Riv. Mat. Univ. Parma (2) = (1966), 157-169

Z. U. Aguap (¥

On the Absolute Norlund Summability Factors

of a Fourier Series. (*%)

1.1. - Definitions.

Let 3 a, be a given infinite series with the sequence of partial sums {s, }.
Let {pn} be a sequence of constants, real or complex, and let us write

Pp=py+p1+ e +Pu, P_,=p_,=0.
The sequence-to-sequence transformation :

Pny Sx
P’ll

(1.1.1) by = i (P, £ 0)
Ve= 0

defines the sequence {t,} of NORLUND means (!) of the sequence {s, }, ge-
nerated by the sequence of coeffcients {pn}
The series > a, is said to be summable (N s Pn) to the sum s, if lim ¢, exists

n—r

and is equal to s, and is said to be absolutely summable (N, p,), or summable
| N, p,], if the sequence {t. } is of bounded variation (%), that is to say,

DSlte—t_ | <K 3.

(*) Indirizzo: Z. U. AumaDp, Senior Research Fellow of U.G.C., Department of
Post-Graduate Studies and Research in Mathematics, University of Jabalpur, Jabal-
pur, India.

(**) Ricevuto: 5-II-1965.

(*) NORLUND [10]; substantially the same definition was given by G. F. WoroxoI
in the Proceedings of the 11th Congress of Russian naturalists and scientists (in Rus-
sian), St. Petersburg 1902, pp. 60-61. An English translation of this work of WoRONOI
with «remarks of the translator » by J. D. TAMARKIN is contained in WoRoXoI [13].

(*) Symbolieally, {t.} € BV; similarly by « f(z)e BV(k, k)» we shall mean that
f(x) is a function of bounded variation over the interval (h, k).

(®) Mears [8]. K denotes throughout an absclute constant, not necessarily the
same at each occurence.
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In the special case in which

11.9 . 7+ o—1 _ I'in -+ «) _
(1.1.2) Pn =\ I'n-+1) ') (2=>0),

the NORLUND mean reduces to familiar (C, «)-mean (3). The summability
| N, p,]|, with p, defined by (1.1.2), is thus the same as summability | C, «| (%).
Similarly, in the case in which

Pu=1/(n +1) (1>0)
(1.1.3)
P,=1+1/2) +..--(1/(n +1)) ~logn, as n—>oo,

the NORLUND mean reduces to the familiar « harmonic mean » (!), and sum-
mability | N, p, | is then the same as absolute harmonic summability, or sim-
ply the summability |N, 1/n-+1)].

It is known that the harmonic mean is both regular (*) and absolutely re-
gular (%); and the summability [N, 1/(n-1)| implies summability |C, «| for
every positive « (?).

1.2. — Let f(¢) be a periodiec function, with period 2, and integrable in the
sense of LEBESGUE over (—m, ). We assume, as we may without any loss of
generality, that the constant term in the FoURIER series of f() is zero, so that

ff (tydt =0,
hat24
and ;
1) ~ 3 (a, cos nt + b, sinnt) = Y A,(1).
We write throughont

O(t) = 1{flw + 1) + Hz—1},

@ (1) :;;f (t—u)*"t @(u) du (oc >0), Dy(t) = D),

n

S v A4, (2)

p=1

|

1 n
1 #1 o_ .
it==>wa, T, =
n =

=

{2

(*) HarpY [4], § 5.13.

(°) Summability | C, «| was defined by Fexere [8], and KoGBETLIANTZ [5].
(¢) Harpy [4], § 5.13; Riesz [12].

() Harpy [4], § 42

(8) For absolute regularity of NORLUND means, see MEaRS [9].

(®) McTappEN {7].
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For any sequence {A,}, we write
Ahn = Ry— dn,  A%h, == A(41,) .
A sequence {1,} is said to be convex (1) if

A4,>0, n=0,1

s PIERTI

1.3. — The following theorems on absolute CESARO summability factors of
a FOURIER-LEBESGUE series are known.

Theorem A (1), If { An } s @ convex sequence such that the series
> w1, is convergent, and D () e BV(0, m), 0 < ox < 1, then the series > A A1)

’ H
at t = @, is summable | C, o].

Theorem B (). - If {1.} is a comver scquence such that the serics
2 1), is convergent, and for 0 < o <1

13
f'u{d@“(t)l =0(), 0<i<am,
[}

then the series > (log n & 1)t A, A, (1), at ¢ = @, is summable | C, ef.

It is known (*%) that, if (1) p, is non-negative and non-increasing and (2)
Da+1/Pn 18 nOn-decreasing, then |N, p,| implies | C, 1.

The object of the present paper is to improve upon Theorems A and B, in
the case in which = 1, by replacing | C, 1| by | N, p, |, with p, more general
than that characterized above. The results are embodied in Theorcms 2 and 3.
We prove these theorems by establishing as Theorem 1,-a result on the abso-
lute NORLUND summabiliby factors of infinite series in general. In n. 2.5 we
deduce a number of corollaries which generalize the following results of LAL
on the absolute harmonie summability factors.

Theorem C (). If ¢ =0(1), as - oo, and {Zn} is & convew seq-
uence such that the series Y n~*A, is convergent, then the series > ((log n)[n)A, an
is summable |N, 1/(n --1)].

(%) Zyeauxp [14], § 3.5, p. 38.

(1) Prasap and Bmarrt [11], Theorem 3.
(*#) Prasap and BuatT [11], Theorem 7.
(13) McFappEN [7], Theorem 2.28.

(**) Lav [6], Theorem 2.
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Theorem D (¥). If @) e BV, x), and {/1,,} is @ convex sequence
such that the scries > n~2, is convergent, then the series > {(og n)/n) A, A,(),
at t == @, is summable | N, 1/(n + 1) |.

2.1. — We establish the following theorems.

Theorem 1. Let p, >0, and let p, be non-negative and non-increasing.
If 6 = O(u,), as 1 —> oo, where { ,u,,} is a positive, non-decreasing sequence and
if the sequence {s,,} is such that

(1) z (‘Ufn/Pn) ’ En l < 00, | and (i) z,un ‘ Aey, I < oo,

then the series > &, a, is summable | N, p, |.

Theorem 2. Let p, >0, and let p, be non-negative and non-increasing.
If ®,(t) e BV(0, @), and if the sequence { e, } is such that

(i) S| en|/Pa<< oo, and (i) S| de, | < oo,

then the series S, &, A,(8), at t = x, is summable | N, p,| .

Theorem 3. Let p, >0, and let p, be non-negative and non-increasing.
If
i
Julddw]| =00, o0<t<a,
]

and if the sequence {sn} ‘is such that
i) 3 (dogn)/P.)|e| < oo, and (ii) S (ogn)|de, | < o0,
then the series S e, A1), at t = @, is summable |N, p, |

Since a LEBESGUE indefinite integral is absolutely continuous, @,(f) € BV
in every range (4, m), 6 >0. Thus an interesting consequence of Theorem 2
is that the summability | N, p,| (with p, defined as in Theorem 2) of the series
S e, Au(@) is a local property.

2.2. — We require following lemmas for the proof of our theorems.
Lemma 1. If po>0, and p, is non-negative and non-increasing, then,
for v>1,
< Pr

2

n=1

oo P ST

(¥) Lar [6], Theorem 1.
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Proof. We first observe that under our hypothesis,
o P LY
2.9
(H.m.l) nzv Pn Pn——] < Pr-—l
Now, we have
o _Pn S Pa S Pa
25, b =25, B Ve T 2 B, B, e
P (alCar ! ne=p R T N1 n=gy - # A1
pv 2r—1 w Do,
£
< P, P,y ,gvp“‘” ‘ pf,:zz,, P, P, [by (
Py Py Ko,
< Py L1 N P
Pv Pz'—l -Pzw-—l
Py pr< 1 N K Vid
<P,,m v\v—}—l'v—{—1<v’
singe (v +1)p, < P,.

Lemma 2.

for v=1,
< _Pn_,
> PP, (P,—P,_)<K.
Proof. By hypothesis, we have
s Pn b Dy K
ﬂgv Pn 'Pn—l <—P”—_ P"—‘y) < vnnzy Pﬂ P‘u-l pn_p < ’”7 = K ’

by Lemma 1.

Lemma 3.
for v =1,

]

2

No=p

Ay Pross| X
L___I_)L_A <=

Pn-l P, +

® |

<

[N

161

2.1.)]

If py >0, and p, is non-negative and non-increasing, then,

If po >0, and p, is non-negative and non-increasing, then,
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Proof. Since p, is non-increasing, we have

! /]n 27n—1~ i
D

n=13 1

_ P L 251 VI — ; Ap Py
Py =1 Po_y + i Paa
Now,
2y~—1 A ] er—1 —
n 7)71—1'—1 pO pv—l
ZlE z P < I‘T Z (pﬂ——-r~1—' pn——;’) = P I
EETER 71 TV n=adl v
so that

<Po P B0 1
[le\ P, P¢-~1<Pr B

since (v +1)p, <P,.

And, for every integer m > 2», by ABEL’s transformation, we have

‘dn Pr—y—1

m L
z‘_). = N P 7n—~1

Mz~

m—1 n
Pn ‘ 1
= z Pn-—l z (p,u—v-l - 7)11—-1’) +

(Pu—ymr ™ Dy
n=2y P, p=2y P Parfl 1 f—v—1 2# v
m—1 P ( ) . Pyeg — Do
= —1 P Y —“——-—_—-
ng.hr Pﬂ 'Pn—l pT ! ! " ' ‘P’m—l ?
so that
m—1 Pn

Py—1 | pm——u

21'_12 P Z P P pn— T_ ‘P'm—-l't —P:—;_

| 22

negp n 1 o= 2p n—1

Kp'v——l n I . Pr—1 y Pm—y
e e

! } : by (2.2.1)]
Py, 4 L P, 4 Py [ .
Kp, 1 K 1 1
P,y Ty T T = +1
K K 1 1 I
<= <=
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Therefore

M
A
NI
+
* |y

This completes the proof of the lemma.

Lemma 4. If p, >0, and p, is non-negative and non-increasing, then,
for »>1,

i Pn—y — Pn

P < K.
n—1

n=y

Proof. By ABEL’s transformation, we have, for every integer m >,

7)11—;; — Pn
P

nesy

" Pa 3
2 P P Z (py*vm py) —L z (py 1
ne=y TRl m*l n=v
mo1 pﬂ ].
xngv Py Py (P,,_,, — P1 -1) Py (Pm - P+ Pv* 1)
" P ] "3 P,y Pygt Pm Py
= P,—P, )+ P or=1
n:v P Pyy ( —1) ’ _lng,, P, Pn~1 + Py Py + P,
m-l Pn . ' 1 1 P,y Pm Py
ngv Pn P’n‘—l (-Pn P" .—V) + Pv—l -Pv-—-l Pm—l + -Pm--1 Pm—-l v Pm—l
ot p“ Pm—v pm
- Pn - —Pn._.,,) + i
n—1 o Py ( P v P
Hence
Pyw | Pn (
’ZI<Z P,,P P"‘P y) I)m-—-u 'T“Pm_l<KT1<K,

by hypothesis and Lemma 2. Hence the result.
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Lemma 5(*). If &()erv(0, n), then ¥ = 0(1), as n — oco.

Lemma 6 (¥). If
i
fu]d@l(u)]:()(t), 0<t<m,
0

then 7' = O(log n), as n — co. .

Lemma 7. If {2.} is a mon-increasing sequence such that the
> n14, is convergent, them

i) Ddd<oo, () I (logn 1) Ah < co.

This lemma is known (),

2.3. — Proof of Theorem 1.

@

(8]

series

Let 7, be the nth NORLUND mean of the series > &, a,. Then by definition,

v 0
17 4
Tn = B D Pus 2 &, =% Z‘P
7 oymg p=0 %oy
and hence
1 ki :
Tpn— Tp—1 = z (Pn Paey — -Pn_,, pn) g, a,
Pn Pn—l -
7)71 il 23
- PP z (I 71_Pn—-v) g, z (29,1_) P n g, a,
n n—1 ye=1 n—l p==1

:le): EA{(P —PF,,) }th*’r D [(anPn_,,_l) ‘WHJ ntt 4

Pn P -1 + 1

! < i 1 1 1 1
T Pn—-l ZIA v{ (pn—-y - pn) » } v t,y T Pn—l [(Z)n_,._l pn) P + 1] e n t
Pn ‘a &y &,
- Py Pry v§_=:1A { (Pn o -Pn—r) lp‘ } y tl n—l v§1A { (pn—-v - pn) v_ } ' t:, '

(*¢) This is the particular case of Lemma 9 of [11], when o = 1.
(") This is the particular case of Lemma 11 of [11], when « == 1.

(*®%) (i) is contained in Aamap [1], Lemma 8. For (i), see DANIEL [2], the lemma.

on page 69.
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Hence

Kp, & y v ,
Tn Tn—1 l < Pn P"—l Zl » (Pn — 'Pn —-v)' 1}‘ v ILL,‘, ——
K Z &y
L2, A”{ (Prms = D) } nh
K p, K
= P‘)l PTI—']. zl + I) 22? Sa!y )

n—1

Therefore, in order that > | 7,— 7.,— | < K, it is sufficient to show that
. n

(2.3.1) 5

(2.3.2) Z !

Proof of (2.3.1).

ZI = él

&y
A'y{ (-Pn"‘ I)n-—v) ‘V_ }

<S@—r) el 13w r

va=1

YU

30

“') [ Agl’ ! Au‘y + z pﬂ"l" 8‘V+1 ] tl‘lT

y=1

p==]1

= Zn + 212 + 213: say.

Now,

. = ey n—y) o My
. ol ! 8,,! s Pn P
- 12;“1 » ”gv P,, Pn—l ( n Pn—«v)

<K Yvip,l e,;! (by Lemma 2)
yo==1

< K, by hypothesis.
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<K 3p,|de| (by Lemma 2)

p==1

< X, by hypothesis.

Lastly,

Pn
>
‘n_' P n P, n—1 213

Proof of (2.3.2).

L& ]

= Z (27,;_,,*‘ pn) T My + z (Inn_,,

yexl

Now,

S o S el
= — 81' :u'v
Py Py 2 P +1

N

«© [=-] pn
= glluv ! 8;'+1 lgy Pn Pn—l pn-—v

<KEYviu,le,,| (by Lemma 1)

y=1

< K, by hypothesis.

n

=3

v=1

v i,

A,,{ (Pa—y—P4) %}

pa=1

= 221 -+ 222 + 2237 say.

1 1 ™
-Pn-—l 221 — “:1 Pﬂ—l gl(pu—v - pﬂ) » H,
b & Pr—y— P
=2vrplelX Tp
pe=] =y

SEKEYviu,le,| (by Lemma 4)

y=1

{10]

— Pn) I Asy l H, +ZIIA11 Pn_v1 , I Ept1 l My
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< K, by hypothesis.

Next,
1 o 6 y
; P, 20 “gl P,, Ny 2 Proy—Pa) | de, | p,
had p”'—'i 71
=30l de,| 3 Bz
=1
<K 3Yup,lde,| (by Lemma 4)
y=1
< K, by hypothesis.
Finally,
1 « 1 n
ST~ E s Sl dn el
I 4y pﬂ-—v—l l
u, | &yt | 2

2 >

<SEY 5 eyl +E S n]e,,|  (by Lemma 3)
p=1 Y p=1

< K, by hypothesis.

This terminates the proof of Theorem 1.

2.4. - Proof of Theorems 2 and 3.

We obtain Theorem 2 from Theorem 1 with y,, = 1, by an appeal to Lemma 5;
and we obtain Theorem 3 from Theorem 1, with u, == log n, by an appeal to
Lemma 6.

2.5. — We deduce the following corollaries from our theorems (Theorems 1,
2 and 3).
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Corollary I.  Let p, >0, and let p, be non-negative and non-increasing.
If 1, = 0(1), as n — oo, and if the sequence { 1, } is such that

G et A|<oo, and (i) >|42,]< oo,
then the series Y (P,/n)i, a, is summable | N, p,|.
Corollary II. Let p, >0, and let p, be non-negative and non-increasing.

If &y(t) eBV(0, 7), and if the sequence {2, } is such that

q  >wta,

<oo. and (i) D|Ai.[< oo,

then the series > (Pafn) 1, A,(1), at t = @, is summable | N, p,|.

Corollary IITI. Let p, >0, and let p, be non-negative and non-in-
creasing. If

H
fu| dd,(u) | = 0@), 0<i<am,

0

and if the sequence { A} is such that
G Dol <oo, and (i) |Ai|< oo,

then the series z (P,,/(n log n))l,, A t), at t =z, ts summable ]N, Dn [

We remark that, if in these corollaries we take {ln} to be a non-increasing
sequence such that the series Y n~1i, is convergent, then, by Lemma 7, the
conditions on the sequence {A,} are automatically satisfied and hence these
corollaries are more general than the Theorems C and D.

I take this opportunity to express my sincerest thanks to Dr. T. PATI of
the Univ. of Jabalpur for his ecouragement and valuable guidance and to
the University Grants Commission for their kind financial support.
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