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L. S. DusBz (%)

On Common Fixed Points. (*%)

1. - Intreduction.

Given a mapping T: X — X (a set), a point z,€ X is said to be a fixed
point of T if Twy= ®,. The well known BanNacH’s Contraction Theorem
states: If (X, d) is a complete metric space and T: X — X is a contraction
mapping, i.e. a mapping for which there exists a real number k, 0 <k <1
such that

AT, Ty) <kdw,y) for all w,yeX,

then 7T has a unique fixed point or equivalently the equation Tz = 2 has
a unique solution. ;

This theorem has been extensively used in proving the existence and un-
iqueness of solutions to various differential and integral equations.

It has been of interest in Analysis to study the existence of the common
fixed point of two or more mappings -defined over the same space. DE
MARR [2], [3], KANNAN [4] and others have worked in this direction.

The result of KANNAN states:

Theorem 1.1. ZLet (X, d) be a comple metric space. If T, and T, are two
mappings of X into itself satisfying,

(4) ATz, Toy) < ef{d(@, Tya) + Ay, Toy)}, for all w,yeX
(*) Indirizzo: Department of Mathematics, Memorial University of Newfoundland,
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where o is a real number such that 0 <a << §, then T, and T, have a unique
common fized point.

The main aim of this paper is to generalize the Theorem of KANNAN and
to give one further generalization.

2. — Remark 2.1. If in the above theorem, the mappings T, and T,
fail to satisfy the condition (A), but however they satisfy a weaker cond-
ition (B), as given below then the conclusion of the theorem still holds.

Thus we prove the following.

Theorem 2.1. Let T, and T, be two mappings of a complete metric space
(X, d) into itself. If there ewist two non-negative real numbers o and f such that
o+ f<1 and,

(B) T3, Toy) <ead(w, Tiw) + B dly, Toy) for all w@,yeX,
then Ty and T. have a common unique fized point.

Proof. First we construct a sequence of alternate iterates of the two
mappings in the usual way and prove it to be a CAUCHY sequence.

Let @, be an arbitrary point in X. Set a sequence {2}, of points in X
as o= 1@y, €= DLy, ;= T\ m,, %= T,2, and 50 on.

Then,

A(@y, ) = ATy 20, Tom1) < @y, Ty0) + f Uy, Towy) =
= o Ay, m;) -+ B A(w;, @) .

Therefore,

o
@y, ) < 1——/3 A(®,, ;) .

A @y, B3) = A TLy@y, Ty@,) <ot Ay, Ty,) + Ay, Tom,) =

= o A(@s, B3) + P &A@y, @5) .
Thus,

(@, ;)< Ij“'[_g_“; @y, ;)< (@, @,) .
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Similarly,

o I o
1—f 1—a 1—

A3, ;) < ; A@o, @) .

In general,

]l —«

o nf2 ﬂ nf2
@y Bnyr) < ﬂ A(@o, @)
when #» is even positive integer, and,

nt+1/2 a—1[2
A(@ny Bny1) < (fxﬂ) ( / ) A%, #1)

]l —a
when » is an odd positive integer.

For simplicity, put «/(1—p)= %k and «f/((1—B)(1 —a)) = y and rewrite
the above two inequalities as:

(1) @y Tny) < 7’“/2 d(@o, 1) ,
when # is an even positive integer, and
(ii) By Bppy) < Toy™ V2 d(y, @)
when % is an odd positive integer.
Now, for m > n; n both even, we have
(@, B) < BBy Tpyr) + FBriy Trigs) + C@Bryoy Burg) + CBuys, Turg) + oo
cie F E(Bpgy Tony) + T( By, T)
< yil2d(mg, @) -+ Byl2 d{wy, @) + yH2 d(mg, @)
A Bt d(my, ) + . L @2, @) - By™E (2, @) .
= yM2 Awo, @) {1 + y + p2 + ... -y

+ Tyt d(wy, @) {1+ y + y* 4 o oy
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Thus for m > n and n-even, we have:

‘}/"/2 %~ ,),n/e

(iii) A2y D) < i Ao, @) +

(w5, 1) .

Similarly for m > n and n-odd, we can have:

I 1
(iV) d(wny mm) < 1— y )’"_1/2 d(wﬂj ml) _]L

1—5 YRR @y, ) -

Since «, #>0 and « 4+ < 1, if follows that

o 8
<1, — <1 and consequently ¢ <<1.

Therefore, for large n the terms on right hand sides of both the inequali-
ties (iii) and (iv) become arbitrarily small. Thus {z,}_; is a CAUCHY sequence.
Since the space X is complete, the sequence {#,}, converges to some point « € X.

Now,

A(u, Tyu) < dlu, 2,) + Aoy, Tyu) = A, ©,) + Lo 20y, Tiu) ,

where » is chosen to be even positive integer.
Therefore,

A(uy Thw) < Aw, 2,) + o d(w, Tou) + B d(@ni, To®0q)
or,

(1 — ) d(u, Tyu) < d(u, ™) + B A(@,q, 2,)

or,

1
Aty Ty )< 7 Aty @) + 1o A@ns, 3.)
— —

1 Y s
< T d(u, z,) + T k?’nﬁzl'd(wo’ 1) ,

l—«

(By inequality (ii))

1
<7 A, @,) + y*B d(wy, z,) .
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Therefore d(u, T)u) —> 0, as # — oo, which gives T;u% == u i.e., » is a fixed
point of T.

In the similar way, taking the triangle inequality d(u, T:u) <d(u, x,) +
+ d(x,, Thu), and n an odd positive integer, we can show that » is a fixed
point of 7,.

Thus # is a common fixed point of 7; and T,. To show that « is a unique
fixed point of T, let » be a pcint in X such that T,v= ». Then,

du, v) = d(Tyu, T,v) <ad, Tyv) + fd{u, Tyu)= 0

% =9. Thus # is a unique fixed point of 7,. Similarly, we can show that
is a unique fixed point of T,. Hence % is a common unique fixed point of T
and T,. Hence the theorem. To illustrate the Remark 2.1 and the preceding
Theorem, we give a simple example as follows:

Example 2.1. Let T, 7,: [0,1] —[0,1], be defined respectively as,
Tx=X[3, wxecl[0,1] and Tix=uw/4, xe[0,1]

The distance function d is defined in the usual way as d(z, y) = | —y|.
The space X = [0, 1] is obviously complete. Now it is easily seen that for the
points =1 and y = 0 condition (A) is not satisfied by these mappings for
any o< 1/2. But on taking o= 5/8 and f=11/30 so that « + f< 1, we
se that condition (B) is satisfied for all the points in [0,1] and the common
unique fixed point in seen to be zero.

Remark 2.2. By taking c«=f we get Theorem 1.1 as corollary to
Theorem 2.1.

Remark 2.3. If the condition (B) in the previous theorem is not satis-
fied by T, and T, but it is satisfied by some iterates T7 and 77 (p is a positive
integer) of T, and T, respectively, even then the theorem is true.

Thus we have the following general version of the previous theorem.

Theorem 2.2. Let T, and T, be two mappings of a complete metric space
(X, d) into itself. If there exist non-negative reals o« and f, o -+ f< 1 and a posi-
tive integer p such that,

(C) - ATz, T3y) <od(w, Tiw) + By, T3y) for all =@ yeX,

where T? and T2 stand for p™ iterates of Ty and T, respectively, then Ty and T,
have a common unique fived point.
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Proof. By the previous theorem, we conclude that I? and I%? have 2
common unique fixed point. Let w be such a point. Now, it follows from a
result of CHU and D1az [1] that « is a unique fixed point of 7, as well as of T,.
Hence the theorem.

This Theorem is illustrated by the following example:

Example 2.2. Let T,, T,: [0,1]-[0,1] be defined respectively as
Tww= X[3, =e€[0,1] and Tyo= X2, wxe[0,1].

The metric d is defined as d(z,y) = |o —y|. We see that condition (B)
is not satisfied by T, and T, for the ponts = 0 and ¥ = 1. But it is sat-
isfied by 75 and T} for all the points in [0, 1], when « = 1/4¢ and f = 2/5.
The common unique fixed point of T, and T, is zero.

The author expresses his gratitude to Professor 8. P. SineH for his valuable
suggestions.
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