PAOLO TERENZI (*)

Stability properties in Banach spaces (**)

1 - Notations, definitions and recalls

Theorems are enumerated by Roman figures and recalled theorems by starred Roman figures. We use $\{n\}$ for the sequence of the natural numbers, R^+ for the positive real semiaxis, $\mathscr C$ for the complex field, B for a Banach space and B' for the dual of B.

Let $\{x_n\}$ be a sequence of B, then span $\{x_n\}$ is the linear manifold spanned by $\{x_n\}$, while $[x_n]$ is the closure of span $\{x_n\}$. We say that $\{x_n\}$ is complete in B if $[x_n] = B$; moreover we say that $\{y_n\}$ is a block sequence of $\{x_n\}$ if, settins $t_0 = 0$, \exists an increasing sequence $\{t_n\}$ of natural numbers so that $y_n \in \operatorname{span}\{x_k\}_{k=t_{n-1}+1}^{t_n} \ \forall n$.

We recall that an $\{x_n\}$ of B is

$$\begin{array}{ll} \textit{overfilling} & \text{if } [x_{n_k}] = [x_n] \ \ \forall \{x_{n_k}\}_{k=1}^{\infty} \subseteq \{x_n\}, \\ \\ \textit{non-contractive} \ [\mathbf{7}]_1 & \text{if } \bigcap\limits_{m=1}^{\infty} [x_n]_{n \geq m} = [x_n] \ , \\ \\ \textit{minimal} & \text{if } x_m \notin [x_n]_{n \neq m} \ \ \forall m. \\ \end{array}$$

Let $\{x_n\} \subset B$ and $\{f_n\} \subset B'$, we recall that (x_n, f_n) is a biorthogonal system if $f_m(x_n) = \delta_{mn} \ \forall m$ and n; therefore

 $\{x_n\}$ is minimal $\iff \exists \{f_n\} \subset B'$ with (x_n, f_n) biorthogonal system. Moreover we recall that

^(*) Indirizzo: Istituto di Matematica, Politecnico, P.za Leonardo da Vinci 32, 20133 Milano, Italy.

^(**) Ricevuto: 25-VII-1980.

- (a) ([6]₂, p. 107) a property $\mathscr P$ of $\{x_n\}$ is stable if $\exists \{\varepsilon_n\} \subset R^+$ so that every $\{u_n\}$ of B, with $||u_n x_n|| < \varepsilon_n \ \forall n$, has property $\mathscr P$.
- (b) [1] $\{x_n\}$ is completely stable if $\exists \{\varepsilon_n\} \subset R^+$ so that, $\forall \{u_n\}$ of B with $\|u_n x_n\| < \varepsilon_n \ \forall n$, the operator T induced by $Tx_n = u_n \ \forall n$ satisfies $\|T I\| < 1$, where the norm is taken on $[x_n]$.

Finally we recall the following theorems:

I* ([1], see also [5], p. 163) Completeness is stable.

II* [1] $\{x_n\}$ is completely stable $\iff \{x_n\}$ is minimal.

III* ([3], see also [6]₂, pp. 84, 87 and 98) Let $\{x_n\}$ be a minimal sequence of B, then $\Rightarrow \exists \{\varepsilon_n\} \subset R^+$ so that, $\forall \{u_n\} \subset B$ with $||u_n - x_n|| < \varepsilon_n \ \forall n$, $\{u_n\}$ is minimal; moreover $[u_n] = [x_n]$ if $\{u_n\} \subset [x_n]$.

IV* [7]₄ Every overfilling sequence $\{x_n\}$ has an infinite subsequence which keeps overfilling for sufficiently near sequence of $[x_n]$.

V* [7]₃ Let $\{x_n\}$ be a sequence of B with $[x_n]$ of infinite dimension, then: $\Rightarrow \exists$ an $\{y_n\}$, minimal and complete in $[x_n]$, with $y_n \in \operatorname{span} \{x_k\}_{k \geqslant n} \forall n$.

2 - Introduction

We report in 3 the proofs of the theorems that we state in this paragraph. In what follows $\{x_n\}$ is a general sequence of B.

Firstly we state two definitions.

- (D₁) $\{x_n\}$ is uniformly stable as regards the completeness (more briefly u-stable) if $\exists \{\varepsilon_n\} \subset R^+$ so that, $\forall \{x_{n_k}\} \subseteq \{x_n\}$, if $\{u_{n_k}\} \subset [x_{n_k}]$ with $\|u_{n_k} x_{n_k}\| < \varepsilon_{n_k} \forall k$, then $[u_{n_k}] = [x_{n_k}]$.
- (D₂) $\{x_n\}$ is u^* -stable if we have D₁, with the condition that all the $\{x_{n_k}\}$ are sequences of infinite elements.

By th. V* we infer the following theorem, that includes th. I* (in (a) p = 0 means that $\{x_{n_k}\}_{k=1}^p$ does not appear, the same for q of $\{x_{n_k'}\}_{k=1}^q$).

- I. (a) $\exists \{x_{n_k}\}_{k=1}^p \cup \{x_{n'_k}\}_{k=1}^q \subseteq \{x_n\}, \text{ where } 0 \leqslant p \leqslant +\infty, \text{ while } q \text{ is } 0 \text{ or } +\infty,$ so that $\{x_{n_k}\}$ is minimal, moreover $[x_n] = [\{x_{n_k}\}_{k=1}^p \cup \{x_{n'_k}\}_{k=m}^q] \text{ and } x_{n'_m} \notin [x_{n_k}],$ for $1 \leqslant m < q$.
- (b) $\exists \{\varepsilon_n\} \subset R^+$ so that, $\forall \{u_n\} \subset [x_n]$ with $\|u_n x_n\| < \varepsilon_n \ \forall n, \ \{u_{n_k}\} \}$ is minimal, moreover $[x_n] = [\{u_{n_k}\}_{k=1}^r \cup \{u_{n_k'}\}_{k=m}^q]$ and $u_{n_m'} \notin [u_{n_k}]$, for $1 \leqslant m < q$. Now we consider th. I* by another point of view, precisely we ask if a sequence is in general u-stable or u^* -stable.

Firstly, by next theorem, we give a negative answer to a problem that we raised in $[7]_1$.

- II. B has always a linearly independent overfilling sequence $\{x_n\}$ such that, if $\{\varepsilon_n\} \subset R^+$, $\exists \{u_n\} \subset [x_n]$ and not overfilling, with $||u_n x_n|| < \varepsilon_n \ \forall n$. Now, if $\{x_n\}$ is overfilling, it is obvious that
- (1) $\{x_n\}$ is u^* -stable $\Leftrightarrow \exists \{\varepsilon_n\} \subset R^+$ so that every $\{u_n\}$ of $[x_n]$, with $||u_n x_n|| < \varepsilon_n \ \forall n$, is overfilling.

Then, by th. II, $\{x_n\}$ is not in general u^* -stable, hence neither u-stable. Next two theorems concern the structure of these sequences.

- III. (a) $\{x_n\}$ is u-stable \Leftrightarrow inf $\{\text{dist }(x_m, [x_{n_k}]); x_m \cup \{x_{n_k}\} \text{ linearly independent subsequence of } \{x_n\}\}$ is $> 0 \ \forall m$.
- (b) Let $\{x_n\}_{n>1}$ be minimal, then $\{x_n\}_{n\geqslant 1}$ is u-stable $\iff \{x_n\}_{n\geqslant 1}$ is minimal, otherwise $x_1 \in \text{span } \{x_n\}_{n>1}$.
 - IV. Let $\{x_n\}$ be a linearly independent u*-stable sequence of B, then:
- (a) $\{x_n\}$ has a complete (in $[x_n]$) minimal subsequence; otherwise $\{x_n\}$ has a complete subsequence which, by removing a finite number of elements at the most, becomes overfilling.
- $\begin{array}{c} \text{(b)} \ \ \{x_n\} = \{x_{n_k}\} \cup \{x_{n'_k}\} \ \ so \ \ that, \ \ \forall m, \ x_{n_m} \notin [x_k]_{k \neq n_m}, \ \ moreover \ \ \exists p_m \in \{n\} \ \ for \ \ which \ \ x_{n'_m} \in [x_k]_{k \mid \neq n'_m) = 1}^{p_m} + [x_{n''_k}], \ \ \forall \{x_{n''_k}\}_{k = 1}^{\infty} \subseteq \{x_n\}_{k > n_m}. \end{array}$

By means of th. II we can see that (a) and (b) of th. IV are necessary, but not sufficient, for the u^* -stable sequences.

Moreover, by (a) of th. III, every linearly independent u-stable sequence is minimal; that is, by th. II*,

- (2) minimal = completely stable = u-stable + linearly independent.
- By (2) $\{x_n\}$ has not, in general, an infinite *u*-stable subsequence; however $\{x_n\}$ has always an u^* -stable subsequence (indeed $\{x_n\}$, if has no infinite minimal subsequence, then has an overfilling subsequence (by th. IV of $[7]_1$) it is now sufficient to use (1) and th. IV*).

Finally, by th. IV, $\{x_n\}$ has not, in general, a complete (in $[x_n]$) u^* -stable subsequence: for example if $\{x_{2n}\}$ and $\{x_{2n-1}\}$ are both overfilling, with $[x_{2n}] \cap [x_{2n-1}] = \{0\}$.

3 - Proofs and remarks

In what follows, if $X \subset B$, then $X^{\perp} = \{ f \in B', f(x) = 0 \ \forall x \in X \}$. We recall that

VI* ([6]₂, p. 99). In th. III*, if (x_n, f_n) is a biorthogonal system, we can set $\varepsilon_n = 1/(2^{n+1}||f_n||) \forall n$.

Proof of th. I. (a) We set $x_1 = x_{n_1}$ if $x_1 \notin [x_n]_{n>1}$, otherwise $x_1 = x_{\widehat{n}_1}$; so proceeding we find $\{n\} = \{n_k\} \cup \{\widehat{n}_k\}$, with $x_{n_k} \notin [x_i]_{i>n_k}$ and $x_{\widehat{n}_k} \in [x_i]_{i>\widehat{n}_k}$, $\forall k$. Then we set $\{\widehat{n}_k\} = \{n_k'\} \cup \{n_k''\}$, so that $x_{n_{m}'} \notin [x_{n_{k}}]$, and $x_{n_{m}''} \in [x_{n_{k}}] \ \forall m$.

Then we have that \exists a not decreasing sequence $\{s(k)\}$ of natural numbers so that $\{x_n\} = \{x_{n_k}\}_{k=1}^r \cup \{x_{n_k'}\}_{k=1}^q \cup \{x_{n_k'}\}_{k=1}^r$, where $0 \leqslant p$, $r \leqslant +\infty$, q is 0 or $+\infty$, so that:

Suppose in (3) $p < +\infty$, then $[x_{n_k}]_{k=1}^p \cap [x_{n'_k}]_{k>s(p)} = \{0\}$; hence, if we call $\{x_{n'_k}\}_{k=1}^\infty$ again the sequence $\{x_{n'_k}\}_{k>s(p)}$, we can say that

(4) in (3), if
$$p < +\infty$$
, $\{x_{n'k}\}$ is non-contractive.

(b) If in (3) q = 0 the thesis follows by th. III*, hence we can suppose that $q = +\infty$ and we have to consider two cases for p.

Let p be finite.

Then by (3) and (4) $\exists \{h_k\}_{k=1}^n \cup \{g_k\} \subset B' \text{ so that }$

(5) $(x_{n_k}, h_k)_{k=1}^p$ is biorthogonal system with $\{h_k\}_{k=1}^p \subset [x_{n'_k}]^{\perp}$, moreover $g_m(x_{n'_m}) = 1 \ \forall m \ \text{and} \ \{g_k\} \subset [x_{n_k}]^{\perp}$.

By (4) and by th. VIII of $[7]_1 \exists \{\epsilon'_i\} \subset \mathbb{R}^+$ so that

(6)
$$\forall \{u_{n_k}\} \subset B$$
 with $\|u_{n_k'} - x_{n_k'}\| < \varepsilon_k' \ \forall k$, it follows that $\{x_{n_k'}\} \subset \bigcap_{m=1}^{\infty} [u_{n_k'}]_{k>m}$.

Now, if $\{n_k\}$, $\{n'_k\}$ and $\{n''_k\}$ are the sequences of (3), let us set

(7)
$$\varepsilon_{n_k} = \frac{1}{2^{k+1} \|h_k\|} \quad \text{for } 1 \leqslant k \leqslant p , \qquad \varepsilon_{n_k'} = \min \left\{ \frac{1}{2^2 \|g_k\|}, \varepsilon_k' \right\} \, \forall k ,$$

$$\varepsilon_{n_k'} = 1 \quad \text{for } 1 \leqslant k \leqslant r .$$

By (7) $\{\varepsilon_n\} \subset \mathbb{R}^+$; let now $\{u_n\} \subset B$ so that

(8)
$$\{u_n\} \subset [x_n] \quad \text{with } \|u_n - x_n\| < \varepsilon_n \ \forall n.$$

If we consider $\{x_{n'_k} + [x_{n_i}]_{i=1}^p\}$, by (5) $\exists \{\hat{y}_k\} \subset [x_{n'_k}] \text{ so that } \{x_{n_k}\}_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]; \text{ hence by (4) and by th. III* } \exists \{y_k\} \subset B \text{ so that } \{x_n\}_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]; \text{ hence by (4) and by th. III* } \exists \{y_k\} \subset B \text{ so that } \{x_n\}_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]; \text{ hence by (4) and by th. III* } \exists \{y_k\} \subset B \text{ so that } \{x_n\}_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]; \text{ hence by (4) and by th. III* } \exists \{y_k\} \subset B \text{ so that } \{x_n\}_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]; \text{ hence by (4) and by th. } \text{ is minimal and } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete in } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is minimal and complete } [x_n]_{k=1}^p \cup \{\hat{y}_k\} \text{ is min$

(9) $\{x_{n_k}\}_{k=1}^q \cup \{y_k\}$ is minimal and complete in $[x_n]$, with $\{y_k\}$ block sequence of $\{x_{n_k'}\}$.

By (8), (7), (5) and (9), moreover by th. III*, we have that $\{u_{n_k}\}_{k=1}^p \cup \{y_k\}$ is minimal and complete in $[x_n]$; on the other hand, by (6), (7), (8) and (9), $\{y_k\} \subset [u_{n_k'}]_{k \geqslant m} \ \forall m$; hence $[\{u_n\}_{k=1}^p \cup \{u_{n_k'}\}_{k \geqslant m}] = [x_n] \ \forall m$. Finally, by (5), (7) and (8), $u_{n_m'} \notin [u_{n_k}]_{k=1}^p \ \forall m$.

Suppose now that $p = + \infty$.

By (3) $\exists \{h_k\} \subset B'$ so that

$$(10) h_m(x_{n_m}) = 1 \text{and} h_m \in [\{x_{n_k}\}_{k \neq m} \cup \{x_{n_k'}\}_{k=s(m)}^{\infty}]^{\perp} \forall m.$$

Let us fix $m \ge 1$.

By (3) $[\{x_{n_k}\} \cup \{x_{n_k'}\}_{k\geqslant m}] = [x_n];$ moreover, by lemma 1 of [7]₃, $\exists \{\tilde{y}_{mk}\}$ with $\tilde{y}_{mk} \in \text{span}\{x_{n_k'}\}_{i\geqslant m+k}$ $\forall k$ and with $\{x_{n_k}\} \cup \{\tilde{y}_{mk}\}$ complete in $[x_n]$, and $\exists \{h_{mk}\} \subset [\tilde{y}_{mk}]^{\perp}$, with (x_{n_k}, h_{mk}) biorthogonal system; therefore, if we consider the sequence $\{\tilde{y}_{mk} + [x_{n_k}]\}$, by th. V* we have that $\exists \{g_{mk}\}_{k\geqslant m} \subset B'$ and $\{y_{mk}\}_{k\geqslant m}$ so that

(11)
$$(x_{n_k}, h_{mk})_{k=1}^{\infty} \cup (y_{mk}, g_{mk})_{k=m}^{\infty}$$
 is biorthogonal system,

moreover
$$[\{x_{n_k}\}_{k=1}^{\infty} \cup \{y_{mk}\}_{k=m}^{\infty}] = [x_n]$$
 and $y_{mk} = \sum_{k=1}^{t_{mk}} \alpha_{mki} x_{n_k}$ $\forall k \geqslant m$.

On the other hand by (3) $\exists g_m \cup \{h'_{mk}\}_{k=1}^{\infty} \subset B'$ so that

(12)
$$(x_{n_m}, g_m) \cup (x_{n_k}, h'_{nk})_{k=1}^{\infty}$$
 is biorthogonal system.

Therefore by (10), (11) and (12) we can set

(13)
$$h_{mi} = h_i$$
 for $1 \leqslant i \leqslant k$ and $h'_{mk} = h_k$ $\forall k$ so that $s(k) \leqslant m$.

Then, if $\{n_k\}$, $\{n'_k\}$ and $\{n''_k\}$ are the sequences of (3), let us set

(14)₁
$$\varepsilon_{n_k} = \frac{1}{2^{k+1} (\|h_k\| + \sum_{1}^{s(k)-1} (\|h_{mk}\| + \|h'_{mk}\|))} \quad \forall k \text{ so that } s(k) > 1$$

$$(14)_2$$
 $\varepsilon_{n_k} = \frac{1}{2^{k+1} \|h_k\|} \quad \forall k \quad \text{so that } s(k) = 1$,

$$(14)_{3} \qquad \varepsilon_{n'_{k}} = \frac{1}{2^{k+1} (\|g_{k}\| + \sum_{l=1}^{k} \sum_{m=1}^{k} t_{mi} |\alpha_{mik}| \|g_{mi}\|))} \quad \forall k,$$

$$(14)_4 \qquad \varepsilon_{n_n} = 1 \qquad \forall k .$$

By (14)
$$\{\varepsilon_n\} = \{\varepsilon_{n_k}\} \cup \{\varepsilon_{n_k'}\} \cup \{\varepsilon_{n_k}\} \subset R^+.$$

Let now $\{u_n\} \subset B$ so that

(15)
$$\{u_n\} \subset [x_n] \quad \text{with } \|u_n - x_n\| < \varepsilon_n \ \forall n \ .$$

Let us fix again $m \ge 1$. If we set, $\forall i \ge m$, $v_{mi} = \sum_{i}^{i} \alpha_{mik} u_{n'_k}$, by (11), (14) and (15) we have that

$$\begin{split} \|v_{mi} - y_{mi}\| &\leqslant \sum_{i}^{t_{mi}} |\alpha_{mik}| \ \|u_{nk} - x_{nk}\| &< \sum_{i}^{t_{mi}} |\alpha_{mik}| \ \varepsilon_{nk} \\ &< \sum_{i}^{t_{mi}} |\alpha_{mik}| \frac{1}{2^{k+1} t_{mi} |\alpha_{mik}| \|g_{mi}\|} \leqslant \frac{1}{2^{i+1} \|g_{mi}\|} \ . \end{split}$$

Therefore, by (11), (14), (15) and by th. III* and VI*, $\{u_{n_k}\} \cup \{v_{mk}\}$ is minimal, and complete in $[x_n]$; hence $[\{u_{n_k}\} \cup \{u_{n'_k}\}_{k \ge m}] = [x_n]$. Finally, by (12), (13), (14) and (15), $u_{n'_m} \cup \{u_{n_k}\}_{k=1}^{\infty}$ is minimal $\forall m$, which completes the proof of th. I.

Remarks on th. I. In th. I we considered only near sequences $\{u_n\}$ with the condition that $\{u_n\} \subset [x_n]$; indeed, if $[x_n]$ is an infinite codimensional subspace of B, we recall (th. IV of $[7]_2$) that, $\forall \{\varepsilon_n\} \subset R^+$, \exists a minimal sequence $\{u_n\}$ of B with $||u_n - u_n|| < \varepsilon_n \ \forall n$.

Moreover the property $x_{n_m} \notin [\{x_{n_k}\}_{k \neq m=1}^p \cup \{x_{n_k}\}_{k=s(m)}^r] \quad \forall m \text{ of (3) is not considered in th. I, because it does not keep for sufficiently near sequences, precisely:$

(c) Suppose in (3) $s(k) = 1 \ \forall k$ (it is possible), then: $\Rightarrow \forall \{\varepsilon_n\} \subset R^+ \ \exists \ a$ non-contractive sequence $\{u_n\}$ complete in $[x_n]$, with $\|u_n - x_n\| < \varepsilon_n \ \forall n$.

Indeed by hypothesis and by lemma 3 of [7]₃ we have that $\{x_{n'_k}\} \subset \bigcap_{m=1} [x_n]_{n>m}$, hence by th. VIII of [7]₁ $\exists \{\eta_n\} \subset R^+$ so that

(16)
$$\forall \{u_n\} \subset B \quad \text{with} \quad \|u_n - x_n\| < \eta_n \quad \forall n, \ \{x_{n_k}\} \subset \bigcap_{m=1}^{\infty} [u_n]_{n>m}.$$

Then, if $\{v_k\}$ is a non-contractive sequence complete in $[x_n]$, let us set

(17)
$$u_{n_k} = x_{n_k}, \quad u_{n'_k} = x_{n'_k}, \quad u_{n'_k} = x_{n'_k} + \min\left\{\varepsilon_{n'_k}, \eta_{n'_k}\right\} \frac{v_k}{2 \|v_k\|} \quad \forall k.$$

By (17) $||u_n - x_n|| < \varepsilon_n \ \forall n;$ on the other hand, $\forall m \geqslant 1$, by (16) $\{x_{n'_k}\} \subset [u_n]_{n>m}$, hence by (17) $\exists p_m \in \{n\} \ \text{with} \ \{v_k\}_{k>p_m} \subset [u_n]_{n>m}$, that is $[x_n] = [u_n]_{n>m}$.

(d) Suppose in (3) $\{x_{n_k'}\}$ non-contractive, then: $\Rightarrow \forall \{\varepsilon_k\} \subset R^+ \exists a \text{ non-contractive sequence } \{u_k\} \text{ complete in } [x_n], \text{ with } \|u_k - x_{n_k'}\| < \varepsilon_k \ \forall k.$ Indeed, always by th. VIII of $[7]_1$, $\exists \{\varepsilon_k'\} \subset R^+$ so that

$$\forall \{u_k\} \in B \text{ , with } \|u_k - x_{n_k'}\| < \varepsilon_k' \text{ } \forall k, \text{ } \{x_{n_k'}\} \in \bigcap_{i=1}^{\infty} [u_k]_{k>m} \text{ .}$$

Then, if $\{v_k\}$ is the sequence of (c), it is sufficient to set

$$u_k = x_{n'_k} + \min \{ \varepsilon'_k, \, \varepsilon_k \} \frac{v_k}{2 \|v_k\|} \quad \forall k.$$

Finally we mention particular cases of the sequence $\{\varepsilon_n\}$: for example, if B is separable and if $\{x_n\}$ is dense in B, we have that every $\{u_n\}$ of B, with $\lim_{n\to\infty} \|u_n-x_n\|=0$, is complete in B.

Let us now recall a result of Klee.

VII* ([2], pp. 193-194) Let $\{x_n\}$ be a minimal sequence complete in B, with $||x_n||=1$ $\forall n$, then: \Rightarrow every infinite subset of $\{\sum_{1}^{\infty} t^k x_k; 1/6 \leqslant t \leqslant 1/3\}$ is complete in B.

Proof of th. II. Let $\{x_n\}$ be a minimal sequence of B, with $||x_n||=1$ $\forall n$, moreover let us set $x_n=\varphi(t_n)$ $\forall n$, where $\varphi(t)=\sum_{1}^{\infty}t^kx_k$, while $\{t_n\}$ is the sequence of the rational numbers of $J=1/6\mapsto 1/3$. Then, by th. VII*, we have that $\{x_n\}$ is overfilling.

Let now $\{\varepsilon_n\}$ be a fixed sequence of R^+ ; we can choose a sequence $\{J_k\}$ of subintervals of J and a subsequence $\{t_{n_k}\}$ of $\{t_n\}$ so that

(18)
$$t_{n_k} \in J_k \text{ and } \|\varphi(t) - x_{n_k}\| < \varepsilon_{n_k} \ \forall t \in J_k, \text{ moreover}$$

$$J_{k+1} \subset J_k \text{ with } l_{k+1} \ (= \text{length of } J_{k+1}) < l_k/2 \ \forall k.$$

Indeed we can start with an arbitrary natural number n_i ; then suppose to have found $\{J_i\}_{i=1}^k$, we can choose $t_{n_{k+1}} \in J_k$, now J_{k+1} follows by continuity of $\varphi(t)$.

By (18) $\lim_{k\to\infty} t_{n_k} = \bar{t}$, hence $\bar{t}\in J_k$ $\forall k$; therefore, if $\{n'_k\}$ is the subsequence of $\{n\}$ complementary to $\{n_k\}$, let us set $u_{n'_k} = x_{n'_k}$ and $u_{n_k} = \varphi(\bar{t})$ $\forall k$; by (18) $\|u_n - x_n\| < \varepsilon_n \ \forall n$, on the other hand $[u_{n_k}]_{k=1}^{\infty} = \operatorname{span} \{\varphi(\bar{t})\}$, that is $\{u_n\}$ is not overfilling, which completes the proof of th. II.

Remarks on th. II. Let us consider the regularity properties of a sequence $\{x_n\}$.

If $\{x_n\}$ is minimal, or more than minimal (for example uniformly minimal, M-basic, basic with brackets, basic), it is known that $\{x_n\}$ keeps its property for sufficiently near sequences ([3] and [4], see also [6]₂ p. 98, and [6]₁ p. 171, see moreover [7]₂, corollary II). While the properties less than minimal, for example the ω -linear independence, do not keep for sufficiently near sequences: indeed, if $\{x_n\}$ is not minimal, it is immediate to see that, $\forall \{\varepsilon_n\} \subset R^+, \exists$ a not linearly independent sequence $\{u_n\}$ of $[x_n]$ with $||u_n - x_n|| < \varepsilon_n \ \forall n$.

Let us now consider another category of properties, in the opposite direction: the non-contractive and the overfilling sequences.

Both the non-contractive and the minimal \overline{Y} -overfilling sequences $\{x_n\}$ (that is with $\bigcap_{m=1}^{\infty} [x_{n_k}]_{k>m} = \overline{Y}$, $\forall \{x_{n_k}\}_{k=1}^{\infty} \subseteq \{x_n\}$) keep their properties for sufficiently near sequences (th. VIII of $[7]_1$ and th. III of $[7]_2$); while, by th. II, this is not true for the general overfilling sequence, but it is true for particular subsequences (see th. IV*).

Proof of th. III. (a) Let us prove \Rightarrow . Suppose that the thesis is not true, then $\exists \overline{n} \in \{n\}$ so that

(19) $\forall \varepsilon \in \mathbb{R}^+ \exists$ a linearly independent subsequence $\{x_{n_k}\}$ of $\{x_n\}$ so that $0 < \operatorname{dist}(x_{\overline{n}}, [x_{n_k}]) < \varepsilon$.

Let us fix $\{\varepsilon_n\} \subset \mathbb{R}^+$, by (19) $\exists \{x_{n_k}\}_{k=1}^p \subset \{x_n\}$ and $\{\alpha_k\}_{k=1}^p \subset \mathcal{C}$, with $p < +\infty$, so that

$$x_{\overline{n}} \cup \{x_{n_k}\}_{k=1}^p$$
 is linearly independent and $\|x_{\overline{n}} + \sum_{1}^p \alpha_k x_{n_k}\| < \varepsilon_{\overline{n}}$.

Then, setting $u_{\overline{n}} = \sum_{k=1}^{p} \alpha_k x_{n_k}$ and $x_n = x_n$ for $n \neq \overline{n}$, we have $||u_n - x_n|| < \varepsilon_n$ $\forall n$, but $[u_{\overline{n}} \cup \{u_{n_k}\}_{k=1}^p] = [x_{n_k}]_{k=1}^p \neq [x_{\overline{n}} \cup \{x_{n_k}\}_{k=1}^p]$, hence $\{x_n\}$ would not be u-stable.

Let us prove \Leftarrow .

By hypothesis every linearly independent subsequence of $\{x_n\}$ is minimal, then let us set

(20)
$$\varepsilon_m = \frac{1}{2^{m+1}} \inf \left\{ \operatorname{dist}(x_m, [x_{n_k}]); \ x_m \cup \{x_{n_k}\} \right\}$$

minimal subsequence of $\{x_n\}$ $\forall m$.

By hypothesis $\{\varepsilon_n\} \subset R^+$; moreover, if $\{x_{n_k}\}$ is a minimal subsequence of $\{x_n\}$, by (20) $\exists \{f_k\} \subset B'$ (see [6]₂ cor. 2.1, p. 255) so that

(21)
$$(x_{n_k}, f_k)$$
 is a biorthogonal system, with $||f_k|| \leqslant \frac{1}{\varepsilon_{n_k} 2^{n_k+1}} \quad \forall k$.

Let now $\{x_{n_k'}\}\subseteq \{x_n\}$ and $\{u_{n_k'}\}\subset [x_{n_k'}]$ with $\|u_{n_k'}-x_{n_k'}\|<\varepsilon_{n_k'}\ \forall k$; then if $\{x_{n_k}\}$ is a linearly independent subsequence of $\{x_{n_k'}\}$ with span $\{x_{n_k}\}=\operatorname{span}\{x_{n_k'}\}$ by hypothesis it follows that $\{x_{n_k}\}$ is minimal; therefore, by (21),

$$||u_{n_k} - x_{n_k}|| < \varepsilon_{n_k} \le 1/(2^{n_k+1}||f_k||) \le 1/(2^{k+1}||f_k||)$$
 $\forall k;$

that is, by th. III* and VI*, $[u_{n'_k}] \subseteq [x_{n'_k}] = [x_{n_k}] = [u_{n_k}] \subseteq [u_{n'_k}]$.

(b) \Rightarrow follows by (a), hence let us prove \Leftarrow .

If $\{x_n\}_{n\geqslant 1}$ is minimal the thesis follows by th. III*, hence suppose $x_1\in \operatorname{span}\{x_n\}_{n>1}$.

Therefore, by hypothesis, $\exists \{f_n\}_{n>1} \subset B'$ and $\{\alpha_n\}_{n=2}^n \subset \mathscr{C}$ so that

(22)
$$(x_n, f_n)_{n>}$$
 is biorthogonal system, $x_1 = \sum_{n=0}^{p} \alpha_n x_n, \ p < +\infty$.

By (22), $\forall m \in \{n\}$ =2 with $\alpha_m \neq 0$, we have that

(23)
$$(x_1, \frac{f_m}{\alpha_m}) \cup (x_n, f_n - \frac{\alpha_n}{\alpha_m} f_m)_{n(\neq m)=2}^p \cup (x_n, f_n)_{n>p}$$
 is biorthogonal system.

It is now sufficient to set

$$\varepsilon_1 = \frac{1}{2^2 \left(\sum_{m=1}^p (\|f_m\|/|\alpha_m| \text{ so that } \alpha_m \neq 0)\right)}, \qquad \varepsilon_n = \frac{1}{2^{n+1} \|f_n\|} \qquad \text{for } n > p ,$$

(24)

$$\varepsilon_n = \frac{1}{2^{n+1} \big(\|f_n\| + \sum_{n=1}^{\infty} (\|f_n - (\alpha_n/\alpha_m)f_m\|, \, m \neq n \text{ and such that } \alpha_m \neq 0 \big) \big)} \text{ for } 2 \leqslant n \leqslant p.$$

Now, if $\{x_{n_k}\}\subseteq \{x_n\}$ and if $\{u_{n_k}\}\subset [x_{n_k}]$ with $\|u_{n_k}-x_{n_k}\|<\varepsilon_{n_k}\ \forall k$, by th. III* and VI* and by (22), (23) and (24) it is easy to check that $[u_{n_k}]=[x_{n_k}]$. This completes the proof of th. III.

Proof of th. IV. (b) Let us set

$$(25) \{x_n\} = \{x_{n_k}\} \cup \{x_{n_k'}\}, \text{ with } x_{n_m} \notin [x_k]_{k \neq n_m} \text{ and } x_{n_k'} \in [x_k]_{k \neq n_m'} \ \forall m.$$

Let us fix m.

Suppose that the thesis is not true, hence

(26)
$$\forall i \in \{n\} \ \exists \{x_{n(i)_k}\}_{k=1}^{\infty} \subset \{x_k\}_{k>i} \text{ so that } x_{n'_m} \notin [x_k]_{k(\neq n'_m)=1}^{i} + [x_{n(i)_k}]_{k=1}^{\infty}.$$

By hypothesis $\{x_n\}$ is linearly independent, hence by (25) we have that

$$(27) \qquad \forall p \in \{n\} \ \exists r(p) \in \{n\} \ \text{so that} \ 0 < \operatorname{dist} \big(x_{n'_m}, [x_k]_{k \neq n'_m) = 1}^{r(p)} \big) < 1/p \ .$$

Let us fix $\{\varepsilon_n\} \subset \mathbb{R}^+$, by (27) $\exists p' \in \{n\}$ so that

$$(28) \qquad \exists u' \in [x_k]_{k \neq n'_m) = 1}^{r(p')} \quad \text{with } \|u' - x_{n'_m}\| < \varepsilon_{n'_m}.$$

Now let us set

$$(29) r' = r(p') \text{ and } n''_k = n(r')_k \ \forall k;$$

$$u_k = x_k \text{ for } 1 \leqslant k (\neq n'_n) \leqslant r', \ u_{n'_n} = u', \ u_{n'_k} = x_{n'_k} \ \forall k.$$

By (26), (28) and (29) it is easy to check that

$$[u_{n'_{m}} \cup \{u_{k}\}_{k(\neq n'_{m})=1}^{r'} \cup \{u_{n'_{k}}\}_{k=1}^{\infty}] = [x_{k}]_{k(\neq n'_{m})=1}^{r'} + [x_{n'_{k}}]_{k=1}^{\infty}$$

$$\neq [x_{n'_{m}} \cup \{x_{k}\}_{k(\neq n'_{m})=1}^{r'}] + [x_{n'_{k}}]_{k=1}^{\infty},$$

that is $\{x_n\}$ would not be u^* -stable.

- (a) Suppose that $\{x_n\}$ has no complete minimal subsequence, then we shall prove that
- (30) $\{x_n\}$ has not two infinite subsequences $\{x_{n_k}\}$ and $\{x_{n'_k}\}$ with $\{x_{n_k}+[x_{n'_k}]_{k=1}^{\infty}\}_{k=1}^{\infty}$ linearly independent.

In fact suppose that (30) is not true, hence

(31) $\exists \{x_{n_k}\} \cup \{x_{n_k'}\} \subset \{x_n\} \text{ with } \{x_{n_k'} + [x_{n_i}]_{i=1}^{\infty}\}_{k=1}^{\infty} \text{ linearly independent.}$

Then $\{x_{n_k'} + [x_{n_i}]_{i=1}^{\infty}\}_{k=1}^{\infty}$ is minimal, because, if $\exists m \in \{n\}$ with $x_{n_m'} \in [\{x_{n_k'}\}_{k(\neq m)=1}^{\infty} \cup \{x_{n_k}\}_{k=1}^{\infty}]$, by (b) $\exists s(m) \in \{n\}$ so that $x_{n_m'} \in [\{x_{n_k'}\}_{k(\neq m)=1}^{s(m)} \cup \{x_{n_k}\}_{k=1}^{\infty}]$, impossible by (31). On the other hand, if we consider $\{x_{n_k} + [x_{n_i'}]_{i=1}^{\infty}\}_{k=1}^{\infty}$, we have that $[x_{n_k} + [x_{n_i'}]_{i=1}^{\infty}]_{k=1}^{\infty}$ has infinite dimension, because $\{x_n\}$ has no complete minimal subsequence; hence \exists an infinite subsequence $\{x_{n_k'}\}$ of $\{x_{n_k}\}$, so that $\{x_{n_k'} + [x_{n_i'}]_{i=1}^{\infty}\}_{k=1}^{\infty}$ is linearly independent and complete in $[x_{n_k} + [x_{n_i'}]_{i=1}^{\infty}]_{k=1}^{\infty}$; moreover, by preceding arguments, $\{x_{n_k'} + [x_{n_i'}]_{i=1}^{\infty}\}_{k=1}^{\infty}$ is minimal; consequently $\{x_{n_k'}\} \cup \{x_{n_k'}\}$ would be minimal and complete in $[x_n]$, which is not possible; that is (31) is not possible and (30) is proved.

Now we affirm that

(32) $\{x_n\}$ has no infinite minimal subsequence.

Indeed, if \exists a minimal subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}$ and if $\{n'_k\}$ is the subsequence of $\{n\}$ complementary to $\{n_k\}$, by (30) $\{x_{n_k'} + [x_{n_i}]_{i=1}^{\infty}\}$ cannot have an infinite linearly independent subsequence, hence it would follow that $\{x_n\}$ has a complete minimal subsequence, contrary to hypothesis; therefore (32) is proved.

Then, by (32) and by th. IX of [7]₁, \exists an overfilling subsequence $\{x_{n_k}\}$ of $\{x_n\}$. On the other hand, by (30), if $\{n'_k\}$ is the subsequence of $\{n\}$ complementary to $\{n_k\}$, $\exists \{x_{n_k}^{"}\}_{k=1}^p \subset \{x_{n_k}^{"}\}$, with $p < + \infty$, so that $\{x_{n_k}^{"} + [x_{n_l}]_{i=1}^{\infty}\}_{k=1}^p$ is complete in $[x_{n_k}]_{i=1}^{\infty}$; that is $\{x_{n_k}^{"}\}_{k=1}^p \cup \{x_{n_k}\}$ is complete in $[x_n]$, which completes the proof of th. IV.

Bibliography

[1] V. I. Gurarii and M. A. Meletidi, Stability of completeness of sequences in Banach spaces, Bull. Acad. Polon. Sci. Sér Sci. Math. Astronom. Phys. 18 (1970), 533-536.

- [2] V. L. Klee, On the Borelian and projective types of linear subspaces, Math. Scand. 6 (1958), 189-199.
- [3] M. S. Krein, D. P. Milman and M. A. Rutman, On a property of the basis in Banach space, Zap. Mat. T-va Har'kov 16 (1940), 106-108.
- [4] A. Markushevich, Sur les bases (au sens large) dans les espaces linéaires, Dokl. Akad. Nauk SSSR 41 (1943), 227-229.
- [5] V. D. Milman, Geometric theory of Banach spaces (part I), Russian Math. Surveys 25 (1970), 111-170.
- [6] I. Singer: [•]₁ Baze in spatii Banach (II), Stud. Cerc. Mat. 15 (1964), 157-208;
 [•]₂ Bases in Banach spaces (I), Springer 1970.
- [7] P. Terenzi: [•]₁ Properties of structure and completeness, in a Banach space, of the sequences without an infinite minimal subsequence, Ist. Lombardo Accad. Sci. Rend. A 111 (1977), 42-66; [•]₂ Biorthogonal systems in Banach spaces, Riv. Mat. Univ. Parma (4) 4 (1978), 165-204; [•]₃ Some completeness properties of general sequences in a Banach space, Boll. Un. Mat. Ital. (5) 15-B (1978), 743-753; [•]₄ On the structure of the overfilling sequences of a Banach space, Riv. Mat. Univ. Parma (4) 6 (1980), 425-441.

Riassunto

Un teorema di Gurarii afferma che, se $\{x_n\}$ è una successione di uno spazio di Banach B, esiste una $\{\varepsilon_n\}$ di numeri positivi tale che ogni $\{u_n\} \subset [x_n]$, con $||u_n - x_n|| < \varepsilon_n \ \forall n$, sia completa in $[x_n]$.

Mediante una tecnica diversa ripresentiamo questo teorema, in una forma in cui viene considerata anche la struttura della $\{x_n\}$.

Definiamo poi le $\{x_n\}$ « u-stabili » e « u*-stabili »: per le prime esiste una $\{\varepsilon_n\}$ tale che, $\forall \{x_{n_k}\} \subseteq \{x_n\}$ e $\forall \{u_{n_k}\} \subset [x_{n_k}]$ con $\|u_{n_k} - x_{n_k}\| < \varepsilon_n \ \forall k$, sia $[u_{n_k}] = [x_{n_k}]$; le seconde hanno la stessa proprietà, con la condizione che ogni $\{x_{n_k}\}$ sia infinita.

Esaminando la struttura di tali successioni facciamo vedere che le u-stabili sono un'e-stensione delle successioni minimali; mentre le u*-stabili (ma non u-stabili) sono collegate alle successioni « overfilling ». Dimostriamo inoltre che la proprietà di essere overfilling non si mantiene per successioni abbastanza vicine; ne segue che una successione non è in generale u*-stabile, però ha sempre una sottosuccessione infinita u*-stabile.

* * *