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Lutct MANGIAROTTI (¥*)

Mechanics on a Galileean manifold (**)

A Grorcio SEsTINT per il suo 709 compleanno

1. - Introduction

In this paper we examine some geometric properties of the dynamics on
a Galileean manifold. This consists [1] of the so called absolute time bundle
t: M — R (M is the event space) together with a Riemannian metric g in the
spacelike bundle ¢ = Ker. d¢. Hence a Galileean manifold generalizes the well
known Newtonian-Galileean manifold in which the bundle ¢: M — R is linear
affine and ¢ is Buclidean [5], [6].

The «arena» of dynamics is the kinematic space K which is defined as
the submanifold of the tangent space TM such that d3|i =1. If : K — M
is the canonical projection, then the bundle m: K — M has a canonical affine
structure over the vector bundle ¢. All the basic concepts are related to the
kinematic space K. For example, a motion ¢ in M is a section of the bundle
t: M — R and hence its velocity ¢ is a section of the bundle ¢*m (the pull-
back of the bundle =z: K — M over ¢); a framing ¥ is a section of the bundle
w: K — B; a force f is a section of the vertical bundle V,; = Ker. T'm <> 14
and a dynamic equation X (that is an equation of motion) is a section of an
affine subbundle of the tangent bundle 7, modeled on the vector bundle V.
Moreover, the concept of acceleration and that of Galileean connection on M
(efr. (c), 3) lead to consider vertical projections I'e Hom (7x, V) providing
affine isomorphisms between forces and dynamic equations [4]. However, we
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are «forced » to work in the space K in order to use « absolute » concepts
avoiding to choose a distinguished framing F. In this connexion, let us em-
phasize the role played through the paper by the vertical endomorphism o
(see (2), (18), (26), (37), eto).

But physical interpretation require the use of framings. For this we give
a detailed analysis of all the concepts related to a framing 7. For example,
to F there are associated a projection p,e Hom (74, o), a vertical projection
Iz e Hom (75, Vi) used to define the acceleration relative to ¥, a dynamic
equation £, a contact structure wr on XK, a Galileean connection V¥ on M
which is used to define the vorticity 2-form £ of the framing ¥, a kinetic
energy 7'x, the apparent force — m, which arises from the deformation of ¥, etc.
Certain novelties should be found in the way in which some of these concepts
are introduced (inertial forces, contact structures on the kinematic space If, ete.).

The work is motivated by applications, mainly to classical analytical mech-
anics. Tor this reason, we let M be an # + 1 dimensional manifold, n>1.
However, in the § 4 on Dynamics, it may be supposed = = 3, though this
is not relevant in the context of the discussion. As a simple example, note that
an « holonomic constraint» in the Newtonian-Galileean manifold (M, {, g) is
merely a « Galileean submanifold » of (M, ¢, g). For example, if ¢ is a function
on M, we get an holonomic constraint ¥ = ¢=1(0) (it is assumed that 0 is a
regular value of ¢ and that N Ni¢(r)#£ ¢, 7€ R) by requiring that
Ker. dp(p) == Ker. di(p) for all pe N. Indeed, it is clear that (I, /N, )
is a Galileean manifold (here § is the injeetion N < M). Recall that the tra-
ditional approach assumes a Cartesian product structure of the event space i,
that is a choice of a distinguished framing is made (usnally inertial).

To finish, let us remark that definitions and formulae are always written
in an intrinsic way. However, in the proofs local coordinates are used (proofs
omitted are simple).

2. ~ Preliminaries

‘We start by establishing the notation. Then we consider some basic concepts.

(a) Notation. This is the one usually found in any text on modern dif-
ferential geometry (we refer to [2]). However, about connections and their
associated horizontal subbundles and sprays, we refer to [3].

All manifolds, bundles and tensor fields will be C*. If M is a manifold,
TM denotes its tangent space (7, denotes the tangent space at p € M) and
Tu: TM—M its tangent bundle. We denote by 0°(M) the ring of the functions
on M and by Z(M) the C°(M)-module of the vector fields on M. If ¢ is a
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curve in M, we denote by ¢ and by ¢ its canonieal liftings to T3 and to T'T M,
respectively.

Tf ¢ is a vector bundle, we denote by Sec (A7¢*) the module of the p-forms
on ¢. Some tensor products and canonical isomorphisms of vector bundles
are used: for example, L(ty;0) = 7i® o (the bundle IL(c;o) is denoted
by L,), ete.

To finish, the symbol d denotes the exterior derivative, Ly the Lie deriv-
ative along a vector field X, and 4 the interior product.

(b) The absolute time bundle. This is the bundle ¢: M — R where M is
the event space and the projection ¢ is the absolute time. We shall usually write
simple M to denote this bundle. The n-dimensional submanifolds Zr=tHr)c M
(the fiber of M at 7€ R) are the spaces of absolute symultaneity.

A motion in M, usually denoted by ¢, is a seetion of M over an open in-
terval Ic .

On M we shall always use adapted charts (U, x*) where 2° =t |U.

(¢) Observers and framings. (i) An instantancous observer is an ordered
pair (p, w) where p € M and we T, M is such that (di(p),w) =1.

Let K c THM be the (2n - 1)-dimensional submanifold of the instantaneous
observers and let m: K — M be the canonical projection. Then the bundle
7: K — M has a canonical affine structure on the vector bundle ¢ = Ker.ds.
It is clear that ¢ is an involutive subbundle of 7; and that 7, = o |2, seR.
Elements of Sec ¢ are called spacelike vector fields on M. Note that spacelike
form on M cannot be defined.

Let ¢ be a motion. Then ¢ e Sec (¢¥x) is its (absolute) velocity [c*m is the
pull-back of 7 over ¢]. For this reason, K is also called the kinematic space.

Let (U, %) be a chart on M. We shall denote by {0/02%} the induced basis
of the module Sec (¢|U) and by (z~X(U), ¢ ¢) the induced chart on K.

(i) We define an observer to be a motion. However we need a « coopera-
tion » of observers in order to interpret in physical terms the laws of dynamics
written in the space K. Hence we define a framing, typically denoted by F,
to be a section of K, that is F € Sec . If ¢ is an observer, we say that ¢ is an
observer in F iff ¢ is an integral curve of F. The velocity of ¢ relative to F is
defined to be ¢— Foce See (¢*o).

Let F be a framing. Then to F there is associated the projection
pr € Hom (74, o) given by

) pr(u) = u— {d(p), wp F(p), wel,M.
Clearly we have 7,y = 0@ Ker. pp.

Let F' be a framing and let p € M. Then there exists a chart (U, 2*) at p
such that F|U = 0/d2°. Charts with such a property are said to be adapied to F'.

20
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(d) Dynamic equations. (i) Let Vy be the vertical subbundle Xer. T’ = 14.

Note that we have Vic~u¥c. If (U, x%) is a chart on M, we denote by
{0/2¢"} the induced basis of the module Sec (Vilz=Y(T)).

We now introduce the vertical endomorphism v characterized locally by

G ., 0 o, 2.
(2) v(@) =55 v(;ﬂi) =% ’v(ag.) =0.

It follows at once that v»* is characterized by
(3) vH(Ag) = 0,  v¥(AG) = — “d¢° + dg’.

The vertical endomorphism » will be used later to get a 2-form on the space K
from a Galileean connection on M.

Let I be a framing. Then to F there are associated a vertical field V, and
a vertical endomorphism vy characterized locally by (using charts adapted to F)

.0
(4) Ve =¢ Bk
and by
? 0 2 0
(5) , vp(@o) = U""(a_gjf) =0, 'UF(aqi) =%
respectively.

(il) A dynamic equation, typically denoted by X, is a vector field on K
such that

{dt, X> =1, oX)=0.

It follows at once that the local expression of a dynamic equation X is given by

0 5] 0
m— ¥ [ — i 00 (=1 .
(6) X = o + g aqi—{—b 5 bie C*(nY(U))

Note that dynamic equations (which are some sort of second order dif-
ferential equations on M) are sections of an affine subbundle of 7; modeled
on the vertical bundle V. Hence we define a force, typically denoted by f,
to be an element of Sec (V).



[5] MECHANICS ON A GALILEEAN MANIFOLD 791

(e) Spacelike connections. A (linear) connection V on M is called space-
like iff V¢t = 0. Let V be a connection on M and let ['2; € C*(U) be the con-
nection parameters for V determined by a chart (U, 2*). Then we have locally

Vdt = — I des® da’

and hence V is spacelike iff I}, = 0. Note that from a spacelike connection v
we get a connection, also denoted by V, on the vector bundle o.

Let V be a spacelite connection and let F be a framing. Then
VI e Sec L(ty; o) and from the canonical projection 7y — o we get the spatial
part VF e Sec L,. If (U, ) is a chart adapted to F, the local expression of

VF is given by

~ ~ ) 0
(7) VI = T’;‘L"dW@_aj{k .

We also need the following results about spacelike connections.

Proposition 1. Let V be a spacelike connection on M and let Hry > 7,y
be the horizontal subbundle associated to it [3]. Then the restriction Hgy [K
gives an horizontal subbundle of 7., that is Vz® H,,|K = 5. Alocal basis
of this subbundle is given by

0 .
(8) B, = ”3@ — (I + Iv;»iq,)a_]_

Moreover, the spray & of V restricts to a dynamic equation, also denoted by £,
whose local expression is

©) £=B,+ ¢'E.

If I'e Hom (7, Vi) is the vertical projection, then we have I'(§) = 0 and r
restricts to an affine isomorphism between dynamic equations and forces [4].

Remark. More generally, framings and connections, dynamic equations
and forces must be considered over open sets U c M and W c K, respectively.
However, later we shall be interested to the case where W = z~*(U).



792 L. MANGIAROTTI [6]

3. - The riemannian bundle (¢, g) and some consequences

Now we equip the bundle ¢ with a (positive definite) Riemannian metric g.
We say that M becomes a Galileecan manifold. The following are some con-
gsequences of this structure.

(a) Lowering and raising indices. The isomorphism ¢ — ¢* induced by
the metric g will be denoted by b. Note that since Vi o~ n¥o, Vx inherits the
metric g¢. ’

(b) Pramings, dynamic equations and contact structures. (i) First of all
note that the restriction g|Z: is a Riemannian metric on 2:c M, 7€ E. Now
let g5, g** € C=(U) be the components of the metric g determined by a chart
(U, z*) and put

’.". — — (gFh _Jhe A Ak .
(10) vi =59 ( O o’ 893”)

It follows that y% | Uz are the Christoffel symbols of the Levi-Civita connection
of g|2; determined by the chart (U, #‘|U:) on 2, Ur=2:N U, 7€ R.
To define the acceleration relative to F, we need the following proposition.

Proposition 2. Let F be a framing and let (U, 2*) be a chart adapted
to F. Then there exists an horizontal subbundle Hj <> 7, with local basis

0 0 . .. 0
(11) Eo:@“’ Ef:@*y?qug(ﬁ'

Proof. Indeed if (U’,2'®) is another chart adapted to #F such that
UnNn U's= ¢, we easily see that E(', = (0a*/0x'®) H,. Hence the result follows
at once. '

Let Iz € Hom (7, Vi) be the vertical projection determined by this
subbundle and let & be the dynamic equation uniquely determined by
Ip(£r) = 0. Let (U, 2*) be a chart adapted to I'. Then the local expression
of &y is given by

¢ .. 0 . .. . O
(12) §F=a—qo+Q’a—¢—“?’?ﬂj‘ ’@-k:

as we see from (6) and (11). If ¢ is a motion, we define I'yo¢ to be the accelera-
tion of ¢ relative to F. Note that we can write I'yo¢ € Sec (¢¥0) since Vi = m¥o.
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Locally we have (using charts adapted to F)

, w0 = [¢% & (y§00) éi ¢7] (i oc) ¢t = gloc
(13) LAF Vii ok ’ “ -

It is clear that an observer ¢ has no acceleration relative to F iff is a base in-
tegral curve of & (note that observers in F' are not accelerated relative to F).

(ii) Let F' be a framing. Then we get a quadratic function Gre€ C°(K)
by putting (efr. (1))

(14) Golu) = Yg(pe(w), pr(w)), wek.
Tts local expression is given by (henceforth charts adapted to F will be used)
(15) Gr = %9 G'4° -

From the vertical differentiation d,, associated to the framing F (cfr. [2]),
we get the 1-form on K

(16) d, Gr = g,;4°dg’ .

This is an example of a spacelike form relative to F (on K). Such forms are
easily characterized. Let us denote by d, the exterior derivative acting on
these forms (d, is induced by F in an obvious way). Then we get the
spacelike 2-form on K

(17) ded, Gp == %(ilﬁqhdq"/\dqf — g,;dgiNdg .

i

In the following proposition we introduce the contact structure associated
to a framing F.

Proposition 3. Let I be a framing and let ws € Sec (A*r%) be givén by
(18) wp(X, Y) = g0Y, [+X) —gX, I:Y), X, YeZ(K).
Then wy is closed (relative to dp) and of maximal rank on K, and we have
19) wp = dp d, ,Gr — dG N di .

Moreover, & is the unique vector field on K that is a characteristic vector
field of wp and satisfies i, d¢ =1,
»
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(¢) Admissible and Galileean connections. (i) A connection V in the (in-
volutive) subbundle o = 7, is called spacelike symmeiric iff we have V,y —
—V,¢ = [¢, p] for all ¢, p € Sec 0. Moreover, a spacelike symmetric Rieman-
nian connection in (o, g) is called admissible. We have the following proposition.

Proposition 4. Let V be a Riemannian connection in (o, g). Then V
is spacelike symmetric (and hence admissible) iff its restriction to Ty, 2 |2,
coincides with the Levi-Civita connection of the Riemannian metric j: g on
2, (§, is the injection X, = M) for all s € B. Moreover, let V be a connection
in the vector bundle ¢ and let I';; be the connection parameters for V deter-
mined by a chart (U, x*). Then V is admissible iff we have

09 : ,
(20) Iy =95, ”é%g = guls; + ¢indo:.

The following proposition, in a somewhat different formulation, is to be
found in [1].

Proposition 5. TLet V be an admissible connection in the Riemannian

bundle (o, g) and let he Sec (77® L,). Then also the connection V - I is
admissible iff we have

(21) glhe @y w) -+ g(y hyyp) = 0, h¢1/) =0,
for any vector field X on M and any ¢, y € Sec 0. Moreover, there is a bijee-
tion between the tensor fields % satisfying (21) and the 2-forms 7€ Sec

(A%0*) given by

(22) 9($, hew) = Lat, Xpn(g, %) -

The local expression of (21) and (22) are given by

(21)I gikhgj + gikhgi = 0 s hf, = 0 ]

¥ 1.0 . 0 1 t oA .
(22) h = hi;da*® dm]@)%k <N =5 G he; doiAda? .
respectively.

(ii) An admissible connection in the Riemannian bundle can be obtained
by a Galilecan connection in M, that is a spacelike, symmetric connection V
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on M inducing a Riemannian connection V (we use the same symbol V) in the
Riemannian bundle (o, g). Here we are interested to the fact that to a framing ¥
we can associate a Galileean connection V¥ and hence an admissible connec-
tion in (o, g). Indeed we have the following proposition (efr. [1]).

Proposition 6. Let I be a framing and let gz be the Riemannian metric
on M given by gr = pig + dt® di. Let & be the element of Sec (z:® Lz,)
so defined

gr(hs ¥, Z) = ":Jj<dt7 Zy Leg(pr X, pr¥) ,

for any X, Y, Ze Z(M) and let V7 be the connection on M obtained by
adding kb to the Levi-Civita connection of g,. Then V¥ is a Galileean connec-
tion on M. If (U, «¢) is a chart adapted to F, the connection parameters for V¥
determined by this chart are

g . . ; 1 0gy;
(24) (I =75, (M =0, (I’F)é”,-=§y”’a—i”g-

Proof. Since we have

s 5 . ;
(25) Lpg = —5‘%—5 da' @ da’,

from the Christoffel symbols of the Levi-Civita connection of g, and from (23),
we easily see that V* is spacelike and that (24) holds. On the other hand, (20) is
satisfyed and hence V7 is admissible.

(iii) Let V be a Galileean connection on M and let & and I'e Hom (7, Vi)
be respectively the dynamic equation and the vertical projection associated
to it [see Prop. 1]. Then we get a 2-form on K as follows [efr. Prop. 3].

Proposition 7. Let V be a Galileean connection on M and let
w € Sec (A27}) be given by

(26) (X, Y) = gwY, I'Y) — goX, I'Y), X,YeaZ(K).

Then w is of maximal rank on K and & is the unique vector fleld on K that is
a characteristic vector field of w and satisfies tedf =1,
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Proof. Let (U, 2%) be a chart on M. Then from (26) and from (2) we get

0 0 0 0
aqi’”a'éf})—‘—gim w('é'ﬁ?“a'éj):oa

2 of
(27) 7
from which we see that w is of maximal rank on K. Note also that .0 =0
since v(&) = I'(§) = 0.

Remark. In the case of the Newtonian-Galileean manifold, if V is the
canonical connection on M, w coincides with the 2-form used in [5]. Then
is closed. We shall consider again this point.

(d) Accelerations of transport field of a framing F. Relative to a Galileean
connection V, this is defined to be V,F € Sec ¢. Using charts adapted to 7,
the local expression of V. I' (as a vertical field on K) is given by

v - 13
(28) FETm 200 og*
If ¢ is a motion, then I'o¢ is its (absolute) acceleration and we have Toe =0

iff ¢ is a geodesic of £. Note that we have V,F = 0 iff any observer in I is
a geodesic of & (in this case we say that F is not accelerated or geodesic).

(e) Vorticity 2-form of a framing F. (i) Relative to a Galileean connection
V, this is defined to be the 2-form 0y € Sec (A%*) that we get from the tensor
VF—V e8ec (14® L,) via the bijection (22). Using charts adapted to F, the
local expression of 0,, as follows at once from (22') and (24), is given by

(29) 20p = gl IF, — (P JdwiAda? .

The meaning of the vorticity 2-form becomes the usual one in the following
situation.

Proposition 8. Let F and F' be framings and let Q5. be the vorticity
2-form of the framing F' relative to the Galileean connection V7. Then we have

(30) 20F, = d¢®, ¢=F —FeSeco.

Proof. Let (U,z*) be a chart adapted to F and put ¢’ = (da’, ¢>,
¢; = ¢,;¢’. Then a simple calculation shows that

%_}_%gkh(%_%

o 2 oxt 0w’

e 1
(31) (L) = 5 9 )

and hence the result follows from (24) and (29).
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(ii) Let F be a framing. Later, in connexion with the apparent forces
relative to F, we need the vertical field Pre Sec (Vi) such that (cfr. (4))

(32) (Pp)b = 7:1,'1_ .QF .

Here Q. is viewed as an element of Sec (A*V j;) [recall that Vi ~ w*¢]. Using

charts adapted to F, the local expression of P is given by

‘ .. O
(33) Pp = [I's; — (I")3;] e

Note that P, = 0 iff 2, = 0 [in this case we say that F is not rotating] and that

we have Proé¢ = 0 if ¢ is an observer in F.

(f) Rate of deformation itensor of a framing F. This is defined to be the
symmetric tensor field Lpg € Sec (V2¢*). The framing F is said to be rigid iff
Lpg = 0. Later, in connexion with apparent forces, we need the vertical field
Ar e Sec (Vi) such that

(34) 3 ((4p)°) = d,, LGy .
Using charts adapted to F, the local expression of Ay is given by

Nk s O
(35) Ap = 2(I")5; ¢’ Ere

where we have used (15) and (24). Note that 4, == 0 iff F' is rigid and that we
have Adgoé = 0 if ¢ is an observer in F.

(g) Three important theorems. The first theorem give, in our scheme, a
well known result in the case of the Newtonian-Galileean manifold.

Theorem 9. Let V be a Galileean connection and let F be a framing.
Then if VI € Sec L{o, 6*) is the spatial part of VI, we have

VF = 3 Leg 4+ Qs .

Proof. TUsing charts adapted to F, the result follows from (7), (24), (25)
and (29).

The next theorem will be used in connexion with apparent forces.
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Theorem 10. Let V be a Galilecan conmection and let I be a framing.
Then we have

(36) SF—EZVFF_*"-?PF—*_AF.

Proof. Using charts adapted to F, the local expression of & — & is
given by
. i s O
&—§=U%+ﬂbw@p

Hence the result follows from (29), (33) and (35).
The proof of the last theorem is left as a simple exercise.

Theorem 11. Let V be a Galileean connection and let F be a framing.
Then the following conditions are equivalent

(i) & =én,
(il) 0 = wp,
(iii) P 4s geodesic, not rotating and rigid,
(iv) VF = 0 (that is, I is parallel with respect to V),
(v) I is rigid and VF = V.
Corollary 12. Let F and F' be framings and suppose that F satisfies one
of the preceding equivalent conditions. Then the same holds for F' iff B is rigid,
non rotating with respect to F (that is QF, = 0) and geodesic.

4, - Dynamics

A formulation of dynamics on the kinematic space K requires a Galileean
connection V on the event space M. We proceed as follows.

(a) Imertial structure on M. This is a Galileean connection V satistying
the condition that for any pe M there is a chart (U, %) at p such that
Iy, =1TI5, =0.

(b) Inertial observers and inertial framings. The first are geodesics of &
(inertial dynamic equation). The second are framings satisfying one of the
equivalent conditions of Th. 11 (locally on open sets Uc M and W = z—1(U)c K).
Note that if F is inertial, then also all the observers in F' are inertial (recall
that this is equivalent to I" of being geodesic: cfr. (d), 3).
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Remark. However, in the case of the Newtonian-Galileean manifold, a
geodesic framing I over (all!) M, which is linear affine, is inertial.

(¢) The inertial contact structure on K. This is the 2-form o associated
to the inertial connection V, cfr. (26). We leave to prove that we have dw = 0.
Recall that the inertial dynamic equation & is characterized by 4w =0
and 7. df = 1.

(d) The 2-form associated to a force. Relative to a force fe Sec (Vy) and
to a body of mass m, m > 0, this is the 2-form of maximal rank on K so defined
(37) 0 = mw + v{fO)AAL.

The following proposition is of basic importance in dynavmics.>

Proposition 13. There is a unique dynamic equation X on K such
- that I'(X) = f/m, that is

(38) X =£&+ fim.

Moreover, X is the unique vector field on K that is a characteristic vector field
of p and satisfies ixdf = 1.

(e) Absolute formulation of dynamics.

Definition 14. We say that a motion ¢ is dynamically admissible for a
body of mass m (m > 0) under the action of a force f (called effective), iff we have

“m(Ioc) = foé.

Theorem 15. A motion ¢ is dynamically admissible for a body of mass m
under the action of an effective force f iff is a solution of the dynamic equation (38),
that is Xoé = ¢.

(f) Framings and apparent forces. Only by choosing a framing F, the
absolute formulation given in (e) can be interpreted from a physical point
of view.

Definition 16. Let F be a framing. Then we say that m(& — &) e
e Sec (V) is the apparent force relative to F of a body of mass m, m > 0.

From Th. 10 we see that the apparent force m(é — &7) is made up of the
three terms.
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(i) —mVyF which arises solely from the acceleration of observers in
F(efr. (d), 3.);

(i) —2mP, which is the Coriolis force;

(iii) — mdy which arises solely from the deformation of F.

Theorem 17. Let F be a framing. Then a motion ¢ is dynamically ad-
missible for a body of mass m (m > 0) under the action of an effective force f
iff we have

(40) m(Tpot) = (f + m(E —&)os

Proof. In fact, we have Iroc = I'o¢ - (& — £p)od, as is easily seen,
for esample, by using a chart (U, a%) adapted to 7 (see also (13)).
This is the second law of dynamics written in an arbitrary framing.

(g) Kinetic energy and Lagrange’s equations. Let F be a framing. Then it
s clear that X (cfr. (38)) is the unique dynamic equation such that

(41) Ie(X) = flm + & —&r.

However, by considering the kinetic energy relative to F, that is Tp = mG,,
there is another way of characterizing X that leads to the Lagrange’s equations
[but then F' must be rigid]). For this we need the 2-form of maximal rank
on K so defined (efr. (37))

(42) or = Mmwp + [Vi(w)A AL,

where 7 = (f + m(& — &))" € See (V7).

In the traditional approach the vector field X (and hence Lagrange’s equa-
tions) is deduced from the 2-form g, (or from some other equivalent way) [2].
However, this is not the present case since we have given an « absolute » charac-
terization of X. The following theorem can be proved.

Proposition 18. Let I be a framing. Then X is the unique character-
istic vector field of g such that iydé==1. Moreover, if F is rigid and (U, 2#)
is & chart on M, a motion ¢ is a base mtegml curve of X iff locally satisfies
Lagrange’s equations

Ryt = (>
(43) @ W)_ aqi—niy T = (T 5
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