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A, STRUMIA (¥*)

Transmission and reflection of a discontinuity wave

through a characteristic shock in non linear optics (**)

1. - Imntroduction.

Recently, starting from some works by A. Jeffrey[5], G. Boillat and
T. Ruggeri [2] developed a general theory in order to evaluate the reflected
and transmitted amplitudes when a discontinuity wave comes in contact with
a shock wave (including the case of characteristick shocks).

The aim of the present paper is to apply the theory to non linear electro-
dynamiecs in an isotropic dielectric medium. In particular we shall consider
the case when incidence takes place on a characteristic shock, which can be
developed, as we shall see, for quite general constitutive equations differently
from the non characteristic shock case ().

The paper is organized as follows: see. 2 is devoted to the study of weak
discontinuity propagation for non linear optics depending on one space vari-
able; sec. 3 deals with shocks in one dimension; sec. 4 examines the Lax con-
ditions for characteristic shocks; sec. 5 is concerned with reflection and trans-
mission- coefficients and finally in sec. 6 weak shocks and in sec. 7 particular
strong shocks are examined.

(*) Indirizzo: Istituto di Matematica Applicata dell’Universita, Via Vallescura 2,
40136 Bologna, Italy.
(**) Ricevuto: 5-111-1978.
(*) Also the static shocks exhibit the said property as the characteristic ones but
it will be shown they do not fulfil Lax conditions. An application of Jeffrey’s theory
to electromagnetic static shocks is performed in [3].
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2. - Electromagnetic weak discontinuities in a non linear isotropic dielectric
medium depending on one space variable.

The equations of non linear optics which we shall be concerned with have
the form (2)

(2.1) B, rot(E)=0, (2.2)  div(B)=0,
(2.3)  D,—rot(H)=0, (2.4)  div(D)=0,
where

(2.5) B=uH, (2.6) D =:E,

and the constitutive equations are

2.7 == const. , & = g(l?).

When the fields depend only on the space variable # and the time ¢, it is
immediate that eqs. (2.2) and (2.4) are fulfilled iff the components of the fields
along the » axis B; and D, are constants respect to # and ¢. Then we can put

without loss of generality.
So the system reduces to (2.1) and (2.3) and may be written in the com-
pact form (3)

(2.8) u, -+ Au, =0,
where
oF
0 nX ——
oD
(2.9) uE(B), A:( ),
D
——-nX 0

(%) f,= of/ot, f,= ofjox for any differentiable function f.
(®) For a general approach to the problem of disconfinuity waves in non linear
electrodynamies and a detailed deduction of these results see [7];, [4].
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and
E) 1 )
(2.10) (m) == {eI —2¢'vE® E}
€ , de
(2.11) "Tereem  f T any

n = (1, 0, 0) being the direction of wave propagation.
The eigenvalues of the matrix A representing the propagation velocities
are given by
1 B
( ) ¥ Ve’ + su
and the corresponding right and left eigenvectors which may be obtained
easily are

I o
s dF )= s/‘E) = (T \/?"XE) ,
nxXE E

where the notation d(1) means the right eigenvector corresponding to the
eigenvalue A.

IF 1) = 53 (i\/iE, an) ,
(2.14) B
- 1 e 1
l(:F Ao '\/11) = ‘)—E3 (:F \/:;V n><E, E) y 20 = R

&Lt ’

We remark that 4 being a real matrix we have chosen the left eigenvectors
orthonormalized to the right ones according to the relation

(2.15) L2y -d(A) = b,

Oz being the Kronecker symbol.
These information on discontinuities are enough for our problem of deter-
mining reflection and transmission coefficients.
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3. - Electromagnetic shocks.

The hyperbolic system (2.1), (2.3) is equivalent to the conservative
form {7],, [7];

(3.1) w4+ F.=0,
where

nxE
(3.2) F= (_an) )

and this enables us to write the Rankine-Hugoniot equations, for shock waves,
by employing the correspondence

(3.3) 0, —~—s[], o —[ 1.
‘We have
(3.4) —s[(Bl4+nx[E]=0, (3.5) (D] +nx[H]=0.

As usual in literature the notation, [w] = w — w,, Yw indicates the value
of the strong discontinuity (jump) through the shock wave-front and s is the
speed of the shock propagation.

It is immediate to verify that s = 0 (static shock) implies

(3.6) [El=[E-nln=20, (3.7 [Hl=[H'nln=20,

i.e. a null shock, since we have chosen the longitudinal components of the
field equal zero (%).

Then on considering s=£ 0 from (3.4), (2.5) and (2.7) we have

(3.8) [H) = = nE],

(%) In any case it is not difficult to see that s = 0 does not satisfy the Lax condi- )
tions [6] and so even a different choice of the longitudinal field would not give rise to
static shocks.
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that we introduce into (3.5) to gain
(3.9) s2u[D]—[E] =0 .

Now from (2.6) and remembering that
(8.10) Va, b: [ab] = a[b] -+ [«]b,
where the tilde stands for the average, we have
(3.11) (s*6u — 1)[E] + s*uE[e] = 0.

We observe that when the shocks with speeds

1
9 — —
(3.12) s =7F Vi
oceur, we have
(3.13) [el=0, [(BY]=0.

In fact from (3.11) we get Ef¢] = 0, that holds either when [¢] = 0 or
E = 0. In the first case, since ¢ is supposed to be a continuous monotonic
funection of %2, it must be [II?*] = 0 to ensure: [¢] = &(&?) — ¢(F) = 0. In
the second case: E = — E, and so: [E?] =[¢] =0. Then from (3.13) we
have: § = ¢ = &, and (3.12) becomes (?) s = F A4, (characteristic shocks).
For [H] we have from (3.8)

(3.14) [H] =T \/f nx[E].

y24

It is a remarkable feature of non linear electrodynamics the fact that
when a characteristic shock occurs all the eigenvalues A become continuous
through the shock (Riemann invariants) since they depend only on E?®

(3.15) [29] = 0 » (i=1,23,4).

(5) For a general theory of characteristic shoeks see [1];.
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4. - Lax conditions.

Lax conditions of evolution [6], [2] must be satisfied to pick up physical
shocks among all mathematical solutions of the Rankine-Hugoniot equations.
They form the following system of inequalities (k=1,2,..., N)

M)W << IW <5 <20 < <),
(4.1)

AD L AD AN gAML AW

where N is the dimensionality of the vector field u appearing in the system
(3.1) or (2.8) and A¥, 2® are the characteristic speeds (eigenvalues of the
matrix 4) computed respectively in correspondence of the values of the field u.,
(region on the right of the shock) and wu (region on the left of the shock),
increasingly ordered taking account of multiplicity.

For our system N = 4. To order the eigenvalues we have to distinguish

two possibilities (a) & >0, from which » << 1 and the ordering A®W = — 2,
M0 = — <V, 29 =4 2V, 20 =4 dy; (b)— ¢gf2B2 < &'< 0, ¢>0 from
which v >1 and the ordering AV = — AV», A® = — 4;, A® =4 J,, A=
=+ LV7.

Linear electrodynamics is obtained when &' = 0 so that v = 1andthe dis-
tinet eigenvalues are only two with double multiplicity.

In this paper we shall consider the characteristic shocks, which occur in
correspondence of the exceptional waves[4],[7],, i.e. for s = F 2,. In this
case eq. (3.15) holds and the Lax conditions give the following results.

(a) &' positive: the shock s = — 2, ocours for k = 1, the shock s = 4 1,
oceurs for & = 4.
(b) &' negative: the shock s = — A, oscurs for k = 2, the shock s = - 4,

oceurs for & = 3.

5. - Reflected and transmitted amplitudes.

As an application of the theory developed in [2] we calculate the transmis-
sion and reflection coefficients for a discontinuity wave coming in contact
with a characteristic shock for our electrodynamic problem. TFollowing [2] the
algebraic system of the coefficients has the general form

(5.1) s [u] + z ﬁ(” §— AD)rd — z“m 8§ — X(a))Zd(z) = —I1(s — 22 ad®

i=E+l



[7 TRANSMISSION AND REFLECTION OF A DISCONTINUITY WAVE ... 321

in which § is the jump of the shock acceleration, i.e. the difference of the
right and left limits of

_ds  as s 2s

at ot 0w

caleulated along the shock world-line in correspondence of the point of impact
of the discontinuity wave

= 8, — St

[ @]

2% P~ ?

i, being the impact time (see fig. 1 in ref. [2]), A9 and o are respectively the
reflection and transmission coefficients and /7 is the amplitude of the incident
wave.

(a) &' positive. In this case the incident discontinuity wave is excep-
tional AW = + 2, and there are no problems of critical time since the discon-
tinuity will never evolve into a shock [1],. The only possible incidence involves
the characteristic shock with speed s = — Z,, (k=1). In fact if s = )
no incidence takes place because the discontinuity and the shock run the
former after the latter with the same velocity.

When s =—1;, (k=1) the system (5.1) becomes

(5.2) E[u] — o (s — A2 d@) — (s — A)2d® —
-——06‘4)(.5'— lu))zd}(ﬁ) — ____]:[(3 — 1(4))2(1(4) ,

where d{?, d@ are the eigenvectors corresponding to ordered eigenvalues
)= 9. Note that d¥) and d¥ do not identify since they depend directly
on the field E; and E and not only on the continuous square modulus.

No B9 coefficients appears in (5.2) since k = 1 implies total transmission
(no reflected waves). Thanks to condition (2.15) the caleulation of the un-

known variables §, ! is not difficult. In fact the dot produet of (5.2) and
19 vields

(5.3) SIO (] = — (s — AW)2 I®. d@ |

Direct computation gives

&€
e

19 [u] =—E,xEn, I gw=0.

22
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The former has been obtained through eq. (3.13) holding for the charac-
teristic shocks and the Rankine-Hugoniot egs. (3.4), (3.5) which for s = — 2,
specialize as

[D] = ¢[E], (B] = —+eunx[E].

Now it is immediate that if we exclude the shock: E = — L, which gives
E.xE-n=0, [*]=0 we amrive at

(5.4) =0.

[ @».]

The result (5.4) holds in general, even for the shock F = — H., as one

—

is able to verify after computing the coefficients « as functions of & and

—

introducing them into the original system (5.2).
Then on taking the dot product of eq. (5.2) and 19, with §j =2,3,4 we
arrive at the corresponding coefficients «!?. After some caleulations one has

5.5 o) = .__2E’"."___..>EE.? —

(5.5) —v») VB
—2E. XE-n

- B =

(5.6) W= T B L

(5.7) o) = E},J—ZEU

Summarizing: when an cxceptional discontinuity wave is completely trans-
mitted through a characteristic shock the jump of the acceleration of the shock
vanishes as in a linear theory. The effect of non linearity appears only for the
presence of the coefficionts o, a®.

It would be an interesting problem to investigate if this result is a pecu-
liarity of the structure of electrodynamics or it may be extended.

(b) &' megative (8). Shock s =— Ay, (b =2).
The algebraic system is

(5.8) ; [w] + (s — A dD — o) (g — ;L(s))ang)_,
— (s — A2 d® = —II(s — Aw)2d®

() The incident wave A¥ = - 1,4/ is not exceptional and it is intended that
ineidence must oceur before the weak discontinuity becomes a shock (there is a critical
time). Furthermore the caustic case does not oceur since we are in one space dimension.
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where the eigenvalues and the eigenvectors have been opportunely labelled.
Now the orthonormality condition (2.15) is not enough to gain the coefficients
directly as in the previous case, but calculations do not involve conceptual
troubles. A simplification arises from the fact that

0.go=o, [29.d® =0, I®[u]=0.
The results are

_ =D+ V)

(5.9) ST ey 1,

14++v g T
’

(5.10) o = -V 1—¢
. (1 ++v7)E.,XE'n
(5:11) e si— e T
H 9 E*. E
(5.12) == x=( +‘/’7)“I\7§—1%§1E'

In this case: the incident wave is not ewceptional, the effect of non linearity ap-
pears in the presence of a non vanishing jump of the shock acceleration and one
reflected and two transmitted wave characterstics.

Shock s = 4 A,, (k= 3). In this case the incident wave can reach the
shock because the wealk discontinuity is faster than s. The coefficients obey
the system
(5.13) $u] + BV(s — A)2d@ - g (s — A@)2d®

— (s — A2 dP = — (s — Ay dw ,

Solving the system is analogous to the previous case, with the remark that
now the Rankine-Hugoniot equations yield

[D] = ¢[E], [B] = + Veunx[E],
for the signature of s now is positive. It is useful to observe that

19 [u]=0, 1@ [u]=0.
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The solutions are

(5.14) § = (vé;lzgi:z;) ' Ef.gEH )
(5.15) W= 8;:;3: ' 13{—% ’
(5.16) po = — GO B,
(5.17) @ = TGE ’ 1—]_%’

4 is still defined by (5.12).

Now: the incident wave is not exceptional, non Vnearity implies a non van-
ishing jump of the shock acceleration and the presence of two reflected and one
transmitted wave characteristics. ~

On concluding this section we emphasise that the system (5.1) being a

linear algebraic non homogeneous system in the unknown variables §, f%, ol?

with non vanishing determinant, we have the unicity of the solution and
absence of reflected and transmitted waves (trivial solution) when the incident
amplitude I7 is zero. Furthermore one notes that the linear case (v =1 cor-
responding to ¢ = 0) cannot be obtained directly from the previous coefli-
cients, but one has to come back to system (5.1) that must be written again
taking account of the multiplicity of the eigenvalues.

Finally we observe that the theory developed in[2] requires for charac-
teristic shocks that the following two equations are identically fulfilled

- = x ; ;
(5.18) § = I =—V AP T (AP —AP)d?,
= — j=k+1
—_ L k=1
(5.19) § = A® = V™. {Z BNAD — Q) dD - [T(A™ — 3(k>)d(zv)} ,
- — premt

where V is the gradient operator respect to the field u. Calculations are
straightforward.
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6. « Weak shocks.

When the characteristic shock is a weak shock the theory [2] says

(6.1) [u] = hd® -+ O(?)

(6.2) B = O(h) (G =1,2 ., k—1),
(6.3) a9 = O(h) (G=k+1,.., N—2 N—1),
(6.4) a® = IT 4 O(h)

(6.5) § = (A0 — ) ViW-dW®IT 4 O(h) .

We observe that in any case (6.1) specializes for the electrie field in
(6.6) [E] — E—E, — %anJrO(hz)’
from which we have
(6.7) EyxE-n =" 54 00),

(6.8) E E =T+ 00 .

Now we introduce these expressions into the coefficients formulae and
consider first order approximation for weak shocks

(a) &' positive. Shock s = — 1, E = 0,
211 h
2) o . 2
(6'9) & (1 \/1'7) \/; & + O(h ) ?
—217 h
. ) = " . Z 2
(6.10) =TT e o)
(6.11) a® = IT -+ O(h2) .

(b) &' megative. Shock s = — A,

_ (»—1)( +\/?7)H+ o),

2e%p

[ %)

(6.12)
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(6.13) BV = O(h?),
(6.14) o3 = .(_}_»ig)j_{_] h + O(hz) ,

(6.15) o = IT + O(h2) y = 0@).

Shock s = + A,

= (r—1)1—v) \
(6.16) i—Tﬂ+0(h),
(6.17) O = 0(h?),
(6-18) 5(2) —_ — %@h + O(h2) ,
(6.19) o® =IT + O(h?) .

Observation: in any case the only relevant coefficient is the one relative to
the fastest transmitted wave and its value equals the incident amplitude as in the
linear theory. When the incident discontinuity is not emvceptional the effect of

non linearity appears in the value of § that is of the same order as o,

7. = Particular strong shocks.
An interesting situvation arises when
(7.1) Ey ‘E =0.

For characteristic shocks (7.1) is compatible with the Rankine-Hugoniot equa-
tions (3.13) iff

(7.2) E= +nxE,.

When introduced into the coefficient expressions these equations provide
the following limit values

o

(a) & positive. Shock 8 = — A5, § =0,
V (2) — 211
(7.3) ol = A4 TV’
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(&) J— R —
(7.4) o :F (1 + \/1—}) '\/7}’
(1.3) a® =0 .
(b) & megative. Shock s = — A,
(7.6) § =0,
1+
(1)
(7.7) i =

(7.8)

(7.9)

Shock s = - 4,

o® = i(ij—_{)wﬂ,
a® =0, ¥ —>00 .

2(1— V)V
o e2u(l + /%) I,

R
p - 2(L + /)2 7
0 — 44/v
(1 +v)*

Concluding: the characteristic shocks E = = n X Ey give the peculiar result
that when § = 0 also the coefficient o vanishes. This fact is a clear conse-

quence of non linearity since the linear theory always yields o® = II.

Finally it is important to observe that condition (7.1) is compatible with
the law of evolution of the characteristic shock [7], which ensures mutual
orthogonality of E and E; to be conserved in time when imposed as initial

condition.
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Sommario

Viene presentata wn’applicazione di una teoria sviluppata in un lavore di G. Boillat

e T'. Ruggeri allottica non lineare per Uinterazione di un’onda di discontinuitd e di una
onda dwrto in una dimensione spaziale. St ricavano le ampiesze di riflessione e di trasmis-
sione corrispondenti ad un segnale incidente su un wrio caratteristico. Si analizzano gli
urti deboli ed un caso particolare.



