GIRDHARI LAL FOTEDAR (*)

On a class of bisimple inverse semigroups (**)

1. – A bicyclic semigroup [2]₁ is a semigroup with identity element 1 generated by two elements a, b such that $ab = 1 \neq ba$. It is easily seen that the elements of this semigroup are of the form $(b^m a^n)$; $m, n \geq 0$. The bicyclic semigroup belongs to the general class of bisimple inverse semigroups [2]₂.

The definition of a bisimple inverse semigroup is rather involved and is as follows. If x, y are elements of a semigroup. S, x is said to be left (right) equivalent to y if SxUx = SyUy (xSUx = ySUy) and the set of all elements of S that are left (right) equivalent to $x \in S$ is called the left (right) equivalence class of x and is denoted by L_x (R_x).

The elements $x, y \in S$ are said to be *D-equivalent* it there exists an element z in S such that $z \in L_x \cap R_y$ and the set of all elements of S that are D-equivalent to $x \in S$ is called the D-class of x and is denoted by D_x . If S consists only of a single D-class, it is said to be bisimple. A semigroup S is said to be regular if for each x in S there exists an element y in S such that xyx = x. Finally S is said to inverse if S is regular and idempotents in S commute.

The notion of a bicyclic semigroup was first introduced by Lyapin [4] and has been studied by Olaf Anderson [1] and others, an account of which is given in [2]₁ and [2]₂. In [3] we generalized the concept of a bicyclic semigroup to a semigroup formed by $G_+ \times G_+$, where $G_+ = \{x \in G \mid x \geq 1\}$, G being an ordered group, under the multiplication given by

$$(x, yu^{-1}v)$$
 if $y \ge u$, $(x, y)(u, v) =$
$$(uy^{-1}x, v)$$
 if $y \le u$.

^(*) Indirizzo: Indian Statistical Institute, 7, S.J.S. Sansanwal Marg. New Delhi 29, India.

^(**) Ricevuto: 30-IV-1975.

It is easily seen that for each $x \in G_+$ the set $\{(x^m, x^n) | m, n > 0\}$ is a bicyclic subsemigroup of $G_+ \times G_+$. Among other properties of the semigroup $G_+ \times G_+$ we showed in particular that this special class of semigroups is bisimple inverse. In this paper we give a natural representation of the above semigroup $G_+ \times G_+$.

2. — Let F be the set of all functions f on an ordered multiplicative group G (not necessarily commutative) with values in an arbitrary set S with more than one element such that

$$f(u) = a \qquad \text{if} \quad u < 1 \,,$$

where a is a given element of S, $u \in G$.

Corresponding to each $x \in G$ let there be defined a mapping \overline{x} of F into itself such that

(2.2)
$$(\overline{x}f)(u) = \begin{cases} a & \text{if} \quad u < 1, \\ f(ux) & \text{if} \quad u > 1. \end{cases}$$

Lemma 2.1. For all $1 \ge x \in G$, $(\overline{x}f)(u) = f(ux)$.

Proof. For all $x \le 1$ and u < 1, ux < 1 so that $(\bar{x}f)(u) = a = f(ux)$.

Theorem 2.2. If $x, y \in G$, $\overline{xy} = \overline{xy}$ except when x < 1, y > 1 in which case $\overline{xy} \neq \overline{xy}$.

Proof. If $x \ge 1$, $(\overline{x}\overline{y}f)(u) = (\overline{x}f')(u)$ where

$$f'(u) = (\overline{x}\overline{y}f)(u) = egin{array}{ccc} a & ext{if} & u < 1, \\ f(uy) & ext{if} & u > 1, \end{array}$$

so that

$$(\overline{x}\overline{y}f)(u) = (\overline{x}f')(u) =$$
 if $u < 1$ $= (\overline{xy}f)(u)$, $f'(ux)$ if $u > 1$

since u > 1, x > 1 implies ux > 1. If x < 1, y < 1, $(\overline{xy}f)(u) = (\overline{x}f')(u) = f'(ux)$ by Lemma 2.1 where, $f'(u) = (\overline{y}f)(u) = f(uy)$ again by Lemma 2.1, so that $(\overline{xy}f)(u) = f'(ux) = f(uxy) = (\overline{xy}f)(u)$ since xy < 1. Finally if x < 1, y > 1,

 $(\overline{x}\overline{y}f)(u) = (\overline{x}f')(u) = f'(ux)$ by Lemma 2.1 where,

$$f'(u) = (\bar{y}f)(u) =$$
 if $u < 1$, $f(uy)$ if $u > 1$,

so that

$$(\overline{x}\overline{y}f)(u) = f'(ux) = egin{matrix} a & & \text{if} & ux < 1 \ , \\ f(uxy) & & \text{if} & ux > 1 \ , \end{cases}$$

where as

$$(\overline{xy}f)(u) = egin{array}{cccc} a & & ext{if} & u < 1 \ , \\ f(uxy) & & ext{if} & u > 1 \ . \end{array}$$

Taking $f \in F$ such that $f(u) \neq a$ for u > 1, it is easily verified that for $u = \max((xy)^{-1}, 1)$, $(\overline{x}\overline{y}f)(u) = a$ and $(\overline{xy}f)(u) \neq a$, whence it follows that $\overline{x}\overline{y} \neq \overline{xy}$.

Corollary. If $x \le 1$ then \overline{x} has a left inverse \overline{x}^{-1} and if $y \ge 1$ then \overline{y} has a right inverse \overline{y}^{-1} .

Let K be the subsemigroup generated by $\overline{G} = \{\overline{x} \mid x \in G\}$ in the semi-group of all mappings of F into itself and let $G_- = \{x \in G \mid x < 1\}$. Then we have

Theorem 2.3. The elements of K have a unique representation in the form $\overline{x}\overline{y}$, $x \in G_-$, $y \in G_+$.

Proof. The set $\overline{K}=\{\overline{x}\overline{y}\,|\,w\in G_-,\,y\in G_+\}$ clearly contains \overline{G} as is seen by taking x or y=1. It is therefore sufficient to prove that \overline{K} is closed under multiplication to show that $\overline{K}=K$. Let $\overline{x}\overline{y},\ \overline{u}\ \overline{v}\in\overline{K}$. Then since $y\geqslant 1$ we have by a repeated application of Theorem 2.3

$$ar xar y\cdot \overline u\ \overline v=ar x\ \overline{yu}\ \overline v= ar x\ \overline{yuv} \qquad ext{if} \quad yu\!>\!1 \;, \ \ xyu\ \overline v \qquad ext{if} \quad yu\!<\!1 \;,$$

which proves our assertion. Next we show that if $\bar{x}\,\bar{y}=\bar{u}\bar{v}$, then x=u,

y = v. We first show that x = u. Assuming the contrary we may without loss of generality suppose that x < u. Since $x, u \le 1$, we have

$$(\overline{x}\overline{y}f)(z) = (\overline{y}f)(zx) = egin{array}{ccc} a & ext{if} & zx < 1 \ , \\ f(zxy) & ext{if} & zx \ge 1 \end{array}$$

and similarly

$$(\overline{u}\;\overline{v}f)(z)=egin{array}{cccc} a & ext{if} & zu<1\;, \\ f(zuv) & ext{if} & zu>1\;. \end{array}$$

If f is chosen such that $f(v) \neq a$ for v > 1 then for $z = u^{-1}$ we have zx < 1 and therefore $(\overline{x}\overline{y}f)(z) = a$, $(\overline{u}\overline{v}f)(z) = f(v) \neq a$, so that $\overline{x}\overline{y} \neq \overline{u}\overline{v}$. Hence we get x = u and so $\overline{x}\overline{y} = \overline{x}\overline{v}$.

Since $w \leqslant 1$, \overline{x} is left invertible with left inverse \overline{x}^{-1} by Corollary to Theorem 2.2. Therefore by multiplying on the left by \overline{x}^{-1} we get $\overline{y} = \overline{v}$. Assuming $y \leqslant v$ so that $yv^{-1} \leqslant 1$ we get again by Corollary to Theorem 2.2 that $\overline{y} \, \overline{v}^{-1} = \overline{v} \, \overline{v}^{-1} = \overline{1}$.

We may write this as $\overline{yv^{-1}}$. $\overline{1} = \overline{1} \cdot \overline{1}$ and applying the result proved above we get $yv^{-1} = 1$ or y = v.

Let φ be a mapping of $G_+ \times G_+$ into K defined by $\varphi(x, y) = \overline{x}^{-1}\overline{y}$. Then the mapping φ is obviously one to one and onto by Theorem 2.3. We may therefore earry over the semigroup structure of K to $G_+ \times G_+$. The multiplication in $G_+ \times G_+$ takes the form

$$(x, y)(u, v) = \overline{x}^{-1} \overline{y} \overline{u}^{-1} \overline{v} = \overline{x}^{-1} \overline{y} \overline{u}^{-1} \overline{v}$$

$$= \overline{x}^{-1} \overline{y} \overline{u}^{-1} \overline{v} \quad \text{if} \quad y u^{-1} \geqslant 1 \qquad (x, y u^{-1} v) \quad \text{if} \quad y \geqslant u ,$$

$$= \overline{x}^{-1} y \overline{u}^{-1} \overline{v} \quad \text{if} \quad y u^{-1} \leqslant 1 \quad (u y^{-1} x, v) \quad \text{if} \quad y \leqslant u ,$$

by the repeated application of Theorem 2.2 for all (x, y), (u, v) in $G_+ \times G_+$.

References

[1] O. Anderson, Ein bericht über die struktur abstraktar halbgruppan, Thesis (Staatsexamen-sarbeit), Hamburg 1952.

- [2] A. H. CLIFFORD and G. B. PRESTON: [•]₁ Algebraic theory of semigroups I, Math. Sur. 7 A.M.S. Translations (1961); [•]₂ Algebraic theory of semigroups II, Math. Sur. 7 A.M.S. Transactions (1967).
- [3] G. L. Fotedar, On a semigroup associated with an ordered group, Math. Nachr. 60 (1974), 297-302.
- [4] E. S. LYAPIN, Canonical form of elements of an associative system given by defining relations, Leningrad Gos. Ped. Inst. Učen Zap. 89 (1953), 45-54.

Abstract

The notion of bibyclic semigroup was first introduced by E. S. Lyapin [4] and has been studied by Olaf Anderson [1]. An account of this class of semigroups is also given in Cliffords book [2]. In our paper [3] we generalized the concept of a bicycling semigroup formed by $G_+ \times G_+$ where $G_+ = \{x \in G \mid x \geq 1\}$, G being an ordered group, under the multiplication rule

$$(x,\,y\,u^{-1}v),\quad if\ y\geqslant u\;,\\ (x,\,y)(u,\,v)=\qquad \qquad \qquad for\ all\ (x,\,y),\ (u,\,v)\quad in\ G_+\times G_+\;.\\ (u\,y^{-1}x,\,v),\quad if\ y\leqslant u\;,$$

We showed that for each $x \in G^+$, $\{(x^m, x^n | m, n > 0\} \text{ is a bicyclic subsemigroup of } G_+ \times G_+$. Among other properties of the semigroup $G_+ \times G_+$ we showed in particular that this special class of semigroup is bisimple inverse. Here in this paper we give a natural representation of the semigroup $G_+ \times G_+$.

•