Riv. Mat. Univ. Parma (4) 6 (1080), 407-412

Copn-Com Y BH (%)

Approximate iterative process

in strictly convex Banach spaces (**)

Dedicated to Professor Kiyoshi Iseki on his 60th birthday

1 - Introduction

Let T be a selfmapping of a Banach space X. The mapping 7' is called
nonexpansive if |[Te — Ty|< |z — y| for all @, y in X. It is known [7] that
the Picard sequence of iterates {7z} for given a, in X, need not converges
to a fixed point of 7' whereas the sequence {U"z,} may converge to a fixed
point of T, where U= 2AI 4 (1— )T, 0 <A< 1. The study of the conver-
gence of {U"z,} was made in uniformly convex Banach space by Krasnoselski [7]
for 2= § and for a general 1 by Schaeffer [11]. However, Edelstein [3], for
2 =} and Diaz and Metealf [2] assumed the space only to be strictly convex.,

Recently, Massa [9]; discussed the similar problem for U = > ¢, T, where
i=0

€:>0, ¢,>0, ;> 0, >e¢;,=1. Kannan [5] considered a selfmapping 7 of X
=0
satistying | 7o — Ty| < §{Jo — To|+ |y — Ty}

Now let K be a closed and convex subset of a strietly convex Banach
space X. A selfmapping 7 of K is called generalized nonexpansive if

(1) the set F(T) of the fixed points of 7' is nonempty,

(*) Indirizzo: Dept. Math. National Central University, Chung-Li, Taiwan,
Republic of China.

(**) This research was supported by the National Seience Council. — Ricevuto:
7-VI-1979.



408 CHEH-CHIN YEH [2]

(i) |To— Tylle— yl <z — y|{als, v) e — y| -+ alz, y)(llo — T=|
+ ly — Tyl) + as(@, y)(|lo — Tyl + ly — Tz)|)} + aulw, y)|e — Tylly — Tz,

for all », ¥ in K, %, where a,;: K X K —{0,1] with

sup {ay(, ¥) + 2a5(@, 9) + 2a5(w, ¥) + @@, y)}<1,

Z,VEK

inf {a;(2, y) + ax(®, y) + ax(@, )} > 0 .

#,UER

=0

Let § =  b,T", where b, is constant for ¢ = 0,1,2,...,0,>0,b,>0,5,> 0
and¥> 0, = 1. '
)

In this present paper, we obtain results for approximately fixed points
for this much wider class of mappings. We shall study the convergence of
{87} for x# in K and prove that § is asymptotically regular [1], i.e.
lim || S=*1x — S*z| = 0 for each » in K. Densifying mappings are also discussed.

7

For other related results, we refer to Kirk [6], Massa [9], and Petryshyn
and Williamson [11].

2 « Main results

Henceforth we suppose that 0 € K and T'(0)=0.

Lemma 1. Let peF(T). Then |Tra— p|< | T w— p| for every x€ K
and n € N, where N denotes the set of positive integers.

Proof. Since xe F(T) is trivial, we can suppose that e K — F(T).
From (ii)

|To— Tpl|z— pl<|o— pl{ele, p)|o— p| + ale, p)(Jo— Tz|+1p — Tpl)
+ ay(@, p)(lz— Tp|+p— Ta))} + al@, p)|o— Tp||p— T=|
<|o— pl{a(@, p)|o— p| + au(@, p)(|o— p|+|p— Tal)

+ aylw, p)(lo— pl+Ip— Tz])} + au(@, p)|o— pllp — To|,
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which implies
(1= ay(@, p) — as(@, p) — (@, p))| Tw — 2|
< (@@, p) + ax(w, p) + as(w, p))Jo— p].
Hence, by (C),

a(w, p) + (@, p) + a,(x y P)
1-— a"(xy p) - aa(’v’ p) - dy ’B p

1Te —p| < jle—pl<lo—p|.

Similarly, we can prove |77 — pl<|T*¢— p|. Thus [T — pl<lo— pl
for every neN.

Remark. Since 0 e F(T), |T"|< |z].
Theorem 1. F(T)= F(S).

Proof. If e F(T), then Sz = 2. Thus meF(S) Hence we only prove

«zeF(S)=>azeF(T)» Let zeF(S),ie., o= Zb A'w. If by = 1, then §=1.
Thus F(8) = P(T). If b, <1, then =0

H’vﬂ—!lblT%-FZb Tiw| < by T 4 (1 — by) HZ 1~b Tia|

< by T +§ bl = ] .

Hence | = [T« and |y|= ||, where 7/—§(b-/(l-b )) Tiw. Since X is

strietly convex, we have y="Tz. Thus o= Sr=>50,Te -+ (1—b 1y = T. This
completes our proof.

Lemma 2. Lot peF(S) and we K — F(S). Then |So— p|< | — p].

Proof. If b, =1, then 8z = ». Thus z € I'(8), a contradiction. Hence
bo<<l. Let 2= > (b1 — bo)) I'w. If 2=, then (1—bo)x = 3 b,Tix. This

=] =1

means that » = zbinw. Thus « e F(8), a contradiction. Hence z == x. By

=0

27
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Theorem 1, p € F(S)= F(T). Hence

fr—pl=13 gl e =3 o pia S e
< St le—pi=lo—pl.

=1

Hence

182 — pl = lbole— p) + 1= b)(z— P)| < |z — 2] .

Mheorem 2. Let T be continuous and {S"x,} have a convergent sub-
sequence for some xo€ K. Then {875} converges to a fiwed point of T.

Proof. Since T is continuous, § is continuous. Let 8™z, — ¥y as i — oo.
If Sy ==y, then, from Lemma 2, the sequence {|S8"w, — p|} is strictly decreas-
ing. Since 8 is continuous, 8w, — Sy. Hence

lim | §%@ — p|| =y — 1> |8y — pl= lim [ 8"z — p|,

i

a contradiction. Thus Sy =1y.

Theorem 3. If X is uniformly convex Banach space, then S is asympto-
tically regular.

Proof. Let peF(T)= F(S). For any point 2, of K, we define », = Srag
for neN. Tt follows from Lemma 1 that {|z,— p|} is decreasing and
@, — p] = » for some r>0. If »=0, then , —p as n — oo. This implies
Bpgn — By = ST, — S*w, —0 as m —> co. Thus § is asymptotically regular
at @,. Suppose now that 7> 0. Since |82, — pl=|%np—p[<|@s— 2|7
as m — oo, it follows from the uniform convexity of X that

@0 — p — (S2.— p)| =0,

as m — co. This implies |@, — 8,] = |Smw,— 87" @] -0 as n —> co. Thus
our proof is complete.

The following definition is due to Furi and Vignoli [4].

Definition. A continuous selfmapping 7 of a metric space X is called
densifying if for every bounded subset A of X with «(4)> 0, we have oc(T(A))
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< a(4), where o denotes the measure of noncompactness of bounded sets in
the sence of Kuratowski [8].

Theorem 4. Lot Y be a bounded closed conver subset of X and T a
densifying generalized nonexpansive selfmapping of Y. Then {8"x} converges
to a fized point of T for ecach @ in Y.

Proof. From Theorem 1, 7(8) = P(T). The mapping S is defined on
Y and S(¥)c Y. Let A be a bounded subset of ¥ with «(4)> 0. Then

oc(S(A)) < ibia(Ti(A)) < ibia(A) =ofd).

=0 i=0

Thus § is densifying.

Let B = |J8= for any « in Y. Then S(B)c B. Since S is continuous,
n=0

S8(B)c 8(B) c B.
To prove «(B)= 0, suppose «(B) > 0. Then we have

(B) = max {«(8(B)), ez)} = a(S(B)) ,

a contradiction. Hence a(B) = 0. Since X is a complete metric space, B is
compact. If we Y — F(8), then, by Lemma 2, |8z~ pl<|z— p|, for any
p €F(T). As in the proof of Theorem 2, we can prove that {87z} converges
to a fixed point of 7.
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