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FERDINANDO MORA (%)

Exactness in the symmetrizations

of a left exact category (**)

Introduection

Partitions, i.e. disjoint distributive unions in semilattices were used in [4],
to characterize the exactness of short sequences and functors in the context
of distributive exact categories, i.e. exact categories in which the subobjects
of any object form a distributive lattice.

The context is justified by the fact that subquotients in distributive exact
categories behave « well », i.e. canonical isomorphisms between subquotients
are composable. Then in the inverse symmetrization [4], of the category,
where isomorphism classes of subquotients are a semilattice of subobjects,
in the short exact sequence 0 -4 —B — (€ — 0, A and C, taken as sub-
objects of B, supply a partiﬁon of B.

The fact is true for a wider class of categories, the ¢ orthoquaternary »
ones, [4],, [3] while a study of short exact sequences can be brought on also
in left (or right) exact categories (the ones endowed with zero, kernels and
cok-monic factorizations [5]).

These ones (of which distributive exact categories are a particular case)
have two outstanding symmetrizations, the « quaternary» one, whose sub-
objects are the subquotients of the former, and the «inverse» one, in which
subobjects are the isomorphism classes of the subquotients.

(*) Indirizzo: Istituto di Matematica, Universitd, Via L. B. Alberti 4, 16100 Ge-
nova, Italy.

(**) Lavoro eseguito nel’ambito del G.N.S.A.G.A. (C.N.R.). — Ricevuto: 19-XII-
1978.
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In the inverse symmetrization of distributive exact categories, distributive
unions appear as the good notion of exactness (in the sense outlined before);
but this is no more true in the wider context of left exact orthoquaternary
categories where partitions must be replaced by the weaker notion of « decom-
positions ».

Moreover, decompositions can be used not only in inverse symmetrizations,
but also in quaternary ones, where subobjects of an object are no more a
semilattice, but only a band (an idempotent semigroup).

Paragraph 1 introduces the notions of bands and semilattices with decom-
positions. Paragraph 2 introduces the notion of categories with decomposi-
tions. Paragraph 3 shows that quaternary and inverse symmetrizations of
an orthoquaternary left exact category € are categories with decompositions.
Relations between exact sequences in € and decompositions in its symmetriza-
tions are stated; so it is shown that the « good » notion of exactness is « decom-
position ». Paragraph 4 shows that with adjunctive hypotheses decomposi-
tions and partitions are the same. Paragraph 5 shows some examples.

Preliminary definitions

If § is a semigroup and E the set of its idempotent elements, S is called:
regular iff for any x € § there exists an 4 € § such that ayr = », yaoy = ¥;
inverse iff moreover such y is unique; orthodowx iff it is regular and ¥ is a sub-
semigroup.

If 8§ is an orthodox semigroup it is called: left-inverse iff for any =, y € B
oy = 2y [8]; right-inverse iff for any =, y € B ayr = yx [8]; quasi-inverse ift
for any =, v, 2 € B zyres = xyzz [9].

A band (idempotent semigroup) will be called a left-inverse (vesp. right-
nwerse, quasi-inverse) band iff it is a left-inverse (resp. right-inverse, quasi-
inverse) semigroup; in usual terminology it is called left-regular (rvesp. right-
regular, regular).

An involution on a category (i.e. a contravariant endofunctor identical
on the objects and autoinverse on the morphism; if @ is & morphism & — &
will denote the involution) is called regular iff for any morphism z afy = .

An involution category is called regular involution category iff its involu-
tion is regular; factorizing iff it has unique-up-to-isomorphisms epic-monic fac-
torizations.

M. Grandis (in a series of works named Orthodox Categories, for which see
the bibliography in [4],; in them one can also find proofs of the statements
in L1 and 1.2 below) has extended semigroup definitions to regular involu-
tion categories: a regular involution eategory is orthodox (resp. quasi-inverse,
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inverse) iff the semigroup of endomorphisms of any object is an orthodox
(resp. quasi-inverse, inverse) semigroup.

A category is called lefi-emact [5] iff it has zero, kernels and unique-up-to-
isomorphisms cok-monic factorizations.

In a left-exact category a monie is called subnormel ift it is the composi-
tion of (finitely many) normal monies. ‘

1 - Bands and semilattices with decompositions

1.1 — Let B be a band, i.e. an idempotent semigroup. Then:

(1) B has a canonical preorder, compatible with composition: » Ay iff
x = ayr;

(2) if ¥ has an identity 1, then 1 is the unique maximum for {;

(3) for any z, y, vy Ayz, vy Ao, vy Ay;

(4) N = {w € F such that for any y # Ay} is void or an ideal, the null
ideal of B; moreover if e N and y (L x, then ye N;

(5) @ is an order iff F is commutative.

1.2 — (1) On F there is a congruence @: 2z @y iff 2 Ay and y A x;
(2) E is commutative iff @ is the identical relation;

(8) if Z has an identity, the only element in its congruence class is
the identity ifself;

(4) N is a congruence class.

1.3 — Definition. A band is called a N-band iff it has an identity and
N .is non-void.

14 - If F is a N-band E/([) is a (meet) semilattice with 0 (the eclass N)
and 1 (the class {15}).

1.5 -~ Remark. Any meet semilattice is a commutative band, where
intersection is the product.

1.6 — Definition. In a N-band the family (¥, ..., ¥.) is a decomposi-
tion of y iff
(1) y; Ay for any 7;
(2)y: ¥y, eN i i7;
(3) if 2dy and 2y,e N whenever is= 4, then 2y,
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1.7 — Definition. Let ¥ be a N-band; for any =€ B, let I(2) the ideal
of all ¥ such that y Qa.

Let D be a family, indexed on FE, of subsets D(wx) of I(x) such that:
(D1) e D(x); (D2) if e D(y) and y € D(z), then x € D(z); (D3) if o e D(y),
then 2z e D(2y); (D4) for any y,€D(y), there exists a decomposition of y
(Yo, -+ ¥=) Where all y,’s are in D(y) (called a D-decomposition).

Then (B, D) is called a band with decompositions, or a D-band.

1.8 — Remark. If F is a 0-semilattice we have in the same way the
definition of semilattice with decompositions or D-semilaitice.

1.9 — Proposition. Let (y,, ..., 4.) be a decomposition of y (resp. a D-
decomposition) in a N-band (resp. in a D-band). Then:
(1) (@Yo, ..., ¥Y.) s a decomposition (vesp. a D-decomposition) of wxy.
(2) If for amy @ (wa, ..., Ba,) is @ decomposition (vesp. a D-decomposition)
of y:, then (2:3); 18 @ decomposition (vesp. a D-decomposition) of .

Proof. (1) If e day and zzy,€ N whenever ¢4, then 2o ayz Ay,
so zz Ay, but then 2z Ay, « Awy,.
(2) If 2y and 2,; € N whenever ¢ 3% 4y, j 7 §,, then if i 5= 4y, 22, A 2y,
and #x; € N for any j; therefore 2y, @22, € N.
Then, if i5%14, 2y;€ N and so z Ay, ; asfor any j+ j, 2w, ; €N, 2 Az, .

L10 — Definition. Let (E,D), (B, D) be D-bands. f: (B, D) — (&', D')
is called D-homomorphism iff: (1) f: B — E' is a semigroup homomorphism;
(2) for any x e B, f(D(x)) c D'(f(z)); (3) f(Nz)Cc N,; (4) f preserves D-decom-
positions.

1.11 — A commutative band is left inverse.

1.12 - Proposition. Let (B, D), (&, D') be left-inverse D-bands, f: & — B’
a semigroup homomorphism verifying (2) and (3) of 1.10.

f is a D-homomorphism iff for any y € B, for any y, € D{y), there exists a
D-decomposition (1q, ..., Yn) preserved by f.

Proof. By induction. Unary decompositions are obviously preserved.

So let f preserve w-ary D-decompositions and (y,, ..., ¥.) be a D-decom-
position of y. Let =z df(y), 2f(y.) € Nz, whenever is%14,. To fix ideas let
'I:o == Oo

There exists, by hypothesis, a D-decomposition of y, (¥,, @4, ..., @), pre-
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served by f. For any 4, (@:%, ..., 2:¥,) I8 an n-ary D-decomposition of
@y = @;, hence preserved by f. So (f(#,), f(@:191)y -+, F(@:1¥a), [(@:01), -.,y F(@1Ya))
is a D’-decomposition of f(y).

As 2f{y;) € N, if i52 0, #f(a;9,) € N, for any 4, for any i34 0. Therefore
2 A f(yo) and (f(#o)y ..., f(¥a)) is a D’-decomposition of f(y)

113 - Lemma. ZLet (B, D) be a left inverse D-band. Let L = B|® and
f: B — L the homomorphism associated to @. If f(») = f(y), i.e. @ @y, then

{(D(@) = J(D(®))-

Proof. Let xef(D(®)), « = f(a), a € D(x). Then ya € D(yz) = D(y) and
flya) = fla) = o a8 (ya)a = ya and a(ya) = a, for a Az A y.

1. 14 — Proposition. With the same hypotheses and noiations of 1.13,
let Do(a) = f(D(w)), where ® is such that o= f(®); Do = (De(a)) Then
(L, Da)) 18 a D-semilattice and f is a D-homomorphism.

243/

Proof. (D1) For any a€ L, e € Dy(a), as for any ve B, e D).
(D2) Let aeDo(ff), feDaly); o,y B such that «=f(z), B =fy)
@ € D(y); &, t € B such that f = f(z), v == (1), 2 € D(¢). Then 20 € D(zy) = D(z),
so 2z € D(t). 20 @ o implies o = f(zz) € f(D(t)) = Do(y). :
(D3) Let e Du(f), y €.L; @, y € B such that « = f(z), § = , x € D(y);
z€ I such that y = f(s). 2z e D(zy); so yo = f(zw) € f(D(2y)) = Dq> (vf)-

(D4) Let o € Do(); Yo, y € B such that oy = f(y,), & = f(¥), yo€D(y);
let (9o, ..., ¥.) be a D-decomposition. of y. y, Ay implies f(y,)<f(y) for any i;
¥.4y; € N implies f(y.)f(y;) = 0. Let y<e, 2 € F such that y = f(2). Then z A y.
If yf(y;) = 0 whenever ¢s%4,, then f(zy,) =0, 2y;eN. So =z dy; and
v = f(2) <f(y;). Therefore (f(%,), ..., f(¥.)) is a Ds-decomposition of c.

L.15 — Proposition. Let § be a quasi-inverse semigroup. Let P(8)
= {a el such that a = aa = @}.

(1) If a, b e P(S), then ab is idempotent; (2) if a, b € P(8), then aba € P(S);
(3) ¢f we define on P(S) the product a O b = aba, then (P(S), 1) is a left-inverse
semigroup; (4) if 8 is commutative, P(S) is commutative and a b = ab = ba.

2 ~ Categories with decompositions

2.1 — Let H be a factorizing, quasi-inverse involution category, 4 an
object of H. H(A) be the semigroup of endomorphisms of 4; H,(4) the (quasi-
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inverse) subsemigroup of idempotent endomorphisms of A; Hy(A) the set of
projections (symmetric idempotent endomorphisms) of A, which is a semi-
group for the composition O of 1.15; M(A4) the set of subobjects of A.

Then there exists a biunivocal correspondence between H,(A) and H(4)
which allows to define an induced structure of left-inverse band on M(4).
If moreover H is inverse then H,(4) and M (A) are semilattices with 1.

2.2 — Definition. O e Ob(H) is called pseudozero iff for any object 4
there exists @: 0 — 4 and H(0) = {1,}.

2.3 — Remark. If O and O’ are pseudozeros, there exists one and only
one morphism from O to O’ and it is an isomorphism. If x e H(O, 4), then
x is a monie. If H is inverse, a pseudozero is a zero. N(A) = {o € Hy(4)
such that Im («) = O} is the (non-void) null-ideal of H,(A4).

2.4 — Definition. Let H be a factorizing quasi-inverse category with
psendo-zero. Let M be a subcategory of monies in H such that:

(M1) Iso (H) c M;

(M2) if u,» are monics with the same codomain and #u = A£ is a ca-
nonical factorization, then if pe M also Ae M;

(M3) for any object 4, for any p,e M(A)= {ueM such that Codp
= A}, there exist ui, ..., ftn, t: € M(A) such that: (1) Im fF;p; = O whenever
i 5= §; (2) for any ve M(A4), if Im (f;») = O whenever i 3= iy, then vcu,, ie.
y =[] iy

Then (H, M) is called a category with decompositions or a D-category.
(Uoy --y ptw) verifying (M3) is called an M-decomposition of A.

2.5 — Remark. If H is inverse (M2) and (M3) can be so formulated:
(M2) if [4, & v, 1] is a pullback of monies and ue M also Ae M;

(M3) for any object 4, for any u € M(A) there exist u,, ..., #, such that:
(1) s u; = 0 whenever is=j; (2) if ve M(4) and » Ny, = O whenever
15514y, then » = u; A

2.6 — Proposition. Let H be a factorizing gquasi-inverse category with
pseudo-gero. M be « subcategory of monics containing all the tsomorphisms.
For any pe M(A) let

Dylp) = {uAdfi where A€ M(Dom (u))}, Du(A) = (Do 1)) eariay -
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Then (H, M) is a D-category iff for any object A, (Hy(4), Dy (4)) is a
D-band. ‘

Proof. (D1) is obvious.

(D2) Let 2, p, v € M(A), AL € Dylp), pji € Dy(v). Then } = ué, u= g,
§,Le M. So )=9(E), tEe M. So A1e Dyl).

(D3) Let A, u,ve M(A), pficDy(r). Then u=1§ &eM. Let 7
= M, &4 = 1,& be canonical factorizations, & e M, Al5il = Jn# ] and
JAufid) = In & E5, 1; therefore ALO uji € Dy(2 O v). ,

(D4) Let pe M(A), pofio € D(p), ie. ptg = uv,, vo€ M. Let B = Dom (16).
There exists (v, ..., v,), an J-decomposition of B. Let o = A€ Hy(A); o A uj
means that @21 is a monic whose eodomain is B. « @ v 9;fi e N whenever
i 5 7, means Im (#;il) = O whenever i = ¢, in which case il A,y Lo 7, fid
is a monic. But then o (@ uy, Fifi- ' We have so proved that (uvFyf, ..., v, 9,fi)
is a Dy(4d)-decomposition of .

(M2) Let y, ve M(4), #u = Af be a canonieal factorization, ue M. In
Hy(4) pii €D,(14) so »70 pfi € Dyy(v) . Bub v7 0 pji = vA25 so A e M.

(M3) Let uye M(A), pofio € Dyu(1l,); then there exist Miy eeny o € M(A4),
such that (uoflo, ...y ftnfia) 18 a Dy(4d)-decomposition of 1,. We then easily
infer that (u,, ..., #,) is an M-decomposition of 4.

2.7 - Definition and Proposition. Let (H, M) and (K, ¥N) be D- ca-
tegories. 4 pseudozero preserving functor f: H — K is called a D-functor iff
it satisfies the equivalent conditions: (1) f(M)c N and f preserves M-decom-
positions. (2) f(M)c N and for any 4, object of H, for any o € M(A) there
exists an M-decompositioﬁ (Yo -++5 tta) Dreserved by f. (3) For any object A4
the band homomorphism f,: Hy(A) — Ko(f(4)) associated to f is a D-homo-
morphism. '

2.8 ~ Proposition. Let (H, M) be a D-category. H|D be the inverse
category associated to H, f, the camonical functor. Then (H|®, fa(BL)) is an
inverse D-category. Let g: (H, M) — (K, M) be a D-functor, §: H|D — KD the
functor associated to g; g: (H|D, f,(M)) - (K/®, fx(IN)) is a D-funcior.

3 - Left exact orthoquaternary categories and D categories

3.1 — Theorem. Let C be a left ewact[5] orthoquaternary [3] category.
O% be its quaternary symmetrization [41],, which is quasi-inverse [4], with 0, as
pseudozero. Let Mo = {mP, p conormal epic, m subnormal [5] monic}. Then
(C7", M) is a D-category.
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Proof. M, is a subeategory for if [n, ¢, p, m] is a pullback in ¢ where
p is a conormal epic and m a normal monie, then # is & normal monic and ¢
a conormal epic.

(M2) We need only to observe that if [n, my, m, n] is a pullback of
monies in ¢ and m is normal also m, is such; and that if pm = ng in ¢ where
m and n are monics, p and ¢ conormal epics, if m is normal, » is such.

(M3) Let u, = mfpe My. Then m = m,... m,, where all the m/ s are
normal; let m, = ker (p). Let us now define gy = My ... My; gy == My . Myga
“(cokm;)”, for i =1 ... k— 1; u, = (cokmy)".

We claim that (uo, ..., %) is a decomposition. In fact, let » = n§ be a
monie in 0% with the same codomain as u;. Inductively let n, = n; ¢ = ¢;
[y Liyry Mig, iyl be a pullback; gipilips = 8:¢; and (cok m;)n, = {; cok (1;)
be factorizations (by [31), [¢:, cok (I;), v:, 2:] be a pushout, for ¢ =k—1,..., 1.

Then [,v = t:Z0{8_1... 8:)" i 1<i<b—1; fov= 1 Jo(Sr_1--- 30); Ha¥
= t,%,v,. Let us observe that s, , = ker (v;,) so if Im (@.v) = 0, then s, ; is
an isomorphism and ¢.l; ~ ¢;1. If ker(g;) is an isomorphism and Im (f. .
-») = 0 then ¢; = 0, ¢; = ¢iyliy1, 80 iy = 0 and ker (¢,4) is an isomorphism.

Now, let us suppose that Im (g )= 0 if i > 0; then v, =0 if >0, s, is
an isomorphism if 1>0. So fyv = neGo(Sr_z .-+ 80)" =~ Mo, is a monie, i.e. v A pp.

Let j#1, k and Im (f;v) = 0 whenever 454 j. Im (@,v) = 0 implies ¢, =0
5o inductively ¢;1; = 0 and »; is an isomorphism. Also, s; is an isomorphism
for any ¢>j. Then ,L’Z,-v=tj€,-v,~(s,c_1...sj)~ ~1;%; is & monie, i.e. v @A py;.

If Im (ji;») = 0 if j5= k, v, is an isomorphism; fiv = ¢,2, is a monic and
» @ yx. So the proof is complete.

3.2 — Theorem. ILet C be a left-emact CO-category ([6], whose awioms are
weaker than those in [1],); C° be its SO-symmetrization [11;, [6], which is inverse
and with 0o as zero.

Let C moreover verify axiom A6 of [2]; « If pm = ng, where p, q are conor-
mal epics, m, n monics and m is normal, also n s such ».

Let My = {mp, p conormal epic, m subnormal monic}. Then (0% M) is an
inverse D-category.

Proof. It is only slightly different from the one of Theorem 3.1.
3.3 — Proposition. C be a left-exact orthogquaternary category (resp. @
left-ewact CO-category verifying A6); p a conormal epic, m a monic. Then m

= ker (p) in C iff (m, P) is a decomposition in (C7, M¢) (vesp. in (09 Mc)).

Proof. An implication follows from Theorem 3.1 (resp. Theorem 3.2).
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As for the other one, if (m, ) is a decomposition and n = ker (), Im(pn)=0
implies n<m. But also (n, P) is a decomposition and Im (pm) =0, s0 m<n.
Therefore m = ker (p).

3.4 - Corollary. ZLet G, D be left-ewact orthogquaternary categories (resp.
left-exact CO-categories verifying A6), f: C—~D a W -functor (resp. a O-functor).
f is left-exact iff f (vesp. f9) is a D-functor.

Proof. Let p conormal, m = ker (p); then (m, P) is a decomposition,
(f(m), f(p))~ is a decomposition, f(m)= ker (f(p)). Conversely, let mpe M,,
M = My ... My, all m’s normal monics, m, = ker (p). (ftoy vy 1) taken as in
the proof of Theorem 3.1 is a decomposition. But f(m;) is normal and
f(eok m,) = cok (f(m,)). So, by Theorem 3.1 (resp. Theorem 3.2) also (f"(u,),
eeoy P(11e)) (vesp. with f°) is a decomposition. Then ¥ (resp. f°) is a D-functor.

4 - Partition semilattices and categories

4.1 — Definition and Proposition. Let (L, D) be a D-semilattice.

The following conditions are equivalent. "

(1) For any (y1, --., ¥x), D-decomposition of y, for any z, 2Ny = UzNy,.
foul
(2) For any (y1, ..., ¥a), D-decomposition of ¥, ¥ = Uuw..

(3) For any y, € D(y) there exists a D-decomposition (y, ..., y,) of y such
that for any 2z, 2Ny = UzNy,.
3

(4) LFor any y, € D{y) there ewisis a D-decomposition (Y, ..., y,) of y such
that y = Uwy,.

(8) For any y, € D(y) there exist y,, ...y, € D(y) such that y, Ny, =0
if 15§ and for any 2, 2Ny = Uzny,.

1

When they are satisfied (L, D) is called a «partition semilatlice ».
Proof. We have only to prove (5) = (4) = (2) = ().
(5) = (4). (Y15 ---, ¥n) is a D-decomposition of y as, if z<yandzny,=0

whenever i s 4,, then 2 =2Ny=UzNny, =2n Uiy 1€ <Y,

2

(4) = (2). By induction. Unary decomposition satisfy the thesis.

16
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Then let it be satisfied by n-ary decompositions and (¥, .., ¥») be a decom-
position of y. There exists a decomposition (@, ..., @) of ¥ such that 2, = 7,
and ¥y = U®;.

Let 2>y, for any ¢. Then z>a;Ny, for any 4, Jo @B Yry ooey 2NV Yy)
is an n-ary decomposition of x; ({=1,..., k); s0 &, = Uz;ny;, and z>a;
for any 7. But then z>y. i

(2)=- (1). Weneed only to observe that (2N 1, ..., 2N 9,) is a decomposi-
tion of 2N y.

4.2 — Definition. Let (H, M) be an inverse D-cabegory.

(H, M) is called a partition category iff for any A object of H, for any
€ M(A), there exist g, ..., 4, € M(A) such that u,Np; = 0 if ¢5=§ and for
any ve M(A4), »= Uy N p,;, or, equivalently, iff for any A (Ho(A), Du(4))

b3
is a partition semilattice.

4.3 — Lemma. Let C be a left-exact CO-category. The following conditions
are equivalent.

(1) (AT of [2]) if m = ker(p), n = ker(q), p& =g, m=an, P, q are
conormal epics, and x is monic, then & is an isomorphism.

(2) If pm = q, p, ¢ conormal epics, m ¢ monic, then m uker (p) = 1.
Proof. (2)=(1). (I)=aum==2a a8 s>m.

(1) = (2). Let n be a monic with the same codomain of m and such that
n>m, n>ker (p); then there exist #,, n, monics such that nn, = m, nn,
= ker (p). As pm =gq, pn is a conormal epic; moreover = Kker (pn)=mn
N ker (p) = ker (p). So, by the hypothesis, n is an isomorphism.

44 — Theorem. Let C be a left-exact CO-category verifying A6. Then
(C°, M) is a partition category iff C werifies the equivalent conditions of lem-
ma 4.3.

Proof. If m = ker(p), n = ker (¢), pxr = ¢, m = on, & a moniec, P, ¢
conormal epics, then & \m = m, ¥ N p = p; (m, P) is a decomposition hence
a partition, therefore « ~ 1.

Conversely, with the same notations as in the proof of Theorem 3.1, let 1,
be in Mg, 50 (ftoy ., ftn) is a decomposition. Let us show that 1= Up,.

For, let » be a monic with the same codomain of w, and v>u, for any 7;
v> i, implies n, is an isomorphism and %> (M ... My); ¥, 1<t <k, implies
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t: is an isomorphism and my ... m, = ((m, cMyy) N n) U (my ... my), $0 in-
ductively, n>my ... m; for all i<k and in particular n>my; ; v>p implies
that ¢, is an isomorphism. We have then m, = zl, and cok (my) = cok (I,)n;
» then is an isomorphism.

Moreover, v/ implies that z, is an isomorphism, i.e. ker (g,) <l = m,.
Also, v>u;, 1<i<k—1, imples that #, is an isomorphism and that ker (q.)
<m;. But m,, ker (¢;) = ker (Qepa) O My = ker (¢i41)y, O<i<k—1. So in-
ductively ker (¢;) = m,, ... m, ker (90)-v>> o implies that ¢, is an isomorphism.
So ker (g,) = 0, ker (¢;) = 0, ¢is an isomorphism.

Therefore » is an isomorphism and the thesis follows.

4.5 — Definition and Proposition. If (H, M) and (K, N) are parti-
tion categories, a zero-preserving functor f: H — K is called a partition functor
iff it verifies the following equivalent conditions.

(1) /(M) c N and f preserves partitions.

(2) /(M) c N and for any A, for any u,e M(4), there exists a partition
(Hay «ovy pir) Preserved by f.

(3) f is a D-functor.

4.6 — Proposition. If O and D are lefi-ezact CO- categories verifying A6
and the conditions of Lemma 4.3, and f: O— D is a ©- -functor, then f is left-
exact iff 1© is @ partition functor.

4.7 — Proposition. If (L, D) is a D-semilattice aml for any =, D(z)
= I(x), then (L, D) is a partition semilattice.

Proof. Let (i, ...,4,) be a decomposition of y. Let @ be such that o>y,
for any ¢ and z<y. ’l‘hen there exists a decomposition of y (z, a4, ..., ;). For
any 4,j Ny, =,Nae=20, 50 s=1y and y = U y,.

4.8 — Corollary. If (H, M) is an inverse D-category and M is the sub-
category of its monics, then (H, M) is a partition category.

5 - Examples

5.1 — Any category verifying axioms (D1)-(D5) of [3] (and in particular
the « normodistributive expansions» studied in [1],) is a left-exact orthoqua-
ternary (and C®-) category.
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5.2 — A left-exact C@-category verifying A6 and not AT is the category
in [2] pag. 199.

5.3 — A left-exact C@-category verifying A7 and not A6 is the following:
non-zero objects are 4, B, ¢, D, B, ', G, H; non-zero and non-identical maps
are:

(1) monies: my: A — B, me: 4 — C, mg: B — D, my: C =D, my: 4 — D,
me: B — H, my: F — @,

(2) conormal epics: p;: B = H, p;: ¢ = F, py: D — G, py: D - H;

(3) other maps: f,: B = H, f,: ¢ = G;
with the following non-zero compositions (and their consequences): m; = mq
My == MMy, [1 == Py = MgP1; fo == Doy = My Ps.

5.4 — A left exact C@-category C such that in (C? M) there exist decom-
positions which don’t have unions is the following.
Let I be the family of non-void open sets of the cofinite topology of IV
ordered by inclusion. Non-zero objects of ¢ are H, L, (K,),,; non-zero, non-
identical maps are

(1) normal moniecs: n;: H — K;, iel;
(2) other monics: my: K, — K;, i,jel, 1<j;
(8) conormal epics: p;: K; =L, 1 € I;

with the following compositions:
MM = N5, piny =0, My Mi; = Mg Pimy; = Pi .

Let 4, = N. Then (n,, §;) is a decomposition of K; in (C%, M) but for
any jel, n; <My, Piy < My 80 1)U Piy doesn’t exist in I, .
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Sunto

Decomposizioni in reticoli e semigruppi idempotenti sono defimite in modo da fornirve
una ¢ buona » definizione di esatterza di sequenze corie e funtori nel contesto delle cate-
gorie esatte sinistre dotate di simmetrizzazione orloquaternaria o inversa.
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