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RoNALD B. GUENTHER (*)

Solution of Certain Problems
on the Unsaturated Flow of Liquids

in a Porous Medium. (**)

1. - Introduction.

Presented here is a mathematical treatment of certain types of unsatur-
ated flows of liquids (incompressible fiuids) in a porous medium. The existence
theory will be carried out by means of finite differences so that a viable nume-
rical method for solving the relevant equations will be obtained as well.

The theory developed here governs such practical problems as those enc-
ountered in describing mathematically processes such as drainage, irrigation,
movement of chemicals, liquid fertilizers and pollutants through soils, oil pro-
duction, ete.. Take for example the case of a drain field. The field is initially
saturated with water which will flow into neighboring ditches. The flow will
continue until a certain, critical, residual saturation is reached at which time
the flow ceases.

More generally, in a given domain a certain amount of liquid is concentrated
at a relatively high pressure. As time progresses, the liquid will low toward
areas of lower pressure. The flow will continue as long as a sufficiently high
saturation is maintained. When the saturation falls below a certain point, the
flow will cease. Thus the problem: To determine the amount of liquid in any
given point of the domain at any given time.

(*) Indirizzo: Department of Mathematics, Oregon State University, Corvallis,
Oregon, U.S.A..

(**) This research was carried cut under a grant by the ALEXANDER Vonx Hum-
BOLDT-STIFTUNG while the author was a guest at the Institut fur Angewandte Mathem-
atik der Universitdt Hamburg. — Ricevuto: 2-IV-1971.
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To derive the mathematical equations, let @ = (w, ..., ,) denote a point
in n-dimensional Buclidean space, R,, and >0 denote the time. Vector valued
functions with values in R, will be denoted by bold face, lower case Latin
letters. The gradient of a function and the divergence of a vector valued fune-
tion will be computed with respect to the & variables.

Under conditions of slow, steady (see e.g. BEAR, ZASLAVSKY and TRMAY [31,
FULxs, GUENTHER and ROETMAN [9], POLUBARINOVA-KocHINA [19] or ScHEI-
DEGGER [23], [24]), the flow is governed by Darcy’s law

(1) q =—A(gradp + f),

which relates the mass flux, q, to the gradient of the pressure, p, and to the
external body forces, f, and the continuity equation

2 .
(2) 5 (P8) +-divg =g.

In equations (1) and (2), ¢ denotes the density of the liguid, ¢ denotes the
porosity of the medium which is a measure of the pore volume available to
the fluid, § denotes the saturation which gives the fraction of the pore space
actually occupied by the fluid, 4 = (a;;) denotes a positive definite, symme-
tric matrix which represents the resistance of the medium to the flow of the
particular fluid in question and g denotes a function which arises in the event
that absorption, pumping of the liquid out or into the domain, the depositing
of material by the fluid on to the medium ete. takes place. A precise defini-
tion of these terms is given in [9] and a detailed physical discussion is given
in [3], [19], [23], [24].

The known functions g, ¢, 8, g, f, a;; are, in general, functions of pres-
sure, temperature, position, time, etc., and their dependence on these quantit-
ies is complicated and difficult to measure. Consequently, it is necessary to
make assumptbions of both a physical and a mathematical nature to make
the system (1) and (2) amenable to a mathematical treatment. The physical
assumptions to be made are quite reasonable and include many of the situa-
tions met with in engineering problems. Desirable relaxations of these assump-
tions will be discussed in paragraph 5.

We now make the following physical assumptions:
(PA 1) Temperature dependence will be neglected.
(PA2) A = (ay) is a positive definite, symmetric matrix which depends
only on =.
(PA 3) p is a positive constant.
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(PA 4) f and ¢ are functions of w, ¢ and p.

(PA B) The porosity ¢ depends upon z and p and satisfies the identity
0 < @< 1. As afunction of p, ¢ is non-decreasing and for p sufficiently small,
@ is independens of p.

R emark. In many applications ¢ is taken to be independent of p. How-
ever all media are slightly «spongy », i.e. ¢ always depends to some extent
on p. This dependence is particularly pronounced, for example, in the case
of oil reservoirs where very high pressures are present or in the case of loosely
packed soils. Under these conditions, ¢ is usually assumed to be a linear or
an exponential function of p in the range where ¢ depends upon p. See in
this regard FuLks and GUENTHER [8], SCHEIDEGGER [24] and SCELIKA-
cEv [21], [22].

(PA 6) S is a function of x and p and satisfies the inequality 0<S<1.
As a function of p, S(w, p) is non-decreasing and for p sufficiently small, § is
independent of p.

Combining now equations (1) and (2), we obtain

n B op a9 )
(3) MZ=1 Py (cm é—x,) +M2=1 v (ais1s) + 9= e 5, (@8)
which in view of the assumptions (PA 1) ... (PA 6) is a nonlinear, partial dif-
ferential equation in p alone which is of parabolic type but which for certain
values of p degenerates to an elliptic differential equation.

Another type of nonlinear, degenerate parabolic equation arises in the
study of gaseous flow in a porous medium. The appropriate equation is ob-
tained by combining (1) and (2), taking § = 1, ¢ = constant, and assuming
an equation of state for g (see LEIBENZON [15]). In one spatial dimension,
this leads to the equation

0% _op
(4) 2 V@ L P) =5

Equation (4) was first studied in detail by OLEINIK, KATASHNIKOV and Cuzou
Yur-Lin' [17]. Generalizations, extensions to higher dimensions and additional
information on the behavior of the solutions to (4) have been obtained recently
by Aroxson [1], [2], DUBINSKI [6], KAvasaNikov [12] and others.

Not so extensively investigated are solutions to (3). Due to the special
nature of the assumptions which are made concerning the function y(w,1, p)
in (4) and the functions ¢ and 8 in (3), the work of the above cited authors 1y,
(2], [6], [12], [17] is not applicable to (3). Moreover, their work is of a theor-
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etical nature and finite difference methods are not discussed although DuBIN-
SKI does use GALERKIN’S method for constructing the solution. GArrova [10]
(see also her bibliography), in treating certain change of phase problems, has
given a numerical method for approximating selutions to (3) when a; = J;;,
the KRONECKER delta, divf= gf:—: 0 and ¢S depends on only on p. Con-
vergence questions were not considered. In fact, existence and wuniqueness
questions for solutions to (3) seem to have been overlooked. The usual assump-
tion that (0/0p)(@S) is bounded from below away from zero (see FRIEDMAN
[7]) or at least that (3/op)(pS) > 0 (see KarmnomosTkavA [13]) is not met
here and so precludes a direct application of the standard theory.

In the sequel we shall obtain, after making certain normalizations and
additional assumptions of a more mathematical nature, first the uniqueness
of solutions to the first initial-boundary value problem for (3). A finite differ-
ence scheme will then be given for approximating the solutions and the con-
vergence of the solutions of the difference scheme as the mesh is refined to the
solution of the first initial-boundary value problem will be proven; thus, an
existence theorem will also be obtained.

2. - Statement of the problem, mathematical assumptions, uniqueness.

Let 2 be a bounded domain (open connected set) in R, and let ¢ be its
boundary, which is assumed to be continuously differentiable. Let @ = QU o.
Further, for any ¢t > 0, define the sets

Q= {znre, 0<r<i}, Si=A{@,r)|[zeo, 0 <r<t}
and
Q=Q. VU8 U{@x(1=0)}.

Now let T'>0 be fixed but arbitrary. We seek a function u = w(w, t)
satisfying

n e ou 0
® 2 (a,-,-(m %) —2 @ w) = o, )u +f@,1),  (5,0)€Qs
(6) w(z, 0) = p(z) , ze 2,
(7) u(x, t) = 0, (@, t) e 8,

In the statement of the problem, the role of p in (3) is played by u, the role
of op(x,w) S(@, u) is played by b(z, u) and the role of div f - ¢ is played by
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e(w, t) u 4 f{a, t). This requirement on div f has physical ramifications which
will be discussed in paragraph 5.

In view of the subsequent smoothness assumptions on the known func-
tions, we shall seek, not a «classical » solution to (5), (6), (7) as it stands, but
instead a generalized solution. Motivated as usual by the requirement thatb
a « classical » solution should also be a « generalized » solution and making use
of the notation of Ir'iv, KArASHNIKOV and OrmiNIk [11], p. 90 et seq., we
make the following

0
Definition 1. A function e W"%Q,) is said to be a generalized solut-

jon (or simply a solution) to (5), (6), (7), if for all functions &€ W 41(Q,) with
&z, T) = 0, it satisfies the integral identity

(8) f [ ﬁ: a,5(%) ou o2 ——aéb(w, u)] do di =

4i=1 ow, ow; ot
Cr

=Qf &(w, 0)b(x, p(x)) do — | [o(x, t) ué + f(=, t)E]dwds,
e

where dz = da; ... dz,.

To carry out the analysis, we shall make the following mathematical as-
sumptions, which are of course partially motivated by the physical assump-
tions (PA 1) ... (PA 6) and the physical situations described above. Specif-
ically we assume:

(MA.1) The functions a,(x), a;(x) = a;(x), 4,j =1, ..., n are defined and
continuous on . Further, there exist constants a,, a,, a;>a, > 0 such that
for all ze 2, £ R,

n n n
a 2 E< Y au@Eti<a D &L
i=1 £, =1 g==1

(MA 2) The function b(z, ) is defined and continuous for all ze O,
— oo << % << oo, and 0 < b{z, ) < 1. As a function of u, b(x, ) is non-decreas-
ing and satisfies a uniform LIPSCHITZ condition:

[b(z, w') — blw, w") | < M|uw'—u"| forall zef, —co< U, u'<oo
where M is a fixed constant. Finally, for any z€ Q, b(zx, ) = 0 if <0 and
b(xz, w) is strietly increasing in » for « > 0.

(MA 3) o(w,t) and f(z,t) are defined and continuous on @,. Further,
oz, 1) >0 and as a function of ¢, ¢(x, 1) is continuously differentiable in ¢, and
gc/ot>0. Finally, f(x,?) = 0 for (z,t) € S,.

(MA 4) @(2) is defined and continuously differentiable for z € Q. Further,
p(z) > 0 for 2 2 and @) = 0 for zeo.
‘We now prove
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Theorem 1. There exists at most one solution (in the sense of Definition 1)
to the problem (5), (6), (7).

Proof. Suppose there existed two, % and «¥. Let w = u® — ul),
t

Let t, 0<t'<T be arbitrary and let &(z,t) = [w(®, 7)dr for ¢ <t and
tl

E(m,t) = 0 for ¢t >t'. Then with this choice of &, it follows from (8) that

2, j=1 i
Qgr

t
i ow ow ) 2
(9) > a, (@) o P dr | de &t — | wb(z, wV) — b(z, wN]dedt =
J -
t Qql

= — [ e(=, t) w( fw dr) dzds.

Qu
Since b is non-decreasing in w,
(10) wlb(z, u) — bla, )] > 0.

Further, by (MA 3)

[ t

b
] 2
— fow(fwdr)dmdtz—%jc—a—t (fwdv:) dodt =
o

! Q #

0 t ’
= }Zfo(w, O)(fwdr)zdw+%f [g—tc] [f'wdr]“dwdt>0.
o ¢f

)
L t [

(11)

Finally, by (MA 1)

7 el o
> fa,-,.(:v)lj (f——u-)dv:)dwdt=
%, i=1 0 7 @ i
Qy ¢!
] i
g hid 7} 6wd awd dwdt =
12) | —'2},,21 (@) 5 o, | 5,07 | dwdi =
Qg tf t!
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il
From the inequalities (9) ... (12) we conclude that | dw/oz,dr =10, i=1,...,n
0

0
and since ¢’ was arbitrary, dw/ox; = 0 for 4 = 1, ..., n. Thus, since w e W"°(Q,),
we conclude that w = 0.

3. - The difference scheme.

Let 7 >0 be a fixed number and N >1 be a fixed integer and set & = T[N.
Let e,=(0,0,...,1,...,0), the one being in the 4-th position, + =1, ..., n,
denote the basis vectors in R,. Construct the rectangular network of mesh
points R(h) = {we R, |@ = (i, hy ..., 4 h), 4, =041, £2,...,1=1,..,n} Let
Q) = BR(h)n Q. 1f € R(h), the points & + he;, i=1,...,n will be called
the neighbors of z. The set of points in 2(k) which have at least one neighbor
lying outside 2(k) will be denoted by o(h).

Set Q(h) = Q) — o(h). Now let t, = mk and define the sets

Q) = Q) x{t=1t,m=1,.., N}, S(h) =och)xX{t=1t,|m=1, .., N}
and

Qh) = Q(h) U 8(h) U {Q(k) X (t = 0)} .

‘We now replace the problem (5), (6), (7) by a difference scheme. To this
end, define the difference operators

D,+ Uz, 1) = [U(z + he;, t) — Ula, )1/, D: U(w, t) = [U(x, ) — U(w— he,t)] /R,
D U@, 8) =[O, t + k) — Uz, )1k, D; U, t) = [Ulw, t) — Uz, t—k)]Jk .

We seek now a function, Uz, t), defined on @Q(h) satistying

ED:(“u(w)D:- Ul(a, t)) - D:b(a7) U(a, t)) = oz, 1) U=, t) + f(@, 1),
(13) B =1 :

(z, 1) €Q(h),
(14) Ulx,t) =0, (z, t) e 8(h),

(15) U(z, 0) = ¢(2), ze Q) ,
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where we take U(xz, 0) to be zero for & € ¢(h). We shall also set f(=,?) equal
to zero for (z, 1) € S(h) and ¢(x) equal to zero for = € ¢(%) when dealing with
the difference equations. Here and in the sequel we assume that % has been
chosen so small, and certainly less than or equal to the diameter d of 2, that
£(h) is not empty. Then if /1 is the number of mesh points in Q(%), (13) repres-
ents for each t,, a nonlinear system of equations in /A unknowns.

We first take up the question of the solvability of this system. We shall
often be dealing with functions which vanish on o(h) or with the product of
such a function and another function defined on Q(h). It will then often be
convenient to think of these functions as being defined on all of R(k) by simply
assigning them the value zero in R(h) — 2(h).

Let ns first observe that if V(z), W(z) are defined on R(k), then

(16) W(x)D; V(z) = D7 (W(x) V() — Vie— ke,-)D;" W(x — he;) .
Further, if V{z) = 0 on R(h) — Q(h), then

17) SD; V@) =3 D V(@) =0.

z€ B () o€ R (1)

From (18) and (17), it follows that if V(z), W(#) vanish on R(h) — Q(k), then

> V() i D (ay(z) Df W(z)) =
(18) z€ R(h) iy =1

=— zﬂ ay(w) D V() DF W(w) .

z€ B 4, 4=
Finally, if V(z) vanishes on R(h) — Q(h), then

(19) S Vo) <dd S S (DY@

z€ R () i=1 z € R(n)
To prove (19), choose a fixed point & = (,, ..., #,) € £2(h) and sum the identity
Df((@:— ) V(@) = V¥@ + he.) + (@, —2,) (D} V(@) (V@ + he)) + V()

over R(h) and apply (17). Estimate z; — @, by d, apply the ScEWARZ inequality
and the CAUCHY inequality (2|ab| <nla|>+ (1/7)]b]% 5 > 0 arbitrary) with
7 = 4d to obtain (19). '

Let us now introduce the linear space, Z(h), of real valued functions which
are defined on R(h) and vanish on R(k) — £(h). Define for V, W e %Z(h) the
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inner product (V, W), = > V() W(z) and the norm |[|V][} = (V,V),. LetT
ze R{n)

be the mapping which takes Z(kh) into Z(h) according to the formula

V(@) = — 3 Di(a@) D} V@) + 3 b(@, V) + o(a) Vi), @e Q0h),
(20) %=1

TV(z) =0 for z e R(h)— Q2(h)

Here c¢(x) represents any one of the o(z,i,), m=1,..., N, of (13).
Theorem 2. There exists precisely one solution V € Z(h) to the problem

(21) TV = F,

where F € JA(h).

An immediate consequence of Theorem 2 is

. Corollary 3. There ewists precisely one solution to the discrete problem (13),
(14), (15).
To prove Theorem 2, note first that by (18), (19), (MA 1), (MA. 2) and (MA 3)
V=W, IV—TW) > 3 > a,(@) Di(V(a) —W(@) D} (V@) —W(@) >
22) ceR (M i5m1
a3 3 [DHV@—W@))> ol [ T=W ([}

=
2
cERM 4 4d

Further, using (MA 1), (MA 2) and (MA 3), we can conclude the existence of
a constant K > 0 such that

(23) HIV —TW| o< KR+ 1B+ 0|V — W] |,.
Solving (21) is equivalent to finding a fixed point for the problem

T, V=",

where T,V =V —o(TV —F) and ¢ > O is a constant. But, from (22) and
(23) it follows that T is contracting if one chooses g = a,/4d2 K(1/h*
+ 1/k - 1).

Remark. As pointed out in the introduction, Gairova [10] has given a
method for solving a more special form of the problem (13), (14), (15). A detailed
discussion of the results and applications to various physical problems are also
given. Furthermore, GATPOVA’S solution technique generalizes. See again [10].
The method used to prove Theorem 2 gives another technique for solving the
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numerical problem. The method is not new and is in fact standard when treat-
ing «monotone operators». See [18]. However, other techniques are also avail-
able. In the event that b(w, u) is differentiable with respect to %, numerouns
techniques are available.

See e.g. Corrarz [4], RALL [20] and ORTEGA and RummwsorpT [18] and
their bibliographies. In the event that b(w, %) is not everywhere differentiable
with respect to u, the fact that 7' satisfies (22) can be exploited. See in this
regard Kurroge [14] and particularly Corratz [5] and his bibliography.

4, - Existence theory.

We turn now to the investigation of the behavior of the solutions to (13),
(14), (15) as k, b — 0 with k/h® held constant. For these computations it will
be necessary to make the following additional assumptions on the functions
elw, t) and f(z, ).

(MA 5) f(z,?) is continuously differentiable with respect to ¢ in Q,: Fur-
ther, there exists a constant ¢,>0 such that 2¢/dt< asc.

First, it is necessary to obtain an a priori estimate on the solution Uz, t)
to the difference scheme (13), (14), (15). In these computations K will denote
a constant which depends only on the bounds on the functions a.,, ¢, de¢/ot,
f, 9f/0t and the constants mentioned in the assumptions (MA 1) ... (MA 5). Sup-
pose then that Uz, t) is the solutions to (13), (14), (15).

Following Ir’iv, KArAsENIKOV and Ormmvik [11] page 100 et seq., we
multiply equation (13) by — exp (— 0t,) Dy U(w, t,,) and sum over x € B(h),
m=1,..,m', where m' is any integer satisfying 1<m'<N and 6 >0 is a
constant which will be chosen below. In the resulting equation, each term
will be estimated separately. Using (18) and (MA 1) yields first

r m!

D D> {D; (a;() D} U(w, t.))} exp (— 0t,,) D7 Uz, t,,) =

m=1 geR{n) i, j=1

= 2X2 exp (— Ot.) a,;(w) Df Ulw, t,,) Df D7 Uz, t,) =
= § 22X Dy (exp (— 0t,,) a,;(x) D} U(=, t,,) DF U(w, t,,)) —
— 3 222Dy exp (— 0t,,) a;5(2) Df Ulw, t,,) DT Ula, t,,) +
(24) + 2X% exp (— 0t,) a,,(@) {3 D7 (DF Uz, 1,,) DF U(w, 1)) —
— Df U(#, t,u_y) Dy DF Ul t)} >

>0exp(—00) S S IDFU@Lr—2 3 3 D) +

T €R(R)  j==1 zeR(R) J=1

n

+ ‘_‘_2_? exp (— 2 z z [Dj Uz, t,)],

z€ 8{r) j=1
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since
ZZF exp (— 0 t) ays(@) 1D (DY Ule, t,) DF U, t,)) —

’ — Df U@, ty_) D7 Df Uz, t,,) =
= ?22222 exp (— 0, a5 (%) D Dy U, t,,) DF Dy Uz, 1) > 0 .

Further, by (MA 2), b{w, ) is non-decreasing in u, so
(25) exp (04,,) Dy U(#, ,,) Dy b(w, U, 1,)) > 0.
Next, from the identities
(T, @, 1) + Uz, t,—y)) o, t,,) exp (— 0%,,) Dy Ul t,) =
= D; (U, t,,) ¢(®, £,,) exp (— 0t,.)) — U3, t,—) D (e(z, t,.) exp (— 6t,.)) ,
(U(z, t,.) + U@, tn-)) (@, t,,) exp (— 0t,) D; Ulz, t) =

= 2U(w, t,,) e(x, i) exp (— 0t,) D, Uz, t,,) — o(z, t,,) exp (— 0%,.) k[.D; U(z, t,.)]*,

follows
( }:‘lU(x, tn) 6(2, 1) XD (— 01n) Dy U(®, 1) =
1
= o U(m,y tnt)? 0(2, 1) €XP (— Otyr) —
(26) . "
— % @) o(®, 0) — Zl U3, 1,,) Dy (e(@, 1) exp (— Ot,)) +
+ & > [Dy U, t,)]2e(@, ) exp (— 0t,,) .
me=l

Finally, an application of the identity (16) with Dj instead of D yields

m! m!

2. [DF U@, ta)]f(; 1) €xP (— Otn) =3, Di (exP (—On) Ulw, tn) (@, 1)) —
— il U(x’ tm—-l) Df(f(a% tm—-l) GXP(—‘ Btm—l)) =
(27) b me==1

1
= E GXI)(_ Otm’) U(xy tm') f(m? im') -

m!

— 2P (@, 0) — 3 U@ by 2) DE(f@, tnos) exXD(— Ot ) -

mes]
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From (24) ... (27), (MA 1) ... (MA 5), (19), the fact that 0 > 0 is arbitrary, and
several applications of CaucHY’s inequality (2[ab|<n|a|® + 1/7]b]? >0
arbitrary) with % suitably chosen, leads to the estimate

I

S { S0 U@, )]+ (U, t)} -+

m=1 g€R{) =1
1 n
+1 3 { SIDF U@ )] + (U, ta)] <
z€ R(h) i=1

(28)
< K LZI E 72(‘77} 29) +710 Z (fz(my tm’) + fz(wy 0)) +

z€ & (h) z € R ()

- s ﬁ[ngv(w)P +¢2(x)}] .

B oaektm i=1

Let now (z, t), ¥ € B,, 0<t< T be an arbitrary point. Let @ = (¢, kb, 424, ..., 4, h)
be a mesh point satisfying (i, — D)k <@ <@ h, I =1,..., %, and let ¢ be such
that t;_, <t <1, and define the function U(w,¢;h) by setting Uz, it; k) =
= U(w,1,). Finally, let 1= k/h* be a fixed constant. Multiply (28) by &k
and replace U(z,t) by Uz, t;). Then the summations over « e R(h),
m=1,...,m on the left hand side in (28) become integrals over I, X (0, )
of Uz, t;h) (actually the integrals are over Qt,, since the U(w, t; h) vanish
outside @, ).

From this point on, the development parallels very closely that given in [11].
The funections U(w, t; h) and D, Uz, t; k), ¢ = 1, ..., n, are uniformly bounded
in L%Q,) and for any ¢, in L*£). Consequently, we can find subsequences
{U(z, t; b))} oyy {D: U@, ¢ 1)}y hy > Ty — 0 as p— oo, A constant, which
converge weakly to functions u(z, t) € L*Q,), vz, ?) € L¥Q,), i = 1, ...,n, and
such that b(z, U(, 1, h,)) converges weakly to a function o(x,?) € L*Q,). As
in [11], we can conclude that w.(x,?) is the generalyzed derivative of u{z,?),
ie. uw, t) = oul(w, )]0z, i =1,..,n.

Further by a result of MAURIN [16], the subsequence can be so chosen that
for fixed ¢, {Ulw, t; h,)},=, converges in norm to u(z, t) in L*(2), which by (MA 2)
allows us to conclude that v(x, t) = b(z, u(w, ?).

The limit function % € Tng"’(QT) satisfies the integral identity (8), and using
the fact that @(z) >0, u(z, 0) = p(x). The assertion that u satisfies (8) is

proven by multiplying (13) by a funection &€ 19\71’1(@1,), &(x, T) = 0 which is
continuously differentiable, summing the resulting equality by parts, multip-
lying by RZk and then letting h — 0 with A held constant to obtain (8). We
conclude, therefore, that the limit function wu(x,?) of U(x,t; h) satisfies the
problem (3), (6), (7) in the sense of Definition 1. Since from any subfamily



[13] SOLUTION OF CERTAIN PROBLEMS ... 305

of the family U{w,¢;h,), we can extract a weakly convergent subsequence
converging to a solution to (5), (6), (7) and since solutions to (5), (6), (7) ave
unique, we conclude that the whole family Ul(z, ¢; b) converges weakly to the

unique solution to (5), (6), (7). Thus, we obtain the following two theorems.

Theorem 3. There evists a unique solution to the problem (5), (6), (7)
tn the sense of Definition 1.

Theorem 4. The solutions to the difference scheme (13), (14), (15) converge
(weakly) to the solution of the problem (5), (6), (7).

5. - Concluding remarks.

The theory developed above can be modified and extended in several ways.
First, the continuity requirements on the a;{(z) could be replaced by the as-
sumption that they be bounded and measurable. In that case, in the difference
scheme (13), the a(x) would have to be replaced by suitable averages. Further,
we could assume that the functions og/oz,, oc/ot, of/ot exist as generalized
derivatives, etc. Nonhomogeneous boundary conditions could also be treated.
Further, in most applications, (a;) is a diagonal matrix, i.e. (ay) = (@:0,).
Assuming sufficient differentiability, local accuracy can be improved by replac-
ing (8/0z;)(alz)(0u/ox,)) by Dj(a(z + he;/2) D} U(z, 1)) and the analysis rem-
ains the same.

Of more substantial interest, however, is the elimination of the assump-
tion (PA 1), a modification of the assumptions (PA 2), (PA B), (PA 6) and the
elimination of the assumption div f + g¢ is linear in the pressure (which is the
effective assumption made in passing from (3) to (5)). This latter assumption
rules out gravitational effects, since the exterior body force describing gravitat-
ional effects is pSg, where the acceleration g due to gravity has been assumed
constant and this term should be ineluded in the function f.

PFurthermore, the matrix (a;) is in general pressure dependent and this
dependence has been explicitly ruled out. In the event that the fluid is made
up of active chemicals or of radioactive elements, the composition of the fluid
itself will be changing in time and possibly the fluid will be reacting with medium.
Finally, it is desirable to allow b{z, ») to have jump disecontinuities in « so that
certain change of phase problems could be treated by the same theory as well.
Thus, the equation it would be desirable to treats is

0 ou 7
(29) 2 o (“ii(a’: 2K —) = & b(=, t, u) + f(z, t, u, grad u)

i7=1 Ox; ow;

20
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in place of (5). The results of paragraphs 2-4 do not generalize directly to the
case where (29) is used in phase of (5). Definition 1 can be easily generalized,
but the proof of the uniqueness theorem fails. Natural difference schemes
can be construected which yield consistent approximations to (29), (6), (7);
however, the theory of developed in paragraph 4 seems to be difficult to extend.
From a physical standpoint, it would be very desirable to extend the results
of paragraphs 2-4 to the problem (29), (6), (7).
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Summary.

This paper begins with a derivation of the equations governing the unsaturated flow
of liguids in a porous medium. Uniqueness and existence theorems are proven. The proof
of the ewistence theorem makes use of the method of finite differences so that a viable num-
erical method for approwimaling the solutions is also oblained.

Sommario.

Questo articolo comincia con la derivazione delle equazioni regolanti il flusso nom
saturato di liquidi mel medio poroso. Teoremi di unicita e di esistenza sono dimostrati.
La dimostrazione di esistenza usa il metodo delle differenze finite; percio si oftiene anche
un metodo numerico per approssimare la soluzione.






