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A, FASANO ana M. PRIMICERIO (%)

Cauchy type free boundary problems

for nonlinear parabolic equations (*¥)

A Grorgio sESTINI per il suo 70° compleanno

1. - Introduction

1.1. - The Cauchy type free boundary problem (problem (C))

It is well known that in many branches of applied mathematics (such as
optimal stopping time problems, biomechanies, fluid flow in porous media, ete.)
the following class of parabolic free boundary problems is encountered.

Problem (C). TFind a triple (T, s,u) such that

(i) T >0, s(t) is continuous and positive for any t in [0, T,
(i) wu(z, t) is continuous in the closure of the domain Dy = {(#,1): 0 <=
< §(t), 0 < t << T}, uy(w, t) is continuous for 0 < x<s(t), 0 <t << T, gy, U, are
continuous in Dy,

(iii) the following equations are satisfied

(1.1) (@, Ty Uy Uyy 8) Ugy— Uy == Xy Ty Uy Uyy 8) M Dy,

(*) Indirizzo: Istituto Matematico «U. Dini», Universita, Viale Morgagni 67a,
50134 Firenze, Italy.

(**) Work partially supported by the Italian G.N.F.M. (C.N.R.) and by the Uni-
versity of Florence (Cap. 11/01). — Ricevuto: 22-1-1979.
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(1.2) s(0)=b>0, (1.3)  w(z,0)=h), O0<a<b,

(1.4)  «(0,t) = (1), 1.5)  wu(s(t),t) = f(s(¥),t), O<t<T,
(1.6)  wu.(s(t),1) = g(s(t), 1), 0<t<T,

where h(x), p(t), f(x, 1), g(@, 1) are prescribed functions for >0, >0 and the coef-
ficients a, q are given functions of their arguments (a > 0).

Remark 1.1. The condition (1.4) on 2 = 0 can be replaced by
(1.4) (0, 1) = (1),

with the substitution of (ii) with

(i) w(w,t) satisfies (ii) and u, is continuous also at & = 0.

Problem (C) in which the Cauchy data for « are assigned on z = s(?), differs
substantially from Stefan-like problems where the value of « is prescribed on
the free boundary =z = s{t) and an explicit relationship between §(¢) and
u(s(t),?) is given. Nevertheless, if the parabolic equation (1.1) reduces to

Yo Uy = (3, 8) ,

Problem (C) can be transformed into a free boundary problem of the type
studied in [2];, provided that one of the following conditions is fulfilled

(1.7) ful@, ) — gla, 1) 5 0 (@>0,10),
(1.7)’ oy ) — g3, 8) = 0, fuul, ) — ful@y 1) = qlay 1) (@30,10),

(all the terms appearing in (1.7), (1.7)" are supposed to be continuous).

Contradicting the above assumptions may yield non uniqueness or non-
existence or noncontinuous dependence of the solution upon the data (see [1]
and [5]).

‘We shall see that for the nonlinear case a similar analysis can be performed.
However the free boundary problems we shall be lead to consider differ from
the type studied in [2]; in the fact that higher order derivatives (.8, %y, Uuos)
appear in the free boundary conditions: such problem will be referred to as
Stefan type problems of order 2, 3, ete.
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1.2. - Classes of regular solutions te problem (C)

We define the following classes of solutions of Problem (C) possessing higher
regularity.

Definition 1.2. A solution (T, s, w) is said to belong to the class & if,
besides (i)-(iii),
(iv) s(t) is continuously differentiable tn (0, T),
(V) Wgey, U, are continuous up to x = (1), t> 0.

Definition 1.3. A solution (T,s,u) is said to belong to the class &, if,
besides (i)-(v),

(vi) u, is conttnuous up to x = s(i), t>0,
(vil) Uprs, g, are continuous for 0 < w<s(t), 0 <t << 1.

Remark 1.4. In dealing with Problem (C) we always assume that

(AY hy @, @ and q are conlinuous functions of their arguments, f(z,t) is
continuous for © > 0, t>0, and g(x,t) is continuwous for > 0, t > 0. Moreover
the following conditions are to be satisfied

(1.8) o) = @(0),  h(b) = 1(?, 0)
(only the second condition is required when (1.4)" is considered).

In dealing with solutions belonging to %%, we also require that
(A1) the function f is continuously differentiable for 1 > 0.

Finally, when solutions in &, are considered, to (A), (Al) we add the
requirement

(A2) g is continuous for >0 and
(1.9) 1(b) = g(b, 0) ;

moreover g has io be continuously differentiable for t > 0 (%).

() Conditions (A), (Al), (A2) are suggested by the definitions of Problems (C),
(C1), (C2) and by Definitions 1.2, 1.3. ’
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1.3. - First case of equivalence of problem (C) with a Stefan type problem of
higher order

Agssume that (7T, s, %) is a solution of problem (C) belonging to %, and
suppose (A), (Al) are satisfied.
From (1.5), (1.6) we get
(1.10) [fa—9)8+fi— ,u’l]au=s(t) =0.
If (1.7) is satisfied, we can write (1.8) in the form
(1.11) § = M[s(t), 8, u(s(t), 1), wa(s(0), 1), waa(s(2), 1)] (0<t< 1),
with
(112) Ay = [Fu(s(0), 1) — g(s(0), )] {a[s(0), 1, w(s(0), 1), wa(s(), 1), 5(8)]
“Uan(S(2), 1) — qls(t), ¢, u(s(t), 1), o (s(2), 1), s(t)] — fo(s(®), )},
where u(s(t), t) and u,(s(t), t) can be replaced by f(s(1), 1) and g(s(1), ), respectively.
Now we state the following
Problem (C1). Find a triple (T, s, u) satisfying (i), (i), (iv), (v) and
equations (1.1), (1.2), (1.3), (1.4) [or (1.4)' ()], (1.6) and
(1.11) §(8) = A.[s(2), t, u(s(t), 1), g(s(2), 1), wan(s(t), 1)] O<t< ).

We have the following

Proposition 1.5. If conditions (A), (Al) and (1.7) are satisfied, any
solution (T, s, u) of Problem (C1) solves Problem (C) and belongs to ;.

Proof. It suffices to show that (1.5) is satisfied. To this purpose note that

d .
= u(s(), 1) = [98 + W de=sn 5

owing to (1.6), whence
d

d
T ’LL(S‘(t), t) M——_‘— a@ (S(t), t) ’

(2) In that case condition (ii) is modified according to Remark 1.1.
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because (1.11)" and (1.12) imply (1.10). Recalling the assumptions on f, the
proof is completed.

Since the converse of Proposition 1.5 has been already proved, we have
that looking for solutions of (C) in &, is equivalent, under the above assump-
tions, to look for solutions to (C1).

1.4. - Second case of equivalence of problem (C) with a Stefan type problem
of higher order

Now let us assume that (7, s, ) €%, solves Problem (C) and that (A),

(A1), (A2), are satisfied.
We want to study the case in which instead of (1.7) we have

(1.13) folw, 1) = g(z, 1) .
This condition implies the differentiability of f,; we assume that
(1'14> a(w’ t? f(m7 p 8) fwit .’L‘ t - f (x7 # Q(m’ t f w? ? p’ 8) ?

for any >0, t>0, >0, p e (— co, + o).

Note that
(1.13) w,(s(8), £) = fu(s(t), 1) (0<t< 1),
(1.16) [(@fee— fi— @)8 — aUar + Afatlpmyy = 0 (0<i<T).
Thus
(1.17) o8t = Ay[s(8), T, w(s(E), 1), wa(s(), 1), wae(s(8), 1)1,
where

(118) A, = {“[S(t), () u(s(t)y t): um(s(t), t)7 s(t)] fwm(s(t)y t)
f(s(t )"‘ Q[s (s(t)9t) ( t)) ) ]} '
als(t), 1, u(s(t), 1), wa(s(), 1), s(8){aeai(s(2), 1) — fuu(s(2), )},

wheve u(s(t), 1) and u,(s(t), t) can be replaced by f(s(¢), 1) and g(s(#),t) respectively.
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We state the following
Problem (C2). Pind atriple (T, s, w) satisfying (i), (ii), (iv), (v), (vi), (vii)
and equations (1.1)-(1.5) [or (1.4) (*)] and
(1.17) §(t) = Au[s(), 1y F(s(8), 1), wa(s(8), 1), wae(s(?), )] .
We have the following

Proposition 1.6. If (A), (Al), (A2), (1.13) and (1.14) are satisfied, any
solution of (C2) solves (C) in the class &,.

Proof. It suffices to prove (1.6), i.e.
(1.19) u(s(8), 1) = fu(s(t), 1) .
It is easy to show that

d . d
g (50, 1) = [67 (e — f)]esi0 SC) + fo(s(®), 1),

where [a],.,, must be considered as a known positive function of ¢.
On the other hand, differentiating (1.5) we get

(um - fz)z:s(t)é(t) + (ut - fi):t=s(t) =0.

Therefore the difference X = (%, — f,)z=s» Satisfies the following linear dif-
ferential equation

X(t) = — [0 amut0 $2X (1) 0<ti<T),
with zero initial value. This implies (1.19).
Since the converse of Proposition 1.6 has been already proved, the above
stated assumptions guarantee that to find a selution of Problem (C) belonging
to &, is equivalent to solve (C2).

It is immediately seen that (C2) is equivalent to

Problem (C2)'. Same as Problem (C2) with (1.5) replaced by (1.15).

(3) See Remark 1.1.
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1.5. -~ Further remarks and principal results

To conclude this section, let us consider the case
(1.20) fu(@, 1) = gz, t),  a(m,t, u, D, 8) foul®, 1) — f@, ) = q(z,t, 9, P, 8),

for any >0, t>0 and any %, p (— oo, + oo}, s> 0.

Then in addition to (1.15) and (1.19), from (1.16) we have u, = f,, on
the free boundary for any solution of Problem (C) such that u,, is continuous
up to the free boundary.

If we assume that f is infinitely differentiable and that a, ¢, « are also in-
finitely differentiable in a neighborhood of the free boundary, it is easy to
show that the derivatives of any order of w at the free boundary coineide with
the corresponding derivatives of f. This means that when (1.20) is satisfied
we cannot find any relationship between § and some derivative of u.

On the other hand, as it has been pointed out for the linear case, Problem (C)
is not well posed under (1.20). Hence we are clearly motivated to restriet our
analysis to Problems (C1) and (C2).

In § 2 of the present paper we shall prove the well-posedness of Problem (C1),
confining ourselves to the boundary condition (1.4) for the sake of brevity
and setting

(1.6)' u.(s(1),1) =0,

with obvious redefinition of the differential operator and of the data. For the
sake of generality, we study the free boundary condition

(1.21) §(1) = M[(s(0), 8, uls(d), 1), waals(2), 1)1 5

with 4, preseribed independently of the other data and coefficients.
In §3 we shall prove the well-posedness of problem (C2)’, where we set

(1.15) u(s(t), t) =0,

also in this case redefining the data and the coefficients. We shall study the
more general free boundary condition

(1.22) § = Az[s(t% t u(s(t), t)y ux(s(t)7 t); u’zxm(s(t)7 ? )] .
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2. = Problem (C1)

A simplified version of Problem (C1), namely with the coefficient a depending
on u only, with no source term in the differential equation and with u, entering
the free boundary condition in a linear way, has been studied in [2], with
reference to a problem of liquid flow in porous media. In [2], the boundary
condition at # = 0 was assumed of the type (1.4).

In this seetion a different approach will be used to deal with the more general
scheme introduced in § 1.

For the sake of conciseness only the boundary condition (1.4) will be
considered.

2.1. - Assumptions and notation of spaces and norms

For the notation of spaces and norms we refer to [2],, Sec. 2.

Here we add the spaces C;(2) (j =1,2,3;k = 0,1)—where Z is a do-
main of R2-whose elements are the functions w(z,t) having bounded con-
tinuous partial derivatives in 2 up to the j-th order w.r.t. # and to the k-th
order w.r.t. ¢, with the norms |- || o; (@) defined as usual.

Concerning the data and the coefficient in Problem (C1), we shall assume

() h e Hy4a[0, ], v H4a[0, 77, B'(0) = (0), h'(b)=0 for some given
T>0, ce(0,1);

(B) alw,t,u,p,s) is twice continuously differentiable (although w.r.t. ¢
it is enough to require the Hdlder continuity of ¢ and of its derivatives w.r.t.

the other arguments); for some continuous function u(&,7), nondecreasing
wrt. &9>0,

0< ‘u“l(lu!, |Z)l)<a($, i, U, p, 3)</‘(lul: 1]’1) ’
Vo > 0, 4, p € (— oo, + o), t(0,T), s>0;
(y) q(z, 1, w, p, s) has the same differentiability properties as a;

(8) |Au(z, 8, w, p)|<v(|ul, |p|), where » is as u and 1, is continuously dif-
ferentiable.
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2.2. - An auxiliary free-boundary problem

Set RY = [0, 3b/21x[0, 71 and let 2(y, T), y € (0, o], be the set of the func-
tions Uz, t) defined in R(;") such that U € Cpy N Cyyo, Ul 0) = (), ULL0,1)
= (1), where h*(z) is a smooth extension of ().

For any U e Q(y, T consider the following problem

@1) a1, U, V, ) Ve — Vi= Q@ 1, U, Us, Ve, 9)

in Dp = {(m,1): 0 < o< 81,0 <1< T},

2.2) 80©)=1, 2.3) V(z,0)=h@ 0z,
(2.4)  V(0,1) = (1), ©2.5)  V(S@),t) =0 O<i< T,
@2.6) S = W(S®), 1, TS, 1), Vo{8(0), 1) O<i<1),

wherve Q(z,t, Uy Usy Voo 8) = € F uUe+ @ Vo— Ve Oy U, V.— a,V:; the
arguments of a, ¢ and of their derivatives are ,t, U, U.S.

The free boundary problem (2.1)-(2.6) has been studied in [2],. The as-
sumptions made in § 2.1 are sufficient to ensure the existence of a unique solu-
tion (T, 8, V) of this problem for any U in Oy, T (4.

2.3. - Estimates on (7, 5,7V)

Let us introduce the following subset of Q(y, T): B(K, y, K, T)
= {Uey, D): | U, , <X, | U, <Ky}, with suitably large K, K,.

For any U e B(K,y, K, T) the following estimates hold true:
(2.8) T>Ty(K, Ky 9), 2.9) Ve, ,<N:(E),
(2.10) | Vi Cﬂ(K)gl\Tz(K) , 2.11) | T’[[01+5(K)<1\T3(I() s

(*) Remark that in [2]; we assumed that the leading coefficient, the source term
and the function appearing in the free boundary condition were continuously differ-

entiable (see assumptions (B)-(D), §3). Actually, the assumption h € Hy,,and thm. 5.1
p. 561 of [3] allow us to replace the differentiability w.a.t. ¢ by Holder continuity.
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(2.12) | V][CM(D;“)<1\T,(K, K,y | UHCW/) 4, D =D, N{1):t>1},
(2.13) b2 < 8(t)< (3/2)b, te(0,T,),
(2.14)  [[8]lo0.0y < Ns(E), (2.15) HS””ﬂ(K)/2<'N6(K’ Ky, y),
where the constants § € (0,1), 7, and N, depend also on the data and on the
coefficients.

2.4. - Definition of the operator g

Let us define

@

216)  Da, 1) = V(& 0 + [{a[0, 7, T(0, 7), p(z), S)]V.(0, 7)
00, 7, U0, 7, (), ST dr £ h(0), (5,1)e D,

and extend it smoothly to R$) in a fixed way. Because of the estimates of § 2.3
we have

(2.17) UeQp,T,).

The equation
(2.18) U=9T

defines the operator 7 : B(K, y, K,, T,) — (B, T,).

2.5. - Solutions of (C1) associated to fixed points of 7

It weB(K,y, K,,T,) is a fixed point of J the corresponding solution
(T, s, v) of (2.1)-(2.6) generates the solution (T,, s, u) of Problem (C1).

As a matter of faet, it is :
(2.19) Uy =0, (0,1) €D,

and equation (2.1) can be written

@
(2.20) Ve = . [a(@, ¢, u, s, 8) v, — ¢(a, T, Uy Uz S)] -
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Trom (2.16), (2.17) and (2.19), (2.20) it is easy to derive equation (1.1) for u.
Also conditions (1.2), (1.3), (1.4), (1.6), (1.9) are easily obtained.

Conversely, it is obvious that if (Zo, s, %) is a solution of Problem (C.1),
then u (with the above mentioned extension) is & fixed point of 7.

2.6. - Estimates on U
Trom § 2.3 and from (2.16) we infer the following estimates on J U
(2.21) |7 Ulle,, ,<N.(K), 17 Ulle, ;< Ns(XK)-

Moreover, estimates of type (2.11), (2.12) apply to |7 Ulc,,, and to 17Ul ;-
We need a more careful estimate of |FU |q, o(R(tb)) = 7v
Vie (0, T,).

To this purpose, we look for an estimate of |V Hgl S0 LE (0, Ty).

Cy 0(1),)7

The transformation
2.22) @St =y, UEOy1) =01, VEWO1)= Viy, 1),
O[Sy, 1, T(SWMy, ), U8, 1), Vo(SOy, ), S0 = @, t, T, Usy V0, )
carries (2.1), (2.3), (2.4), (2.5) into

2.23)  82aSy, 4, U, V, )V, + 98827, — Ve=Q (3 1) €(0,1)X(0, To),
@24) V(g0 =00y ye(0,1),

(2.25) V(0,1 = »(), 2.26) V@, =0 te (0, T,).
We split ¥ into the sum
(2.27), V=" + V.,

where V), solves

(2.28) LI?I = S8~2a(8y, 1, ﬁ: 17; S) I71,411/“‘ I71,1 = Q - ?/‘S’S—l V!l
with zero initial and boundary conditions, and 7, solves
(2.29) LV, =0

and satisfies (2.24)-(2.26). It is well known that 7, and 7, exist.
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Representing ¥, by means of the Green function in (0,1)x (0, 1)) of the
parabolic operator L and using standard estimates (see e.g. [3], p. 413), as a
consequence of (2.9), (2.10), (2.13), (2.14) we get

(2.30) sup |Vi(y, 7)| < No(K, K)t, (2.30) sup | Vo, (v, 7)| < No(K, K)t.
0<y<1 0<y<1
o<<T<¢ o<r<<{¢

Concerning V,, it is obviously dominated as follows

(2.31) sup | Valy, OI< D)1 oy + @ ]esoreyt s
o<yl
o<t t

and an estimate for Vﬁ’y is (see [2];)

(2.31)' sup | Voot 7) | < B[R] eon + Nuol K, Kb,
o<y<1
o<t

As a consequence of (2.27), (2.30), (2.30), (2.31), (2.31)" we get

(2.32) 17 e, sio0= (1 BB ooy + N, Byt

From (2.16) and (2.32) we deduce the desired estimate

(2.33) 17U Cz)o(k(tb,)<c(b)“h]]cz(0’b) + NI, Ki) e (3) .

Now, we choose the parameters entering B as follows

(2.34) K=K= 20(1))”77’“02(0,1))7 y=y = ﬁ(l )s K, = f1 = N7(E)

and .

- (2.35) T =T = min {Ts, [e(d) | 7] g0/ V1ol K, K:1)]2} .
We find
(2.36) ]{fUn%’o(R%))/\,K ,
(2.36) ||9'U||c;(n(%>)<ff1, VUeB(K, 7, K, T).
Therefore

(2.37) J:B(K,y, K, T ~>BK,5 K, T).

(5) An alternative estimate of the type C(b)|[hllgyop) + N(I)##E/? follows imme-
diately from (2.11). .
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2.7. = Continuity of 7
Take UW, U®eB(K, 7, K\, T) and let (T, 8®, V@), (T, 8§, V@) be the
corresponding solutions of (2.1)-(2.6).
Set V@ = 0 for #> SV(t), i = 1,2, and define
(2.838)  O(f) = SW() — S=(1), (2.39) Wz, t) = Vo, {) — V(z, 1) .

From (2.16) we have

(2.40) |7 U0 -7 U

EAREID)

< N{sup RO+ + t[16llo,0 + | Wal0 oo, + 1TM(0,) — T(0, Mew,nl} -
The function

(2.41) Wy, 1) = W(ys(t), )

vanishes for y = 0, y =1, t = 0, and satisfies the equation

(2.42) IOW =0 (y,1)e(0,1)x(0,T),

where L® is the operator defined in (2.28) with § = 8§, U=100,7="7m
while the source term @ can be dominated by

N2{| 0= T2, sommionn + | W oo + 18letwny + N {l8lao,0 +17a1},

owing to (2.9)-(2.15).

Here and in the following, constants N depend also on the second order
derivatives of @ and g (except for 0%/0t).

Using the techniques of [2],, See. 4, we obtain

(2.43) “ WHcl,o((o,l)X(o,t)) <Nﬁ{” 5“0(0,:) + ” w— 0w 01,0<(0,1)><(0,t))} Vi e (0, T)'
On the other hand, from theorem 2 of [2], (%)

“6Hc.(o,t)<N{“‘3”c(o,t) + “ uvw—uw ”ol’o(ze(g))} ?

(%) This theorem can be easily extended to cover the case in which s(f) appears in a
and q.
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which implies
(2.44) Né“c,(o,t) <1\TH um— U(z)ﬂ 0y,0(20) 2

for ¢ in a suitable time interval (0, T,) c (0, 7).
The final estimate resulting from (2.40), (2.43) and (2.44) is

(2.45) Hg'[]u) _g‘Utz)Hcg O(R";))<Nﬁ“ Uq) — U@

oy gt V1 € (0, T3).

2.8. - Existence and uniqueness theorem

From (2.45) it follows that there exists 7"e (0, T,) such that J is a eon-
tractive mapping of B(K, 7, K,,T) into itself, with respect to the norm of
0, (RY). Since 7 B is closed w.r.t. this norm, and 7 BcJ B the results of 2.5
allow us to state the following theorem

Theorem 2.1. Under the assumptions listed in 2.1, Problem (C1) has a
solution (T, s,w), which is wunique in (0,7T). Moreover seH, 510, T and

Uy € OH; @)

2.9. - Continuous dependence

Let X be a set of data and coefficients such that b,>b>b,> 0, ||&| B and

[l 2y, are uniformly bounded and such that a, g, 4, satisfy assumptions («)-()

also in a uniform way. For any element ¢ = {b, h, v, a, ¢, A,} € X the a priori
estimates on (7, s, u) derived above are uniform and we can define the norm

(2.46) da = sup }a(l) —a® | ,
0<w<<3b,/2
0T
H““cl,o<‘v
bo/2<0<3b,/2

and similarly the norms Aa,, da,, da,, Adq,, 4q., 4q., dq,, A2, for any pair
o, = {b(l’, R, 2D gD, )'(1)}’ Oy = {b(z), B ) g g, 7»‘2)} .

Using techniques similar to those employed in § 2.7 it can be proved that
for any Ue B(K, 7, K,,T), 7U depends continuously on ¢ €2 in a uniform
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way, with respect to the distance

(2.47) o(ay, 05) == | bW — b¥ |+ ” RO — 2 e+ H P 1/,(2)“ Co
+ da+ da, + Ada, + Ag+ Aq. + Ag. -+ g, + A4
(set B =0 for » > b"). More precisely

(248) “701 U_g—-ag UN%’O(RQ))<‘J—NQ(O'1, 0'2) .

T

As a consequence (see [4], . 630), the following theorem is proved

Theorem 2.2. For any pair oy, 0,€2 the corresponding solutions
(T, s, u@y, (T, s, u) satisfy the inequalities

(2.49) Hum — u(2)“02 0<ATQ(0'1: G2)
(2.50) [s® — s@|c, <No(0oy, 0s) -

Note that (2.50) follows from (2.49) and (2.44).

3. -« Problem (C2)’
The proof of well-posedness of Problem (C2)’ follows the general scheme of §2,
although many nontrivial modifications are needed. The main differences will

be in the definition of the operatorZ” and in the choice of the functional spaces
to be used.

3.1. - Assumptions
In addition to («)-(6) of § 2.1 we shall assume

()  heHus0,b], € Horel0, T
(p'—y') a, q are independent of s (and differentiable w.r.t. i),
(3.1) a’(()) 0, 1(0), h'(())) R'(0) — Q(Oy 0, (0), h,(O)) = ‘P(O) 3

(3.2) a(b, 0, 0, 0)r"(b) — ¢(b, 0,0, 0) =0,

10
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and satisfying standard growing conditions w.r.t. w, u, (see e.g. thm. 5.2,
p. 564 of [3]);

(8" A, is eontinuously differentiable and

| Ze(, Ty %, p, N <r(ul, [pl, iﬂl)
for some continuous nondecreasing function ».
The independence of @ and ¢ of s has been introduced only for the sake
of simplicity.
3.2. - Auxiliary free-boundary problem
Let Qi(y, T') be the set of the functions U defined in R‘;”) such that
UeCory, U0,1) =¢t), Uz, 0)=hz

(with a smooth extension of h(z) for z > b).
For any U e Q,(y,T) we introduce the function

(3'3) X($7 t} Ua Ua:; Z, Zac): Qt + QHZ + qux“ (at + a'uZ + a‘DZx)(Z + Q)/a/$

where the arguments of a, ¢ and of their derivatives ave «, t, U, U,.
Then we define a differentiable function y*(z,t, U, U,, Z, Z,) such that

(3.4) =y for |Z|<Z,,

(3.4) | ¥ (@, t, u, py Z,0)|< sup |x(z, t, u, p, 9,0)|, Z>Z,+1,

0]<zot1

for some given Z,> 0, and we consider the following free boundary problem
3.5y  at, U, U,)Zpy— Z,= y*(x,t, U, U,, Z,Z,) in Dy,

(3.6) S(0)=1d,

(8.7 Z(x,0) = a(z, 0, h, V)K" (@) — q(2, 0,2, 1), O<w<b,

(3.8)  Z(0,1) = ¢(t), 0<t<T,
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(3.9) zZ8@),1) =0, o<i<T,
(3.10) S(@t) = 2(8(2), 8, U(S(), 1), U.(S(),1), Z,(S(), 1)), o0<t<T.

A unique solution (7, 8, Z) to (3.5)-(3.10) exists under the assumpﬁons
listed above (see [2],).

3.3. - Estimates on (7, S, Z)

Let By(K,, Ky, T), T<T, be the subset of Q(y,T) such that

(3.11) lo

oy <, | U]e, u) <

Ca olRp) ™

If UeB(K,y, K, T), from [2], we have

(3.12)  T>TyE,y, Ky, Zo), (818) | Z]ley, pgy= HalE, Zo)
(3.14) 181 g < M 7, K, Za)

besides a nonuniform estimate of | Z|¢, _ similar to (2.12). Like the constants N,
in §2, also the constants M, are obviously dipendent on the data and the
coefficients.

3.4. - Definition of the operator 7,
For any U e By(K, y, Ky, T;) we define
(3.15) T, U=U,

where T is the solution of the following nonlinear initial-boundary value problem

(3.16) aw, b, U, 0)0,,— U, = qa,1,U, U.), in Dy, ,
(3.17) U, 0) =hix), 0<az<bD,
(3.18) 00,1 = @), 0<t < Ty,

(3.19) T(8(2), 1) = h(b) +J§(r) U.(8(z), 7)dz, 0<t<Ty.
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Owing to the compatibility conditions assumed for h and ¢ at the points
(0, 0), (b, 0), this problem has a unique solution in Cew(ﬁn) (Thm. 5.2, p. 564
of [3]). In (3.15) we mean that U is extended smoothly to R in a prescribed
way. Therefore

(3.20) Ty BUK, pFE,, Ty) — (8, Ty) .

3.5. « Estimates on 9T

The norm ||| ¢y, 15 estimated in terms of the data and the coefficients and
Of [8llzyps [Ulle,spr e

(3.21) 101

2+/i(1;)< MK, y, K, Zy),

where (3.14) has been used.
Estimate (3.21) implies

(3.22) 10le, < Mo+ MUK, y, Ky, Zo) 875,

with M, independent of K, y, K;, Z,.
Moreover (see theorem 5.1, p. 561 of [3])

(3.23) 10]|e < M (K).

1+ B(x)

Taking e.g. K = 2M,, K, = M,(K), 7 = f(K) from (3.22), (3.23) we can
find T, <Ty(K, 7, K., Z,) such that

(3.24) 1%

oy <K, Ul

%, o{Rr, (bl)) <K,

&
At this point we remark that (3.3) and the maximum principle yield
. |2
|Z(@, 1) | < My(E){1+] sup |Z(z,7)|2dc);
o ze(0,5(7))

hence for any sufficiently large Z, we can calculate a T,(K) such that

(3.25) |Z(@, 1) | < Zy, O<m<S(), O0<i<TyK).

Therefore, setting 7' = min (7,, T:(K)) we conclude that

(3.26) J.:By(K, 3, K\, T) > B,(X, 7, K, T
and that x* can be identified with y in (3.5).
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3.6. - Solutions of (C2) associated to fixed points of 7

Let # be a fixed point of I, and denote by (7, s, 2) the corresponding
solution of (3.5)-(3.10).

From (3.19) we obtain u,(s(¢),?) = 0. Hence it is easy to see that the dif-
ference z — u, can be thought as the solution of a linear homogeneous para-
bolic equation with square summable coefficients and with zero initial and
boundary data.

Therefore

(3.27) #, =2 in Dg,

which shows that (T, s, #) solves (C2).

3.7. ~ Existence and uniqueness theorem

Using basically the same methods of Sec. 4 of [3], it can be seen that for the
solutions 17‘1), U® of (3.16)-(3.19) corresponding to two respective elements
U™, U® e By(K, 7, K,, T), we have

(3.28) [0 — T2, o< M(B) 22| U0 — U@, ), Ve 0, 7).

Thus the operator 7, is a contractive mapping w.r.t. the norm of Cro(l %”)‘
for some 7' e (0, 7). The set J:B,cT, B, is closed w.r.t. such a norm and
the existence of a unique solution (7', s, u) of (C27) is proved.

Theorem 3.1. Under the asswmptions listed in § 3.1, Problem (C.2)' has
a solution (T,s,u), which is unique in (0,T). Moreover se H, +7/[0,’f’] and
sy € Cp5(Ds).

1y

3.8. - Continuous dependence

Let X' be the set whose elements o = {b, h, @, a, ¢, 2,} satisfy all the as-
sumptions listed in 3.1 in a uniform way. For any o e X we have a solution
(T, s, w) of (C2') and a uniform estimate on the norm of » in CI’O(R%’)) is available.
This allows us to define the quantities 4da, dq, da,, 4q,, ..., 42, as in 2. Then
we can state ‘
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Theorem 3.2. For any pair o, o,€2 the corresponding solutions
(1, s, wD), (1, s, u®) satisfy the inequalities

(3.29) u® — w], D(R(??))<Ng(al, o),
(3.30) ls® — s*le@n <Noloy, 0a),
with

+ u R p@

9(0'17 0p) = lbl— b, e + H(P(l)__~ (p(g)

Cy
+ da + da, + da, + da, + Aq + Ag, + Aq. + Ag, + A2,

The proof of Theorem 3.2 is omitted for the sake of brevity.
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