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The Asymptotic Values of an Entire Function

Represented by Dirichlet Series. (%)

1. — Let

f(s) = 3 a, exp(s i) (A0, App1> 4., lim 4, = co0)
0 n > o
be an entire function in the sense that the DIRICHLET series representing f(s)
converges absolutely for all finite s. Set

M(o, f) = Lu.b. |f(e + )], (o, f) = max {|a,| exp(o i)},

— ot o nz=0

(o + it) = u(s) = ulo) exp{id,g,t}, #(0, ) = max {n|u(o, /)} = |an|exp(c ).

Clearly u(s,f) is continuous in each of the strips where v(o, f) is continuous
but in general it is discontinuous at the points where v(o, f) is. Let oy, 03, ...,
On, ... — 00 be the points where »(o, f) changes its value and the range of
»(a, f) be {n,}. We write 0, = o(n) and define the following symbols:

su
—1lim P (0(Mer) — ()

A su }'n. _;'n‘ B |su
— lim P "rpia 3 P

. ?
ke @ inf A"Ic— ]H"k—l b

B .
, =1im SEI; {(y ;= M) (0(n42) — 0(m2)) }

[

(*) Indirizzo degli AA.: Department of Mathematics, Indian Institute of Technology,
Kanpur, India. :

(**) Ricevuto: 7-VI-1969.
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Throughout this paper we shall assume b >0 and define the asymptotic
values of f{(s) as follows:

Let »(p) be any continuous path in the complex plane such that as p— oo,
7(p) — oo. Thus, if f(r(p))/u(r(p)) tends to a limit w as p— oo, we say that
w is a u-asymptotic value of f(s) and »(p) the corresponding u-asymptotic
path. We shall prove the following theorems:

Theorem 1. If L>0 and B< oo, then f(s) has no u-asympiotic value.
Theorem 2. If 0<E=c<oco and 1<a= A< co and f(s) has the form

f(-S‘) == 1 + Z GXP{SZ _ G )21 - U( )(/1 - 2’1) - (/n’k) (ZNL n; ,1)} ’

then f(s) has no p-asympiotic value.

2. — In proving the above theorems we need the following
Lemma. If 0<o <{o(f)—0(n)}, then

u(o -+ olny), f)

(2.1) ﬂ1(0'+ o.<n]) ,f) 4 [1 + eYP(“{Z’”k 1 }“”k})] *

Proof. Tet u(o(n), f) = |an, ,|exp{o(n:)dn,_} = {@,, |exp{o(n.) Aa}.
Then [1]
| @, exp{ (0 + 0(n2) + 1) Ao }+ O, exp{ (o -+ o(n) -+ imy) A}

[H 2T fo'+o‘ ) F-it) {exp{— A, (t+m,) 3} exp{— Am,,_, (t-1m5) z}}dt’

@.2)

< 2M (0 + o(m), f) lim [;T f €085 {(Any— hny_) (1 + ma)}' ]

= 3 Mo+ o(m), f) -

Also
|t exp{ (0 + o(ma) + im1) Any }+ Gy, exp{ (0 + 0(m) + im5) hu_ }| =

Cn,_, €Xp{o(n) An, .} exp{(c+ imy) A, _}
Gn,  exp{o(m) A}  exp{(c+ imy) A}

= plo -+ o(m), f) |1+
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Where m,, m, are arbitrary real numbers, choosing in such a manner that
My Ay_y— M Ay = 8T A, — 81 Ay, , then the right hand side of the above
expression becomes,

g

(2.3) (‘7 + o(n), )[1 + exp {O' gy an)}] .

On combining (2.2) and (2.3), the Lemma follows.

Proof of Theorem 1. Without loss of generality we may assume that
f(—oo)=1. Let 0<a<f<I,<L and o< (1/B)log{n/(4—m)}. Under the
hypothesis of the Theorem, there exists a sequence of integers {k,} such that
o (N, 41) — 0 (1, ) > Ly. Contrary to the Theorem suppose that f(s) has a u-
asymptotic value w and so0 there exists a path 7(p) corresponding to w with
r(p) — oo and {f(r(p (p))} — w. Denoting

f(oln,) + G)

Pn(6F) = w(o(m, ) + &)

for G ey,

= {¢10< G, <L, Re@G =G},

we have [2] (k=mn,,)
1#(ok) + @) | <

<1+ Z exp{l (o' + @& ) — (L) —0o(2) (A — 4y) — . — a(8) (A, — 35—1)} ’
|lp(o(k) + &) | =

= exp{is(o(k) + G,) —o(1) h—0(2) (A — A) — .. — 0 (k) (A — Ai)} -

Hence:
|9,.(@) | < exp{io(l) + (A— 4)0(2) + oo + (le— Apa) (k) — A (0(B) + @)} +
+ 2 exp{2; (a(k) -+ &) + A4o(1) + (2a— ) (@) + .. + (h— Aems) o(k) —

— A(o(k) + 6) — Mo(1) — (h— A)6(2) — ... — (A — Aima) 0(§)}

<1+§exp{(ar—wm—zk}—rzexp{G B — )} = C'(G) -

EL
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The expression of C'(G,) shows that for any k and G, it converges uniformly
because of L>>0 and b>0. Hence a least upper bound ¢(G,) of ¢'(G,) can
be found and @,,(G) is uniformly bounded on a closed and bounded subset
of Q,. Thus there is a subsequence {®,(G)} which converges uniformly on a
closed and bounded subset of 2, to a function H(F) represented by DIRICHLET
series. We shall show that H(G) is non-constant. Suppose H(G)=p (constant).
For 0 < o< L,, we have

T

T

. 1 . 1 . )

p=tim | faeu| = |5 [ (1 ooyl
_7 -

T

. . 1

=t | g [ ouea] =1
-7

Because the only constant term in the expansion of @,,(G) is 1. Thus, H(G)=1

on 2,. But by (2.1)

. ]
M(G7 H) = lim ﬂ[(a7 Q5772(G)) P2 1 (1 - 086) for O < o< Ll.

m—>o

In particular, if o < (1/B)log {n/(4 —x)} = «. Then

M(G,H)>Z (1+4_”)=1.

T

Hence H(G) must be non-constant.

Let Q= {¢|a<G,<f} and since f(s) has a u-asymptotic value there exists
an unbounded set I with the following property:

For each p €1, there is a unigue integer &, such that o(hy,) <logly(p)|<
< 0N, 41).  Writing o(n,, ) + log ¥.(p) = logy(p). We have for large m,
0<log|yn(p)|<L+o0(1). Hence y,,(p) is bounded. We now consider the set X
of limit points of {y,(p)} asp— oo, pel, and which lie in Q and prove that
the set X of limit points is uncountable and on this set H(G) is constant. To
prove this, let Y be the intersection of real axis and the set £ and define
mapping F; F: Y - X such that for each ye Y, there exists a unique inte-
ger m, for which p,el and logl|y,, |=y+ o(n,), then log|ym(p.)|=7y.
Choose a limit point ¥ of {y.(p.)} and define F(y)=14. Then F is one-one,
since log |F(y)|=1y. Thus X is uncountable since Y is. Furthermore, H(G)
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is constant. For suppose y.(p,) —peX for a sequence {p,} with p,el. By
virtue of uniform convergence, @, (y.(p,)— H(b). But we are assuming w to
be a p-asymptotic value and so H(b)= w. Hence H is constant on X. This
is a contradiction. Hence f(s) has neo u-asymptotic value.

3. - Proof of Theorem 2.

Suppose f(s) has w-asymptotic value o (0<|w|< oo). Let y(p) be the
corresponding u-asymptotic path to w. For given p, take m to be the unique
integer for which o(n,)<log|y(p)| < o(Muwt), and define

logyu(p)=a 4+ 1D, where log y(p) = o(1) + @ (An y1— A, )t +4D,

—oo< D< co. Then it follows that 0<z <1+ o(l). Hence logly.(p)| is
bounded above and v, (p) is bounded for all m and p. Now writing P, (G) =
= f(s)/u(s), where s =g(n,)+ ¢G (Ay, +1— An,)" " We get 0 <G, (A, a— 4n,) 7.
Therefore, for sufficiently large value of m, 0 <Gy (An, 11—2n,) 1< (M) —0(B)
or o(n,)<Res << o(h,+). Hence, for y(Res)=n,,

pis, f) = exp {s &, — (1) Ay — 0o(2) (A — 4) — ... — (1) (An,,— Anp 1)} -

Write

Ay Angy) O0mta) + oo + (A= Ay ) 0 (Wns) (> 0)
alfm) =1 0 (1=0)

(/l'ﬂm..l_ an) G(nm) + ree + (Z-n7,l+j_ }'"nz+i+1) O“(”Ibnﬂ-y"{‘l) (j < 0) .
Then
1) DS expln,,, — an,) oln) + s o cG-—af‘(m)} :

/,6(8) —{(m—1) m+d " Z"m+1_ }'"m

Since 0 < F=c¢<co and 1 < a= A < oo, there exist numbers 4,, 4., ¢
such that

Tyl ”m< A2< [o%e) and 0< g< (ln z’"m) (()‘(%m+1)-0‘(%m))

0< 4
' l"m_ l”m—l

mtl
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for m=1,2,3,..: Let j>2. Then

(4 Jo(nn) —a(m) < —

m+5 i

I

(}'"7n+i-— Z"m—}«i—l) (G(%nrh') - o‘(/ﬂ'm—%i—-l)) .

—(—1q.

Similarly we have, for j<—2,

(Anm_*_,-'— }'nm) G('”’m) - a’j(m) ~ z (}‘"m-' Zvnm_i+1) (O‘(ﬂ'm—i+1) - 0'(’12,,,_,-))

£

(—i+1)¢
< —A2 .
Hence we have
exp {—q(j — 1)} (i>2)
(3.2) |exp{o(nn) (An,,,,— An,) — @?(m)}| < {1 (j = 0)

exp {q(j + 1)[4.} (<—2).

Therefore by WEIERSTRASS M-test (3.1) converges uniformly both in m and @G,
and we get
ln - Z,,,

— /1”: cG——-a"(m)} .

lim % = Z exp { (M) (A, = Any) +

m+7

T4l

Further, for j> 0,

Ry = ) 0(11) — a¥(m) =

Tm+ 5

g Z it A"m s+l Anm s
=—> z [H l—++—1—7 + {(g(nmﬂ) L () (A, M-— lan_l) }]
i 8=1 ‘'n,

m+s o+ g1
(3'3) lim {(Anm,{_j_ Z'nm) O'(’n’m) - aj(m)} =

—5ili+1e ifa=4=1,

A+ A(]+1)+] .
- A—1y fl<ae=4< 0.
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A similar argument shows that (3.3) is also valid when j < 0. Hence we have

" !(s
B4) UL e
ZeXP[——-7<7+1 ¢+ cyq] (6= A =1)
A+ — 4 A4 —1
EGXP[ (A(_];; S + ( )GG] (I< a= A< o)
= Q(s) .

It is easy to see that @(s) is non-constant and that the set 7' of limit points
of {yn(p)} is uncountable, and @Q(s) is constant on 7. Thus contradicting the
fact that Q(s) is non-constant on 2. Hence f(s) has no u-asymptotic value.
The argument of the proof runs exactly in the same way as in the Theorem 1.

4. - Examples.

The following examples illustrate that the class of entire DIRICHLET series
for which p-asymptotic values do not exist, is non-vacous and at the same
time exist DIrICHLET series for which u-asymptotic value exists.

Example 1. Let

f(s) = 3: AmEr oD exp(ns) (<A< o).

n=0

Clearly o(n)=mnlogl and lim exp {n logi—(n—1) log A}=2A>1, implying

L>0 and liminf (A, —A.) =1 and so b>0 and B < co. Hence all the con-
ditions of Theorem 1 are satisfied and so f(s) has no p-asymptotic value.

Example 2. Let
f(s) = 3 exp(nzs) 2" (0 <a<<o0).
n=0

In this case (10g|@n/@nty|)/(Aut:— A,) is non-decreasing and so o(n) =
= 2a(n?logn— (n—1)*log (n—1))/(2n—1), a = A =1 and B = ¢ = 4«. Thus
all the conditions of Theorem 2 are satisfied (together with b > 0). Hence f(s)
has no p-asymptotic value.
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Example 3. If k is any complex number, then considering the funection

f5)=2 n! Vor n! 1

n=0

@ [exp [2ns + (2n -+ 1) (7/2)i] 1 I_» {exp {(2n— l)s}_exp (— s)}]

and, choosing o>1log(|%k|/v2x), we have

> exp{2no— o)

po N~ X — e

Clearly it follows that lim{f(c)/u(c)} — k. Hence kisa u-asymptotic value.

g—>
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