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R, KENT NAGLE (*)

Perturbations of differential systems with symmetries

and the alternative method (*%)

1 - Imtroduction

In this paper we are concerned with the existence of a family of solutions
for a system of n ordinary differential equations with homogeneous linear
boundary conditions which satisfy a given symmetry condition. We consider
systems of the form

(1) o'=A(t)x + &f(t, z, &) tef—a,a],
2) By#(—a) + Bya(a) =0,

where @= col (z, ..., #,), ¢ is a small real parameter, f= col (fy, ..., f.), 4(%)
is and nXn matrix, and B, and B, are constant m Xn matrices. _

Several authors have considered the problem of the existence of solutions
for differential systems with symmetry. The problem of periodic solutions
for these systems has been studied by J. K. Hale using alternative methods.
Hale assumes the differential system satisfies a symmetry condition called
property (E) with respect to § (see [7],, p. 267 ). A formalization of pr operty (E)
in terms of projection operators has been given by A. Stokes [12]. D. C. Lewis
extended the concepts of periodicity and property (E) in his paper on auto-
synartetic solutions of differential systems [9]. Lienard systems with sym-
metries have been studied by V. E. Bononeini (1], . 3, and T. T. Bowman [2]ie.

In a paper by D. H. Sattinger on group 1ep1esent%10n theory and non-
linear functional analysis [11], the question of the bifurcation of solutions is
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studied with the symmetry assumptions given by assumptions of invariance
under some transformation group.

In this paper we extend the results of Hale [7]; to general homogeneous
boundary conditions for systems with property (E) with respect to S. We
give sufficient conditions for the existence of a family of solutions to our
boundary value problem and discuss properties of these solutions. A connec-
tion with bifurcation theory is given, also in connection with the bifurcation
papers of Hale [7], ,, Cesari [3],, and Gambill and Hale {6].

In 2 we discuss the alternative method which we will use to study our
problem and give the necessary background material. In 3 we prove our main
results concerning the existence of families of solutions to (1), (2). In 4 we
discuss the consequences of our results and the properties of the solutions to
our problem. Examples arve given to illustrate that the conditions of our exis-
tence theorems can be readily verified using our knowledge of the unperturbed
linear system. In Example 5 we are able to show the existence of a unique
solution satisfying certain symmetry conditions.

TFor a discussion of alternative methods as applied to nonlinear perturba-
tions of differential systems we refer the reader to the paper [10].

2 - General assumptions and background

In this section we will state our basic assumptions on our system (1), (2)
and develop the necessary machinery to show the existence of a family of
solutions to (1), (2). We will use the Cesari-Hale alternative method as deve-
loped in [3],, [7)s, and [10]. Our notation will be the same as in [10]. For a
general discussion of boundary value problems for linear systems we refer
the reader to the book by R. H. Cole [5] or the exposition in [3],. For a discus-
sion of the alternative method, used also in the works of Bononeini (1], ., and
Bowman [2],,, we refer the reader to the expositions of Cesari [3], and of
Hale [7],. :

Throughout this paper we assume that A(f) is a given nXn matrix whose
eniries are bounded measureable functions and B, and B, are constant m Xn
matrices such that the mX2n matrix (B,;B,) has rank m. We will take
f = col (fi, ..., fn) to be an nx1 vector function defined on [— a, a]X R*+!
whose entries are measurable in ¢ for every (z, &) and continuous in (z, ¢) for
every . Moreover, we assume that for each constant R, there exists cons-
tants M and L such that whenever |#|, |y| <R, then we have for all ¢t € [— ¢, a]

|1, @, e) | <M and |f(t, @, &) —f(t, ¥, €)I<le_yl7

where |-| denotes the Euclidean norm in RE-.
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Let (AC[—a, a])* denote the set of m-vector functions ¥y whose compo-
nents are absolutely continuous functions on [— a, ] and such that Byy(— a)
+ By(a) = 0. For y in (AC[—a,al)* define |y|, by [} = sup |y(@)]

—a<t<a

+ (2a)-*[|y'(t)|d¢. This defines a norm on (40[—a, a])* and (AC[—a, a])*

is a Banach space with this norm. Let (La[— @, a])* denote the set of equi-
valence classes of n-vector functions ¥ whose components are Lebesque inte-

grable over [~ a, a]. For y in (L,[— a, a])" define lyllo by [¥]o= (2(0)—IJ'T y(t)|dt.

This defines a norm on (L,[— a, a])* which makes (L,[— a, a])* a Banach space.
If T is a linear operator between two Banach spaces, then denote the operator
norm of 7 by |T].

We associate with (1), (2) the linear problem
(3) ' =A(t)x te[—a, a],
(4) B,#(—a) + B,a(a) =0,
and the adjoint problem
(5) y'=—4dy te[—a, a],
(6) Byy(—a) -+ B,y(a) =0,

where B; and B, are (2» — m) X n matrices and ~ denotes the transpose. The
determination of B, and B, from B, and B, can be found in [5], p. 141.

Let U be a nxp matrix whose p columns form a basis for the solutions to
the boundary value problem (3), (4), and let V be a ¢xn matrix whose q YOws
form a basis for the solutions to the adjoint boundary value problem (5), (6).
Let ¢ =[U(s)U(s)ds and d =[V(s)7(s)ds. The pxp matrix ¢ and the gxyq
matrix d are nonsingular.

For y in (AC[—a, a])” we define the projection P: (AC[— a, a])"

> (AC[—a, al)" by Py(t) = U(t)e-*{U(s)y(s)ds. It follows from the defini-

tion of U that the range of P is all of the subspace spanned by the solutions
to (3), (4).
In o similar fashion we define the projection Q: (I,[— a, a])* — (L,[— a, al)®

by Qg(t) = V(t)d-1[V(s)g(s)ds. Similarly the range of Q is the subspace span-
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ned by the solutions to the adjoint boundary value problem (5), (6). Straight-
forward caleulations show that P and Q are bounded linear projections in their
‘respective spaces.

The next theorem gives the existence of a partial right inverse K of the
operator d/df— A(7).

Theorem 1. If hisin (If— a, al)", then a necessary and sufficient condi-
tion that the boundary value problem

a'=A(t)x -+ h(t) , Byz(—a) + Bya(a) =0

has a solution is that Qh = 0. If Qh = 0, then there exists o um’qué solution Kh
of the boundary value problem such that PKh = 0. Furthermore, K(I——Q) 18
a continuous linear mapping of (Iy[— a, a])* into (AC[—a, a])". o

In practice K is defined using the variation of constants formula for non-
homogeneous linear systems. The proof of Theorem 1 makes use of this defini-
tion of K and the Fredholm alternative. It is given in {10].

We can now employe the Cesari-Hale alternative method with our projec-
tions P and @ and the partial inverse K to split the problem (1), (2) into an
equivalent system of two equations. o '

Theorem 2. For cach fized &, the boundary y value problem (1), (2) has a
solution x(t) if and only if =(1) sam?]‘w? the boundary condition (2) and the system

(7) @ = Po + eK(I— Q) z, ¢)
(8) ’ Qf(t, @, &) = 0.

The proof of Theorem 2 in our particular case can be found in [10] or in
a functional analysis setting in the paper by Cesari [3],.

Bquation (7) is amenable to a fixed point method. Our next theorem will
show that equation (7) has a unique solution a*(e, &) for & and & sufficientiy
small and henee solving (1), (2) is reduced to finding a solution to

Qi(y r*(a, €), 8) = 0.
Theorem 3. There exists ¢ >0 and ¢ > 0 such that, for any constant

p-vector o, || <o and & such that le| <&y, then there ewists a unique n-vector x*,
¥ = x*(x, &) such that

w* = Ua - eK(I—Q) f(-, 2% &) ,
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and x* satisfies the boundary conditions (2). Furthermore, if there is an « = afe}
with |a(e)| <o for |e| <&, such that

Qf(-, w*(a(e), €),€) =0,

then w*(a(e), &) 45 a solution of the boundary value problem (1), (2).

Proof. Again the proof can be found in [10], but here we will outline
those parts of the proof in which we have an interest.

Choose 0> 0 so that |«|<o, a a.p-vector implies | Ual, < It‘ Define
Sa = {y in (A0[— a, a])": y satisfies (2), Py = Ua, |y(t)| <R for allt e [—a, aJ}.
Let S be the union of 8, for all |« <o. On S we define a family of maps («, &)
as follows. For y eS8, Flo,e)y = U, + KA — Q)f(-,%,&). F maps S into
(A4C[—@a, a])*. For ¢ sufficiently small, we can show that F is a uniform
family of contractions from 8 into S. Hence by the Contraction Mapping
Principle each F(e, &) has a unique fixed point in S. In fact, the fixed point
lies in S,.

If there Is an a=af(e) with [a(e) | < g for [¢]| <&, and Qf(+, &%, («(¢), €), £)=0,
then #*(a(¢), ) satisfies both equations (7), (8). Hence, it follows from Theorem 2
that #* is a solution to (1), (2). This completes the proof of the theorem.

From the definition of Q it follows that Qf(, #%, &) = 0 if and only if

j V(s)f(s, %(s), €) ds = 0. We now define

(9) H(o, &) = [V()f(s, a¥(s), ¢) ds -

Solving (1); (2) has been reduced to finding « and e, |«|<g, || <&, such that
(10) " H(ae)=0.
Equation (10) is referred to as the bifurcation equation.

" From the definition of V it follows that H (&, ¢) is a system of ¢ equations
where ¢ is the number of linearly independent solutions to the adjont pro-
blem (5), (6). As defined in Theorem 3, « is a constant p-vector where p is the
number of linearly independent solutions to the linear problem (3), (4). For
each small ¢, to solve the bifurcation equation we must solve a system of ¢
equations in p unknowns. In the next section we will show that this can often
be done under symmetry assumptions on our original system (1), (2). In this
case we find that we have a family of solutions for each &. Another approach
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is to use the implicit function theorem. We refer the reader to [10] for a
diseussion of systems without symmetries and their solution using the implicit
funetion theorem.

3 - Families of solutions

In this section we will show that whenever our problem (1), (2) satisfies
a symmetry condition called property (E) with respect to S, then the number
of bifurcation equations is reduced. We will use this to give sufficient condi-
tions for the existence of families of solutions to (1), (2).

A differential system 2'= ¢g(t, #), where & and ¢ are m-vectors, is said to
have property (E) with respect to S if there exists a symmetrie, constant, nxXn
matrix S such that S2 = I and Sg(—1, Sx)= — g(t, ») for all {€[—a, a] and
all z in R*. If x(¢) is o solution to a system x'= ¢(t, #) which has property (E)
with respect to S, then y(f) = Sz(—1) is also a solution for the system
z'=g(t, ). For

y' = d/dt(Sw(—1)) = — Sa’'(—1t) = — Sg(—1, a(—1))
= —8g(—1, S(Sa(—1)) = g(t, Sx(—1)) = g(t, @).
We will need the following lemma.

Lemma 1. Suppose S is a constant, symmeiric, nXn mairiz such that
S = I. Let A(t) be an nXn matriz whose entries are bounded measurable func-
tions over the interval [— a, al, and let f & (L]— a, a])*. If

(11) (a) SA(—t) = A®)S, (b) Sf(—1) = —f(t), (¢) if 2(t) satisfies (2), then

Sz(—t) also satisfies (2), (d) if =(f) satisfies the adjoint boundary conditions
to (2), i.e. equation (6), then so does Sz(—1t),

then
(12) (a) SU(—t)a = U(t)x for t€[— a, a] if SU(0)ax = U(0)x for a & p-vector,
(b) 8Qf(—t) =—Qf(?), (¢) S{KI—Q)f}(—1) = {KT—Q)f}O).

Remark. Conditions (11a) and (11b) imply that the nonhomogeneous
system #'=A(¢)xz -+ f(¢) has property (E) with respect to S. Assumptions (11le¢)
and (11d) on the boundary conditions insure Sz(— ?) is a solution to the boun-

dary value problem (or its adjoint) whenever #z is a solution to the boundary
value problem (or its adjoint).
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Proof. Since 4 satisfies (11a) the system «'=A(¢)x has property (E) with
respect to S. Hence SU(—t)o is a solution to #'=A()z as is U{)a. If
SU(0)e = U(0)a, then by uniqueness we must have SU(—t)ee = Ut)ee for
te[—a, a]. This proves (12a).

The columns of the matrix U(?) form a basis for the solutions to z'=A(t)x
which satisfy (2). The columns of SU(—1) also form a basis for the solutions
to #'=A(t)r which satisfy (2) since (1lc) insures the columns of SA(— )
satisfy (2). Therefore, there is a nonsingular pxp matrix G° such that
SU(—1t) = U()G% te[—a,a]. Similarly, there is a nonsingular ¢x¢ ma-
trix G, such that V(—1)8 = G,V(¢), te[—a, a]. Let f satisfy (11b). Then
since S is selfadjoint,

SQf(—t) = STV (—t)d—! fV(u) flu) du = — V(1)God1G, fV(u)f(u) du .

—a

It follows from the definition of d that G,dG, = d. Moreover, V(— #)S = G,V (1)
thus V(—1¢) = V(— )8 = G, V(¢)S + G;V(—1) and G:=1I. It now follows
that G,d1G, = d-*. Continuing our calculation of B8Qf(—1t) we find SQf(—1)
= Qf(#). This proves (12b).
It follows from (11b) and (12b) that S(I — Q)f(—1) = (I — Q)f{#). Henece
to prove (12¢), it suffices to prove (12¢) with (I — Q)f replaced by f with Qf = 0
Let Qf = 0, then Kf is the unique solution to the boundary value problem

(13) o'=A(t)z -+ f(1)  te[—a,a],
(14) B,a(—a) 4 Bya(a) =0,
with Px = 0.

Assumptions (11a) and (11b) imply that system (13) has property (E) with
respect to §; hence SKf(—1) is also a solution to (13). Since Kj satisfies
(14), (11c) implies SKf(—1¢) also satisfies (14).

Since Kf is a unique solution of (13), (14) with PKf = 0, it remains only
to show that P(SKf)(—-)= 0. Now

P{SKfH—")}¢t) = U(t)c—lfaﬁ(u)SKf(—— u) du = U(t)o*lfé"ﬁ(—— w)Kf(— ) da

-a

= U(t)e—G fU(u)Kf(u) du} = 0.

[Tence SKf(—-) = Kf(-). This proves (12¢) and completes the proof of Lemma 1.
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The next theorem gives conditions for the linear dependence of the bifurca-
tion equations.

Theorem 4. Let x%(w, &) be the function which ts the solution to the auxiliary
equation corresponding to a particular o« and ¢. Suppose that system (1) has pro-
perty (B) with respect to S all |e| <&, and that assumptions (11le) and (11d)
of Lemma 1 are satisfied.. Then

(15) Sa#(e, e)(—1) = a¥{er, €)(1) ,

for all t & [— a, a] provided SU(0)x = U(0)ee. HMoreover, if H(a, ) denotes the
vector defined by equation (9), then

(16) (I -+ Go)H(x, e) =0,

where G, 45 the nonsingular ¢Xgq matriz such that V(—1)S= G,V () for
te[—a, al.

Proof. Let SU(0)x = U(0)a and take S, as defined in the proof of
Theorem 8. Let 8. be the subset of S made up of those y in S such that
Sy(—1) = y(t). Recall F(x,¢): Sa —Ss for |u|<p, |e|/<e was given by
Playe) = Ux + eK(I—Q)f(*, v, ¢). Since (1) has property (E) with respect
to 8, then for fixed ¥ in Si, o'=A(t)x + ¢(t, y(t), e) has property (E) with
respect to S (note: SF(—t, y(—1), &)= Sf(— ¢, Sy(t), &)= — f(%, y(?), ¢)) hence
eK(I— Q) f(+, 9, &) is in 8%. Moreover, if SU(0)e = U(0)«, then U(t)a is in Sk
hence I(a, ¢)y is in Sz. Fla, &): 8% — S,, hence the fixed point x¥(a, &) of
(e, ) must lie in S:. That is, Sa*(a, &)(—1) = 2*(a, £)(t).

Using (15) and the fact V(—1#)S = G,V (f) we have

He, &) = faV(u)f(u, Sa*(— ), &) du = — Goﬁf(zc)f"('tt, o*(u), ) du = — G H(x, ¢) .

—a —a

This completes the proof of Theorem 4.

Theorem 5. Let system (1) have property (B) with respect to S for all
le| <& and STU(0)a = U(0)o for all p-vectors o, || <o where g, and o are given
in Theorem 3. If (I 4 Gy) is nonsingular, then (1), (2) has a p-parameter family
of solutions for each &, |e|<e, where the parameters are given by the components
of the p-vector .



[9] PERTURBATIONS OF DIFFERENTIAL SYSTEMS ... 17

Proof. If I G, is nonsingular, then H(a, &) =0 for all |x|<p and
le] <& and the theorem follows from Theorem 3.

It T + G, is singular, then the ¢ equations of H(x, ) are linearly dependent.
pet G(e, ) denote a subset of the equations of H(x, &) which are linearly inde-
Lendent and span the equations of H(e, ). G(a, &) = 0 if and only if H(c, &) = 0.
Tor each &, G(x ) is a set of # equations in p unknowns where # < ¢.

Theorem 6. ZLet system (1) have property (BE) with respect to S for all
[e] <& and SU(0)ec = U(0)er for all |o| <p. Let T -+ G, be singular and G(c, &)
and v as defined above. Assume p=r and Ga, &) is continuously differentiable
with respect to both o and & for all |a| <o and |e|<eg. If there is a p-vector &
such that |&| <o, G(&, 0) = 0, and 0G(&, 0)/eo has rank r, then there is an & > 0
and a solution z*(x(e), €), |¢|<e of the problem (1), (2). Moreover, if p > r,
then we have a p—1v parameter family of solutions of (1), (2).

Proof. The hypotheses on (e, ¢) and the implicit function theorem imply
there is an ¢, 0 <e; <8, such that the equation G(e, ¢) = 0 has a solution ale),
lo(e) <o, for all ¢, |¢| <te;. Butb this implies %(«(e), €) is a solution to (1), (2).
If p >, then it also follows from the implicit function theorem' that there
is a p —r parameter family of «(¢)’s which satisfy G(x(e), &) = 0. This com-
pletes the proof of the theorem. .

The continuous differentiability of G(a, &) depends upon the differentia-
bility of the point a* of the map F(«, ¢) defined in the proof of Theorem 3.
A discussion of the differentiability properties of w* is given in [10].

4 - Discussion and examples

Under our assumptions on A(¢) and f if follows from Theorem 3 that for
cach ¢, |e| <&, if Qf = 0, then we get a unique solution for each p-vector «,
|| <p. For m = n, if the linear problem (3), (4) has only the trivial solution
and hence P = 0, then Q = 0 (see [2],, p. 143). Consequently, a family of
solutions is likely to occur only when the linear system has nontrivial solutions.
This is called the resonance case. This suggests the use of alternative methods
to approach the problem. »

Bifurcation theory deals with the solution of a system which depends upon
a parameter. It is concerned with the existence of solutions, number of solu-
tions, and the behaviour of these solutions. It follows from Theorems 5 and 6
that we have solutions to our system (1), (2) depending upon ¢ and p — » other
parameters. Consequently for each & and p-vector «, there is a p —# family
of solutions branching out from our solution z*(x, ). For a more detailed
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discussion of bifurcation theory for differential systems we refer to [4],., [8],
and to [8L, [6], [7],.

When the conditions of Theorem 5 or 6 are satisfied, we obtain a family
of solutions to (1), (2). However, it follows fromx Theorem 3 and the proof
of Theorem 3 that we do get a unique solution for each p-vector o, |a|=<p.
It thus follows as a consequence of the Contraction Mapping Principle that
our solution a* has the form x¥(x, &) = U(t)ax -+ O(e). This representation
may be used in determining the particular solution we may want (see
Example 5).

If the system (1), (2) has a solution with small norm, then it follows from
Theorem 3 that the solution must lie in the set S as defined in the proof of
Theorem 3. If our system (1) has property (E) with respect to S, satisfies
(11e), (11d), and SU(0)x = U(0)er for all p-vectors «, |a|<pg, then the solu-
tion x*(f) must lie in 8*. This is evident from the proof of Theorem 4 where
the mapping F(e«, ¢) from S into S is actually a map from S* into S* and hence
the fixed point lies in 8* It follows from the definition of S* that the solu-
tion o* satisfies the symmetry condition Sa*(—t) = x*(¢). Thus in order for
a small solution #* to exist which does not have this symmetry property we
must have some p-vector o such that SU(0)a 54 U(0)x. Thus it becomes a
property of the linear problem as to whether we get nonsymmetric solutions
of small norm. This condition is easily checked as seen in Example 5 where
we obtain a unique solution satisfying certain symmetry eonditions.

Example 1.

0 1 0

(17) o= (—'1 0 0).1} + &f(t, ) t€[—m ],
0 0 0

(18) diag (1,1, 1) x(— =) 4+ diag (— 1,1, —L)a(x) = 0 .

We assume f satisfies the agsumptions made in 2 and has the following
symmetry properties:

(19)1 fl(_ t; Xyy — &, .’lfs) = ""fl(t; m) s
(19), fol—t @, — 3, 23) = fu(t, @),
(19), fS(_‘ by @1y~ Ly, &) = "“f:i(ts x) .

Here, p =2 and g = 2.
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Let S = diag (1, — 1, 1), then S is a 33 constant symmetric matrix and
8* = I. We will show (17) has property (E) with respect to 8. We must show
S{A(—)Sw + ef(—¢t, Sa} = — {A () + f(t, )}

0 1 0

SA(—1)S = diag (1, —1,1) (—1 (N ) diag (1, —1,1)
0 0 0
0 —1 0
= diag (1, —1, 1) (—1 0 O)=—~A(t).
0 0 0

Now Sz = diag (1, — 1, 1)@ = col (z,, —,, 3), S0 we have

ful—t @, —,, x,)
S{(—1t, Sz) = diag (1, —1, 1) | fol—1¢, @1, — 4, &) | = —j(¢, 2) .
fa(—1t, @y, —x,, @3)

It easily follows that (17) has property (E) with respeet to S.

We will now show that the boundary condition (18) is sueh that (1le)
and (11d) hold. Assume =z satisfies (18), then diag (1, 1, 1)S2(— (— 1x))
+ diag (—1, 1, — 1)Se(—m) = — {diag (1, 1, 1)2(— =) + diag (— 1, 1, — 1)z(7)}.
But the term in brackets is zero since # satisfies (18). Hence Sz(—-) satisfies (18)
also. This shows (11c) holds. The adjoint boundary conditions are the same
as (18), hence (11d) also holds.

The matrices U and V are given by

cos ¢ 0 .
U ( it 0 i (cost —sin t 0
1) = { —sIn ’ 1) = )
0 1

0 1 0

We now calculate G,. Recall G, is the nonsingular constant 2 X2 matrix such
that V(—)S = G,V (¢).
cos (—t) —sin(—1)

0
0 o 1>d1ag(1,—~1,1)

V(—1)8 = (

cost sint 0
( 0 0 1

)diag 1,—1,1)= V().

Hence G,= diag (1, 1).
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Let o be any 2-vector, then

1 0
SU(0)x = diag (1, —1,1) (0 0 ) o= U(O)yoc .
0 1

Hence for any 2-vector o, SU(0)e = U(0)e. It now follows as a consequence
of Theorem 5 that for |«|<p and |¢| <&, then we have a 2-parameter family
of solutions where the two parameters are o« and o,.

Example 2.

o 1 0 ,

(20) w’:(O 0 1:>m+5ﬂt7m) te[—a,a], |
0 0 0

(21) © diag (1, 1, La(—a) + diag (— 1, 1, — L)w(a) =0 .

Here p = 2 and ¢ = 2. We assume f satisfies the assumptions made in 2 and
the symmetry condition (19). ‘

Let S = diag (1, —1,1). One can show that (20) has property (E) with
respect to S and the boundary conditions (21) satisfy (11le) and (11d). For
this system we have B

L 0 0 1
0 2

For every 2-vector « we have that SU(0)a = U(0)x. Now G, = T and it fol-
lows from Theorem 5 that for each |&| <& and |«|< ¢ we have a 2-parameter
family of solutions where the two parameters are o; and o,.

Remark. The function f = col(f,, f., fs) given by fi(t, @y, v, ;) = t*z,,
+ sint 4 02ag, fot, @, Ta, @) = @7 4 @5 - c0St @, + Bilyy [o(ly @1y By T) = B2,

satisfies the symmetry conditions (19) and our assumptions in 2.

Example 3.

0 1 0
(22) m':(——l 0 O)az-}—ef(t,:v) te[—m, n],
0 0 sint

(23) diag (1, 1, 1)@(—x) + diag (— 1, —1, —L)z(z) = 0.
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Let f satisfy our assumptions made in 2 and the symmetry condition (19).
A simple calculation shows that (22) has property (I) with respect to S where
S == diag (1, — 1, 1). Moreover our boundary condition satisfies (11¢) and (11d).
Here we have

gin ¢ cost 0 sin 3 cost 0
U(t)=| cost —sint 0 ) , V()=|cost —sint 0
0 0 @ cos t 0 0 @oon t

and. G, = diag (—1, 1, 1).

Let o be a 3-vector, then

0 1 0 oty o
SU(0)« = diag (1, —1, 1) (1 0 0) o) = —oy ),
0 0 e oy e toy
and :
0 1 0 ¢ s
U(O)o(——(l 0 0 )(oc2 =1{ o )
0 0 e T e o,

These are equal if and only if ¢;= 0.

Consider f = col {§,, f.) = col (e, 23). For « such that o, = 0, we have
by Theorem 4 that diag (0, 2, 2)H(x, ¢) = 0. Hence H, = H; = 0 so H(e, ¢)
reduces to G(f, ¢) = Hy(x, ¢). Now

Hiy(o, &) = [sintf,(t, ) dt -+ [cos t,(t, @) dt .
Henece we have

T

G(B, &) = [{sintf,(t, z*(B, &) + costf,(t, z*(B, £))} dt .

T

We know that a%(a, &) = U(t)e + 0(c) so @;(B, &) = p.cost + 0(z), z,(B,e)
= — By sint + 0(e), @4(B, &) = B, e”=** 4 0(g). So for ¢ = 0, we have

G(B, 0) = [{sintf,(t, i cost, — B, sint, B, e~ =)
. + cos tfy(t, By cost, —fy sint, f, e~ °°”)} dt.

Let us consider the case where

hi(ty @) = @2, + sint, fa(ty @) = w2y
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Now
d(p, 0) :f{ﬂl costsin®t + sin*t 4 B, f, cos*t e” '} dt = 24 4 B -+ B,5,C,

where 4, B, and ¢ are constant determined by the above equation. Also,
CG (B, 0)[of = (2614 + B0, f:C). Fix B, + 0 and choose f, = (— 24 — B)/B,C
= @(f,).- Then G(B, 0) = 0 and the rank of 3G(f, 0)/3f= 1. So by Theorem 6
we have a one-parameter family of solutions to (22), (23) where f, is our para-
meter. Hence our solution has the form «f = B, cost + O(s), @) = — f, sin ¢

+0(e), @ = p(fi)e™ =" + Oe).

Example 4.
0 1 0
(24) @' = < —1 0 0 )'v + ef(t, x) te[—mn,n],
0 0 0
0 1 0 0 0 0
(25) <0 0 0) w(—n)+(l 0 O)w(n)zﬂ.
0 0 1 0 0 —1

Let f satisly our assumptions made in 2 and the symmetry condition (19).
Again, a simple ealculation shows that (24) has property (E) with respect to S
where 8 = diag (1, — 1, 1). Our boundary conditions require ,(¢) to be zero
at s and — 7 and @,(f) periodic with period 2. The adjoint boundary matrices B,
and B, in equation (6) are

1 0 0 0 0 0
B3:<O 0 0) and B4:(1 0 0).
0 0 1 0 0 —1

(Refer to [5], p. 141, for the determination of B, and B, from B, and B,.)
Once B; and B, have been determined, it is easy to show that conditions (11c)
and (11d) are satisfled. We have

cosit 0 .
U ‘i 0 Vi) (smt cost 0
(t :(——sm ) , 1) =
1
0 1 0 0

and G, = diag(—1, 1).
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Let o be any 2-vector, then

1 0 « oy
SU0) o = diag (1, —1,1), (0 0) (al) = (0 ) = U(0)e .
0 1 ? oty

It follows by Theorem 4 that for any 2-vector o, (I 4 Go)H(x, ) = 0.
Since I + G, = diag (0, 1), solving H(«, ¢) = 0 reduces to solving H,(x, &) == 0.
Now

Hyo, &) = [sintf(t, (o, )(1)) dt - [e0s tha(t, @*(at, £)(0)) e .
Since @*(e, &)= U(t)a;’r— O(e),
@y (o &)= oy cost +0(e), (e, &) =— oz sint -+ O(e), @(et, &) =ots 4 O(e) .
Let us consider the particular case where

f1(t, @) = sin i} + @, 5,0, , folty @) = (1 4 @3)~1— cos t sin a,

and f; need only satisfy assumptions in 2 and condition (19). Then

T k4
H,(e, 0) = fo sin®t At — [l x, cos t sin® ¢ dt

- -

T 3
~+ [eos t(1 + of sin?#)-1 d¢ —sin o, feos? t At = ma) — 7w sina, ,
— -1

and.
OH (e, 0)/dor = (0 27oty — 70 COS ).

For o, == 0, Hy(e, 0) = 0 and oH,(«, 0)/de = (0 — 7). So by Theorem 6
we have a one-parameter family of solutions to (24), (25) where «, is our para-
meter. Our solution has the form a:”; = o, €08 t + O(e), @) = — oy sint 4 O(e),
z; = O(e).

Example 5. We seek T-periodic solutions to

(26) - y'=eflty), te[—T[2,T[2],

where f(2, y) is periodic of period T in ¢ and satisfies the assumptions of 2 and
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the symmetry condition f(—1{, y) = —f(f,%). Ixpressed as a first order
system,

, 0 1
(27) o=, e e,
(28) diag (1, 1)a(— T/2) 4 diag (— 1, —1)x(T/2) = 0,

where g(t, ) = col (0, f(t, 2,)). The system (27) has property (E) with respect
to S where S = diag (— 1, 1). The boundary conditions (28) are the same as
the adjoint boundary conditions and satisfy (1le) and (11d). We have
U(t) == col (1, 0), ¥(f) = (0,1), and Gy = 1. Let « be any real number, then

SU(0)e = diag (—1, 1)(3)05:(_(')“). Now U(O)a=(‘(’)‘) s0 we have SU(0)a

=U(0)o only when « = 0. By Theorem 4 when o« = 0, (I 4+ Gy)H(ex, &)= 0.
Since ¢, = 1, we have H(0, &) = 0 for ¢ sufficiently small.

It also follows from Theorem 4 that Sa™(0,&)(—1t) = a*(0, £)(t), which says
that mf(O, ¢) Is an odd funetion. Thus equation (26) has an odd Z7-periodic
solution for ¢ sufficiently small.

In Theorem 3 we find we can express 2%(«, &) = U)o -+ eK(I — Q)f(-, &%, ¢)
where #*(«, ¢) is the unique solution to equation (7) with |«| <o and |e| <e,.
If we have any solution & to equation (1) with PZ = U(t)s, ']oc{ <o, then &
must also satisfy equation (7). Since #* was the unique fixed point in the set Su
(see proof of Theorem 3), then we must have v*(e, &) = &.

In the particular case of the problem (27), (28), we have z*(a, &) :(g)
+ eK(I— Q)g(-, #*, ), where PRK(I —P)g = 0 or K(I —P)g has mean value
ZeTO.

Consequently, @; (e, &) will be an odd function only if ¢ = 0. It thus follows
that wf(O, ¢) will be the only odd T-periodic solution to equation (26) for ¢
sufficiently small.

Of particular interest is the problem of T-periodic solutions to

(29) Y-+ e siny = ef(t) ,

where f is an odd T-periodic function. The above analysis shows that equa-
tion (29) has a unique odd T-periodic solution for small « and s. This is con-
sistant with the results of Bononecini [1],,. He found equation (29) to have
at least one odd 7-periodic solution and points out there are good reasons why
the problem has only one such solution. While Bononeini’s existence results
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are valid for ¢ = 1, we have been able to prove existence and uniqueness for ¢
small.
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Abstract

In this paper we are concerned with the ewislence of a family of solution for a differ-
ential system with symmelries. We use the Cesari-Hale alternative method and an
extension to general homogeneous boundary conditions of a symmelry property due
to J. K. Hale. We give sufficient conditions for the existence of a jamily of solutions and
discuss the properties of these solutions.
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