(R(X, V)2, W> VZ,Y,Z, WelTM",
2) CR(X, V)& &Y =<(RYNX, YVE &> VX, YelTM, &&eTtMn,

(3) (B, V)%, & = (Aew)(X, Vo(Z) + co(Y)<Z, VT
— a(X)(Z, Ve TH)<E,, € VX, Y, Ze T, Ve T4 M,

where T is the tangent vector field defined by (T, X> = w(X):
{4) RHX,¥Y)&=0.

Proof of Proposition 1. (i) Using the Gauss-Codazzi equations, we
find

| R(X, V)%, Wy— <R<X, Y)Z, W
= o2 w(X)(X)w(Z) (W) — *o(Z)o(W)o(X)w(X =0 VX,Y,Z Welir.
(2) Using the Codazzi-Ricel equaﬁons, we find
B, V)& &) — (RHX, V)& &)
= a(X) o T)E, E)<E, &5 — wo(T)o(X)E E5E, &5 =0
VX, YeTM», V& Eel+Mn .
(3) Using the Codazzi-Ricei equations, we find

(B(X, Y)Z)* = (Vo) (Y, )~ (Vro)(X, Z)

=Vi(aeo(¥) 0(Z) &) — V(oo X) 0(2) &) — alVx T, Ty o(2)E,— e XV Z, TE,
| + (Ve X, Tyo(2)é + an(XVe 2. TE,

(whece T' is the unit tangent vector field defined by {7, X) = o(X)). We
obtain

(RB(X, Y)2)* = [Aew)(X, Y) 0(Z) + ao(Y){Z, V: T) — e(X)KZ, Vy )] &
+ [ea(T) (2) 7.(X) — aw(X) 0(Z) 7.(T)] &
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Since 1,Aw = 0, the component on &, is null. The third part of the theorem
follows.

(4) We have
Vf»v;f—& = ?[Tz(X)fa] = Y 1,(X)& + To(X)[7y( ¥) &5 — (Y)&].

Then RYX, Y)& = dr(X, Y)E + (1,AT) (X, Y)E =0 sinee dr,=0 and
ToNTy = 0.

In the general case,
ViVEE = Vi[r,1(X) & — X))
= Y 1, 3(X) &+ 1@ [T V) o~ 70 DV E]
— Yo (X)&i = rd D) [rd Drd( V) €i— 7ea(V) €ie] -
Then

R’L(X, Y= de+1(X, Y)§i+1+ (r,-+1/\rf+2)(X, Y){-‘,-+2

—dr{X, )& i — (1. aATHEX, Y)E,

=0 since dz;, =d7,; = 0 and 7, ;AT = T. ;AT = 0.

Studying every case in such a way, we can conclude that R(X, 'Y) E=0
Vie{l,..., j}

2 « Cylindricity in space forms

In this paragraph, we shall give some relations between strongly cylin-
drical submanifolds in spaces of constant curvature and submanifolds such
that the first principal normal space is of dimension 1, in spaces of constant
curvature. We will prove the

Theorem 1. Let " be a manifold of constant curvature ¢ of dimension
n -+ p. Lzt i: M» s M an isometric immersion of a connected n-dimensional
manifold M» into M+, We suppose that the first principal normal space F,
satisfies the condition dim By<1. Then, M» = M', with M'= M, U M,, where
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M, and M, are two disjoint open sets such that

each connected component of M, is an hypersurface of a (n 4 1) dimensional
totally geodesic submanifold of Mz,

M, is a strongly eylindrical submanifold of In+».
Proof of the theorem. We need the following lemmas.

Lemma 1. Let i: M? > M be an isometric immersion of a connected
n-dimensional manifold " in a n -+ p dimensional manifold of constant curva-
ture M2, We assume that the first principal normal space of M* is of dimen-
sion 1 at every point, and that the second cxternal curvature kP is null every
where. Then, M} is an hypersurface of « totally geodesic submanifold M’ of
dimension n -- 1.

Lemma 2. Let i: M? > M7+7 be an isometric immersion of a n-dimen-
sional manifold M* in a n -+ p dimensional manifold of constants curvature
Mr+e. We assume that the first principal normal space of M» is of dimension 1
at every point, and that the second external curvature k™ is mever null. Then
M7 is a strongly cylindrical submanifold of M™+» (at least 2-non degenerated).

Proof of Lemma 1. See[4], and [8].

Since k" = 0, B, is parallel. Then, we can reduce the codimension of
the immersion, and we can find a totally geodesic submanifold of dimension
# + dim B, which contain M7

Proof of Lemma 2. See[4];. We use the Codazzi-Ricci equations.

We can now prove the theorem. Let pe M=

(A) Suppose that there exists an open neighborhood U, of p, such that
dim B, = 0. Then, U, is totally geodesic, and consequently, U, is a strongly
cylindrical submanifold (with « = 0).

(B) Suppose that there exists an open neighborhood U, of p, such that
dim B, =1, and kg‘]’ﬁ,’z = 0. Then, using Lemma 1, we can conclude that
there exists an open neighborhood of p which is a hypersurface of a totally

geodesic submanifold of M»t+».

(C) Suppose that there exists an open neighborhood U, of p such that
dim B, =1 and kél’{,)s s 0. Then, using Lemma 2, we can conclude that U,
is a strongly eylindrical submanifold.
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It is clear that for every point of a dense open set of 3/*, one of these three
conditions is satisfied. The theorem follows.

Remarks. (1) In [4], the following theorem is proved.

Theorem 2. Let M+ be a space form of dimension n -4 p. Let i: M~
— M+ be an isometric immersion of a n-dimensional manifold M». We assume
that B[ is connected, simply connected, complete; dim By = 1; k™ £ 0 at every
point; there ewists j€[1, ..., pl, such that I = est 5= 0.

Then Mt = Evte, qpd M» is a complete cylinder of Entrie. Mn = (O x En1,
such that the Frenet-curvatures of C are the external curvature of M».

(2) TUsing the Codazzi-Ricei equations, it is easy to prove that a eylinder
of a manifold of constant curvature ¢, has a flat normal connexion and has
constant curvature c.

3 - Cylindricity in a Kihlerian manifold

Let. M»+? be a Kéhler manifold of even real dimension # 4 p, with com-
plex structure J. We shall investigate the geometric properties of a s.c.-sube
manifold M» in M»+». We begin with the following.

Remark. Let M» be an holomorphic submanifold of a Kéihler manifold
Mr+e, If M is a strongly cylindrical submanifold of M #+», then M» is totally
geodesic.

In fact, M= is minimal; this implies that « = 0 and ¢ = 0.

This remark leads us to consider only the antiholomorphic, the totally
real, the C.R. submanifolds which are s.c. (we shall write respectively anti-
holomorphie, totally real, C.R. s.c. submanifold).

(a) The case of an antiholomorphic or totally real cylinder.

We will prove the following

Theorem 3. (1) There ewists no antiholomorphic strongly cylindrical sub-
manifold M» in any positively or negatively curved Kihler manifold M+, p>2.
(2) There exists no totally real p-non degenerated strongly cylindrical sub-
manifold in any positively or negatively curved IKihler manifold N r+».
(3) Lwery totally real p non degenerated strongly cylindrical submanifold M»
of any Kéhler mawifold B»+» is flat. (In particular, if M» s complete, simply
connected, connected; then M* is isometric to the Huclidean space).
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Proof of Theorem 3. Let JM» be a strongly cylindrical submanifold
of a Kihler manifold M »+», :

(1) We have: (R(X, ¥)J&, Jn> = (B(X, V)&, 7> VX, YeTM» Yy
€ I+ M* Since M» is antiholomorphic, J&, and Jy are in 7M.

From Proposition 1, we obtain: <(R(X, ¥)J&, Ind = (R(X, Y)JE&, Jn>
= (RHX, Y)&, n) = 0. Let neT*M» such that & L. We have

CB(J&, In)dn, J&)> = 0.

This is impossible since M+ is negatively or positively curved.
8 Y

(2) We have (BHYX, Y)&;, &> =0, where ¢,je{l,...,p}. VX, YelM.
This implies (B(X, ¥) &:y &5 = 0 from Proposition 1. Since M* is totally real,
we obtain <(R(X, ¥)JZ, JWy=0 VX, ¥, Z, We TM*. Consequently,
(R(X, X)Z, Wy =0 VX, Y, Z, We TMr, which is excluded, since I+
is positively or negatively curved.

(3) Since M is p-nondegenerated, R-(X, ¥)= 0. If the cylinder is
totally real, we have (B(X, Y)JZ, JW> = (Bx, 1) Z, W) =<(R(X, Y) Z,
W)= <(BHX, V)JZ,JW>=0 VX, Y, Z WeTM* Then R=0 and M?»
is flat.

(b) The case of a C.R. strongly cylindrical submanifold.

We shall prove the following

Theorem 4. Let M" be a C.R. strongly cylindrical submanifold in a
Kiikler manifold IIn+»,

We assume that the holomorphic distribution 2 of TM™ is involutive. Then,
M is locally the Riemannian product My X M,, where My is a holomorphic totally
geodesic submanifold of M+v, and M, is a totally real strongly eylindrical sub-
manifold of Mnt»,

If M» is p-non degenerated, M, is flat. If k™ = 0, M, is locally the Rie-
mannian product CX M,, where C is a curve in M » with vanishing torsion,
and M, is totally geodesic in Mn+». (In this case, M is locally the Riemannian
product O X M’y where C is a totally real curve, with vanishing torsion, and M’
i8 a s.c. submanifold).

Before the proof of this theorem, we shall give the following

Corollary 1. Let M» be an antiholomorphic strongly cylindrical submani-
fold of a Kihler manifold. Then the following conditions are equivalent:

(a) The distribution 9@ is integrable.

12
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(b) Vp e M=, AU, neighborhood of p, such that, either U is totally geodesic,
or Ty,€ @+ (T defined by (T, X) = w(X)).

(¢) M is locally the product of a holomorphic submanifold and  totally real
submanifold.

Proof of Theorem 4. Let T be the unit vector field defined by (T,
Xy = w(X). We shall consider the following possibilities.

(@) TeZ+ 1In this case, we have
0=<o(X, Y),dJZ)=<V:xZ,JY) VXelM, VYe2, VZe€2D*.

Then, 2+ is parallel. Consequently, we can write, locally M = M, x M,,
where M, is a holomorphic and totally geodesic submanifold, integral of 2,
M, is a totally real submanifold, integral of £*. Since oy, has the following
expression

Oig.(Zy Z') = o Z) (Z") &, VZ,Z e 9+,
it is clear that M, is a strongly cylindrical submanifold of Mr+r.

(b) 3U, an open set, on which T ¢ 2+ We have pryT 520 on U. Let
T'= pro,T on U. Since & is involutive, let us consider an integral submani-
fold M, of @. Let ¢’ be the second fundamental form of M, in Mr+». We
have

(X, X) = alX, T'CT, T'5E -+ pro, Vi ¥ VX, Ye2.

M, is holomorphic; then, M, is minimal. This implies «, = 0. Consc
quently, ¢ =0 on U. Asin (a), we can conclude that £+ is parallel, and wc¢
can write, locally M» = M,x M,, where M, is a holomorphic and totally
geodasic submanifold, integral of &, M, is a totally real, and totally geodesic
submenifold, integral of &+

Proof of Corollary 1. Since M* is antiholomorphic in M=, JE,
e I'M». Let J&E = Z.

Using a result of Blair and Chen [2], condition £ integrable is equivalent
to equation <o(X,JY),JZ> = <e(JX, X),JZ> VX, Y e D.

If T e2*, this condition is always satisfied. If on a neighborhood U of
a point p € M*, T'= pryT # 0, then we have (o(JTI", JTI"), JZ> = (o(T', T"),
JZy. This implies e« = 0 and U is totally geodesic. We conclude that (a)
implies (b).
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Let U be an open set of M= If U is totally geodesic, we deduce from [2]
that U is locally the product of two totally geodesic submanifolds. If 7€ @+
on U, we deduce from the proof of Theorem 4 (a) that U is locally the product
of two submanifolds M, x M,, where M, is holomorphic and M, is totally real.
Therefore (b) implies (e).

Finally, (e) implies (a) is obvious.

4 - Isometric immersions of a product of two manifolds
We need the following

Dei. Let f: Mx..xM, — E¥ an isomeftric immersion. f is cal-
led a product of immersions if f= (f,, ..., ), E¥= E™x ... X E™,  where
fit M;— E™ is an isometric immersion.

In [6] and [1], J. D. Moore, S. Alexander and R. Maltz have studied the
isometric immersion of M= M, x... x M, in the Euclidean space. The y proved

Theorem A (J. D. Moore). For 1<i<k, let M, be a complete connected
Riemannian manifold of non negative curvature and dim n;>2, M= M,X

... X M; the Riemannian product, and E¥ an euclidean space of dimension
k

N = (¥ n) + k. Then any isometric immersion j: M > E¥ satisfies at least
1

one of the following conditions:
(a) It is a product of hypersurface immersions.
(b) It carries a complete geodesic onto a straight line in E¥,

Theorem B (S. Alexander and R. Maltz). Let M,, ..., M, be complete
non flat Riemannian manifolds satisfying the condition
«No M, contains an open submanifold which is isometric to the Rie-
mannian produet E* X (— g, ) ».
Then, any k-dimensional isometric immersion of the Riemannian product
M = M,X...x M, in euclidean space is a product of hypersurface immersions.

With the same technies than 8. Alexander and R. Maltz, and using Theo-
rem 1, we can prove the

Theorem 5. Let M,, ..., M, be connected, complete Riemannian mani-
folds, of dimensions n., ..., n,.. Let f: M = M, x...x M, — E¥ be an isometric
tmmersions of M in euclidean space E¥. Assume that the dimension of the first
principal normal space E, is k. Then, there exists a M, which contains an open
strongly cylindrical submanifold or f is a product of hypersurface immersions.
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In order to obtain a complete classification of the product of the submani-
folds such that the first prineipal normal space has dimension two, we shall,
give a description of all the immersions f: M, x M, — E¥ which are product
of immersions, and such that dim B, = 2.

Theorem 6. Let M, and M, be two connected manifolds of dimension n,
and ny. Let [ = (fy, fo): M = M, X M, — E¥ be a product of immersions such
that dim B, == 2. Then, one of the two following possibilities happens:

(a) M, or B, is an hyperswrface of an Buclidean subspace E™*' op E™*.

(b) For i=1,2, M,= M,, where J,= M, U M, such that M,, is
locally an hypersurface of an Buclidean subspace B, and M; is a strongly
eylindrical submanifold of B~

Corollary 2. Let M, and M, be two connected manifolds of dimension
Ny and ny. Let | = (f1, fo): M = M, x M, — E¥ be a product of immersions such
that dim B, = 2. Then, M, or M, is the closwre of « manifold M', where
M'= M, My, such that each connccted component of M, is a hypersurface of an
Buclidean subspace of E¥, and M"; is a strongly cylindrical submanifold of EX.

We shall use the following notations: f = (fi, fa), fr: M, — E™, f,: M,
> E¥: EN = E”»x E*; ¢ is the second fondamental form associated to f;
o, (vesp. o,) is the second fondamental form associated to f, (vesp. f.); ki
(resp. k%) is the second external curvature associated to f; (resp. f»), EI (vesp. E3)
is the first principal normal space associated to 7, (resp. fa).

We need the following

Lemma 3. Under the assumptions of Theorem 6, we have dim E; = 2
and dim B} = 0 at every point, or dim B} = 0 and dim B} = 2 at every point,
or dim B} =1 and dim E; =1 at every point.

Proof of Lemma 3. Let p be a point of M. Since the map p —
dim E;'p is lower semi-continuous, and dim F, = cst. = 2, there exists a
neighborhood U of p on which dim B} = est, dim E? = cst.

(a) Suppose that dim B} = 0, and dim Z =2 on U. Let us consider
W, = {p € M»/dim (B}), = 0} = {p € M*[dim (B}, > 1}. W, 0, W, is open
and. closed.. Since M* is connected, W, = M*, and consequently, dim E = 0
on M. , ;
(b) Suppose that dim B} = dim F; =1 on U. Then, at every point,
dim B} = dim B} = 1. For if there exists a point ¢ such that dim B =0,
then, dim B = 2. Using (a) we obtain a contradiction.
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Proof of Theorem 6 and of Corollary 2. Theorem 6 follows im-
mediately from Lemma 3 and Theorem 1. Corollary 2 is an obvious conse-
quence of Theorem 6.

Remark. During the print of this paper, B. Y. Chen and L. Verstracien
communicate to me that they are studying eylindricity in symmetric spaces.
Their definition of eylindriticity is a little weaker than mine.
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