B. K. DASS and L. KHAZANCHI (*)

On common fixed points through rational expression. (**)

1. - Introduction.

Let \((X, d)\) be a complete metric space. A mapping \(f: X \to X\) is called a contraction if there exists a real number \(k\), \(0 < k < 1\), such that

\[d(f(x), f(y)) \leq kd(x, y), \quad x, y \in X. \]

The celebrated Banach's contraction principle [1] states that every such mapping admits a unique fixed point. The condition that the mapping is a contraction is a very severe restriction as also such maps are uniformly continuous. Kannan [2] established the same theory for a mapping \(f\) which satisfies

\[d(f(x), f(y)) \leq \alpha [d(x, f(x)) + d(y, f(y))], \quad 0 < \alpha < \frac{1}{3}, \]

and showed that \(f\) need not be even continuous. Later on Reich [4] and Wong [5] established the same results through generalized contractions.

In this paper we have made an attempt to establish a fixed point theorem through rational expression for product of two self-mappings defined on a metric space (not necessarily complete). Also the mappings under study need not be continuous. Some results which follow as its consequences are also derived.

We have

(*) Indirizzi degli AA.: B. K. DASS, Department of Mathematics, P. G. D. A. V. College University of Delhi, Nehru Nagar, N. Delhi - 110024, India; L. KHAZANCHI, Department of Mathematics, Miranda College, University of Delhi, Delhi-110007, India.

Theorem 1. Let T_1 and T_2 be two self-mappings defined on a metric space (X, d) such that

(i) $d(T_1 T_2(x), T_2 T_1(y)) \leq \frac{\beta d(x, T_1 T_2(x)) [\alpha + d(y, T_2 T_1(y))]}{\alpha + \beta d(x, T_1 T_2(x))}$,

for all $x, y \in X$, $\alpha > 0$, $0 < \beta < 1$,

(ii) for some $x \in X$, the sequence $\{x_n\}$ defined as $x_1 = T_1 T_2(x)$ and for $n > 1$,

\[
x_n = \begin{cases} T_1 T_2(x_{n-1}) & \text{if } n \text{ is odd} \\ T_2 T_1(x_{n-1}) & \text{if } n \text{ is even} \end{cases}
\]

has a subsequence $\{x_{n_k}\}$ with $x_0 = \lim_{n \to \infty} x_n$. Then x_0 is the unique common fixed point of T_1 and T_2.

Proof. For the sequence $\{x_n\}$ as defined in (ii) we have

\[
d(x_1, x_2) = d(T_1 T_2(x), T_2 T_1(x)) \leq \frac{\beta d(x, T_1 T_2(x)) [\alpha + d(x_1, T_2 T_1(x_1))]}{\alpha + \beta d(x, T_1 T_2(x))},
\]

i.e.

\[
\left[1 - \beta d(x, x_1) \right] d(x_1, x_2) \leq \frac{\alpha \beta d(x, x_1)}{\alpha + \beta d(x, x_1)},
\]

which gives $d(x_1, x_2) < \beta d(x, x_1)$.

Also

\[
d(x_2, x_3) = d(T_2 T_1(x_1), T_1 T_2(x_2)) \leq \frac{\beta d(x_2, T_1 T_2(x_2)) [\alpha + d(x_3, T_2 T_1(x_3))]}{\alpha + \beta d(x_2, T_1 T_2(x_2))},
\]

i.e., $\alpha + \beta d(x_2, x_3) < \alpha \beta + \beta d(x_1, x_2)$ which implies

\[
d(x_2, x_3) < \frac{\alpha}{\beta} (\beta - 1) + \beta d(x, x_1).
\]
Again
\[d(x_n, x_{n+1}) = d(T(x_n), T(x_{n+1})) \]
\[= \frac{\alpha d(x_n, T(x_n)) + \beta d(x_n, T(x_{n+1}))}{\alpha + \beta d(x_n, T(x_n))} \]
which implies
\[d(x_n, x_{n+1}) \leq \beta d(x_n, x_{n+1}) < \alpha (\beta - 1) + \beta^2 d(x_n, x_{n+1}), \]
and
\[d(x_n, x_{n+1}) = d(T(x_n), T(x_{n+1})) \]
\[= \frac{\alpha d(x_n, T(x_n)) + \beta d(x_n, T(x_{n+1}))}{\alpha + \beta d(x_n, T(x_n))} \]
i.e., \(\alpha + \beta d(x_n, x_n) < \alpha \beta + \beta d(x_n, x_n) \) which implies
\[d(x_n, x_{n+1}) \leq \frac{\alpha}{\beta} (\beta - 1) + \alpha (\beta - 1) + \beta^2 d(x_n, x_{n+1}) = \frac{\alpha}{\beta} (\beta^2 - 1) + \beta^3 d(x_n, x_{n+1}). \]

In general,
\[d(x_{2n}, x_{2n+1}) \leq \frac{\alpha}{\beta} (\beta^n - 1) + \beta^n d(x_n, x_{n+1}) \]
and
\[d(x_{3n+1}, x_{3n+2}) < \alpha (\beta^n - 1) + \beta^{n+1} d(x_n, x_{n+1}). \]

Hence for \(m = 2r \), we have
\[d(x_m, x_{m+n}) < d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \ldots + d(x_{m+n-1}, x_{m+n}) \leq \]
\[\leq \frac{\alpha}{\beta} (\beta^r - 1) + \beta^r d(x_n, x_{n+1}) + \alpha (\beta^r - 1) + \beta^{r+1} d(x_n, x_{n+1}) + \ldots \quad (2n \text{ terms}) \]
\[= \frac{\alpha}{\beta} (\beta^r - 1) + \alpha (\beta^r - 1) + \frac{\alpha}{\beta} (\beta^{r+1} - 1) + \alpha (\beta^{r+1} - 1) + \ldots \quad (n \text{ terms}) + \]
\[+ (\beta^r + 2\beta^{r+1} + 2\beta^{r+2} + \ldots, \quad (n \text{ terms}) d(x, x_n) \]
\[< \alpha \beta^{r-1}(1 + \beta + \beta^2 + \ldots) + \alpha \beta^r(1 + \beta + \beta^2 + \ldots) + \]
\[+ 2\beta^r(1 + \beta + \beta^2 + \ldots) d(x, x_n) \]
\[= \frac{\alpha \beta^{r-1}(1 + \beta)}{1 - \beta} + \frac{2\beta^r}{1 - \beta} d(x, x_n) \rightarrow 0 \text{ as } r \rightarrow \infty, \quad \text{i.e., } m \rightarrow \infty. \]
Similarly, for $m = 2r + 1$, we have

$$d(x_m, x_{m+1}) \to 0 \quad \text{as} \quad m \to \infty,$$

showing thereby that $\{x_n\}$ is a Cauchy sequence. As a consequence of (ii), there exists $x_0 \in X$ such that

$$\lim_{n \to \infty} x_n = x_0.$$

We shall show that $T_1T_2(x_0) = T_2T_1(x_0) = x_0$. Now

$$d(T_1T_2(x_0), x_0) < d(T_1T_2(x_0), x_t) + d(x_t, x_0) \quad \text{(where t is even)}$$

$$= d(T_1T_2(x_0), T_2T_1(x_{t-1})) + d(x_t, x_0)$$

$$\leq \frac{\beta d(x_0, T_2(x_0)[x + d(x_{t-1}, T_2T_1(x_{t-1})] + d(x_t, x_0)}{\alpha + \beta d(x_0, T_1T_2(x_0))},$$

i.e.,

$$d(T_1T_2(x_0), x_0) < d(x_t, x_0) \left(1 - \frac{\alpha \beta + \beta d(x_{t-1}, x_t)}{\alpha + \beta d(x_0, T_1T_2(x_0))} \right)^{-1} \to 0$$

for sufficiently large t. Thus $T_1T_2(x_0) = x_0$. Similarly $T_2T_1(x_0) = x_0$.

Next, we show that x_0 is the unique fixed point of T_1T_2 and T_2T_1. Let y_0 also satisfy $T_1T_2(y_0) = T_2T_1(y_0) = y_0$. Then

$$d(x_0, y_0) = d(T_1T_2(x_0), T_2T_1(y_0)) < 0.$$

Therefore $x_0 = y_0$. It can be easily seen that x_0 is the only fixed point of T_1T_2 and T_2T_1 which is common. Next, we show that $T_1(x_0) = x_0 = T_2(x_0)$.

We have $T_1T_2(x_0) = x_0 = T_2T_1(x_0)$ which implies $T_1(T_2T_1(x_0)) = T_1(x_0)$ i.e., $T_1T_2T_1(x_0) = T_1(x_0)$. Therefore $T_1(x_0) = x_0$, since x_0 is the unique fixed point of T_1T_2. Similarly $T_2(x_0) = x_0$. Lastly, we show that x_0 is the only common fixed point of T_1 and T_2. Let $z_0 \neq x_0$ be an element of X enjoying the property $T_1(z_0) = T_2(z_0) = z_0$ which implies $T_1T_2(z_0) = T_1T_1(z_0) = z_0$ i.e., $z_0 = x_0$, since x_0 is the unique common fixed point of T_1T_2 and T_2T_1. This completes the proof of the theorem.

Remark. The result by setting $T_2x = x$ for all $x \in X$ in the above theorem, has been proved independently in [3].
2. – In the following theorem we show that if \(T_1 \) and \(T_2 \) are continuous, then it is sufficient for the validity of Theorem 1 that \(T_1, T_2 \) satisfy condition (i) only on a dense subset of \(X \).

Theorem 2. Let \(T_1 \) and \(T_2 \) be two continuous mappings of \(X \) into itself such that for any pair of points \(x, y \) belonging to an everywhere dense subset \(M \) of \(X \)

\[
(\ast) \quad d(T_1 T_2(x), T_2 T_1(y)) < \frac{\beta d(x, T_1 T_2(x))[\alpha + d(y, T_2 T_1(y))]}{\alpha + \beta d(x, T_1 T_2(x))}
\]

\(\alpha > 0, \ 0 < \beta < 1, \) and (ii) holds, then \(T_1 \) and \(T_2 \) have a unique common fixed point.

Proof. The proof will follow from Theorem 1 if we show that the expression in (\(\ast \)) holds for any pair of points \(x, y \in X \).

Let \(x, y \in X \). If \(x \in X \), \(y \in X^\sim M \), then a sequence \(\{y_n\} \) in \(M \) converges to \(y \) and we have

\[
d(T_1 T_2(x), T_2 T_1(y)) < d(T_1 T_2(x), T_2 T_1(y_n)) + d(T_2 T_1(y_n), T_2 T_1(y)) \\
< \frac{\beta d(x, T_1 T_2(x))[\alpha + d(y_n, T_2 T_1(y_n))]}{\alpha + \beta d(x, T_1 T_2(x))} + d(T_2 T_1(y_n), T_2 T_1(y)) \\
= \frac{\beta d(x, T_1 T_2(x))[\alpha + d(y, T_2 T_1(y))]}{\alpha + \beta d(x, T_1 T_2(x))},
\]

since \(T_1 \) and \(T_2 \) are continuous.

Now we consider the case when \(x, y \in X^\sim M \). Then there exist sequences \(\{x_n\} \) and \(\{y_n\} \) in \(M \) converging to \(x \) and \(y \) respectively. Again we shall have condition (i) using the continuity of \(T_1 \) and \(T_2 \) and the inequality

\[
d(T_1 T_2(x), T_2 T_1(y)) < d(T_1 T_2(x), T_1 T_2(x_n)) + \\
+ d(T_1 T_2(x_n), T_2 T_1(y_n)) + d(T_2 T_1(y_n), T_2 T_1(y)) .
\]

3. – A much more interesting situation when a function which is the limit of a convergent sequence of functions is shown to have unique fixed point which is the limit of the fixed points of the sequence of functions is handled in the next theorem.

Theorem 3. Let \(\{T_1, T_2\} \) and \(\{T_2, T_1\} \) be two sequences of mappings of \(X \) into itself converging pointwise to \(T_1 T_2 \) and \(T_2 T_1 \) respectively such that

\[
d((T_1 T_2)(x), (T_2 T_1)(y)) < \frac{\beta d(x, (T_1 T_2)(x))[\alpha + d(y, (T_2 T_1)(y))]}{\alpha + \beta d(x, (T_1 T_2)(x))}
\]

for all \(x, y \in X, \ \alpha > 0, \ 0 < \beta < 1, \ i = 1, 2, \ldots. \)
If \((T_1, T_2)_n\) and \((T_2, T_1)_n\) have common fixed point \(\xi_1\) and \(\xi\) is the common fixed point of \(T_1, T_2\) and \(T_2, T_1\), then the sequence \(\xi_n\) converges to \(\xi\).

Proof. We have

\[
\begin{align*}
d(\xi, \xi_n) &= d(T_1, T_2)(\xi, (T_2, T_1)_n(\xi)) \\
&< d((T_1, T_2)_n(\xi), (T_2, T_1)_n(\xi)) + d((T_2, T_1)_n(\xi), (T_1, T_2)_n(\xi)) \\
&< d(T_1, T_2)(\xi, (T_1, T_2)_n(\xi)) + \frac{\beta d(\xi, (T_1, T_2)_n(\xi)) + d(\xi_n, (T_1, T_2)_n(\xi))}{\alpha + \beta d(\xi, (T_1, T_2)_n(\xi))} \\
&= \left\{ 1 + \frac{\alpha \beta}{\alpha + \beta d(T_1, T_2)(\xi, (T_1, T_2)_n(\xi))} \right\} d(T_1, T_2)(\xi, (T_1, T_2)_n(\xi)) \rightarrow 0
\end{align*}
\]

as \((T_1, T_2)_n(\xi) \rightarrow T_1, T_2(\xi)\). Hence \(\xi_n\) converges to \(\xi\).

The authors are thankful to Prof. U. N. Singh, Dr. B. S. Yadav and Dr. B. D. Sharma for their encouragement in the preparation of the paper.

References.

Abstract.

The well known Banach’s contraction mapping theorem has been generalized by various authors through generalized contractions. In this paper, an attempt has been made to derive certain results pertaining to fixed point theorems in metric spaces through a rational expression.
