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Steady Laminar Flow
of a Reiner-Rivlin Fluid in an Annulus,

in the Presence of a Radial Magnetic Field. (*)

1, - Introduction.

Let us consider non-conducting and infinitely long coaxial circular cyl-
inders with inner radius « and outer radius 4. Let us take the z axis along
the axis of the annulus in the direction of flow and take the origin at a fixed
point on this axis and construct a right-handed sSystem of cylindrical polar
coordinates. Coordinates of a typical point in the channel are (ry 0, ). A radial
magnetic field, with intensity w/r (o is a constant) at any point (r, 0, 2) eman-
ating radially from the axis is assumed to exist. We congider the steady flow
of a REINER-RIVLIN conducting incompressible fluid of constant electric and
magnetic properties in the channel described above, when there exists a con-
stant pressure gradient in the direction of the axis. The rheological behaviour
exhibited by non-Newtonian visco-inelastic fluids can be adequately studied
by generalising the stress-strain velocity relations, of classical hydrodynamics
in & manner suggested by RiviiN [2] and ReiNer [3], i.e. by introducing sec-
ond order terms of the type d; dj (where d; is the rate of deformation tensor).
Thus for a REINER-RIVLIN visco-inelastic incompressible conducting fluid
the non-linear stress-strain relation is:

1 , t;=—p0; + F a; + F,a da,
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where though F, and F, are, in general, functions of material invariants, we
shall consider the cases where F, = p = p v = constant and Fy== y, == @ v,=
= constant (though in general these may be variables but we do not consider
such cases here), where u and y, are the coefficients of viscosity and cross-
viscosity respectively and » and », are the corresponding kinematic coefficients.

Also d,; = V,,; + V, , is the rate of deformation tensor (the usual tensorial
notation has been used).

2. - 'I“he governing equations.

Neglecting displacement currents and free charges, regarding LORENTZ
force as the only body force in the field and employing c.g.s. electromagnetic
units, the equations of hydromagnetic flow are:

2) FUH =—dgd,
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Eliminating J* and E* from (2), (3), and (5) and J* in (2) and (7), we have re-
spectively:
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where V¥, indicates the covariant derivative of the the velocity vector V* with
respect to a coordinate z*, H', the covariant derivative of the magnetic field



[3] STEADY LAMINAR FLOW OF A REINER-RIVLIN FLUID IN AN ANNULUS... 1635

intensity vector with respect to the coordinate z’, g is the density, u, the per-
meability, ¢ the conductivity (electrical) and A= 1/(4 = u, o) the magnetic dif-
fusivity of the fluid. t”’ ; is the covariant derivative or the rate of stress with
respect to the space coordinate 2’ (using the summation convention). J* is
the contravariant current density vector, E, is the covariant electric field
intensity vector. In order to suit the geometry of the problem these equations
must be transformed to cylindrical polar coordinates. There are no free charges
and no externally applied electric field. The flow is laminar and steady, and
_on account of it being axisymmetric Vo=V =0, 0V, /ot= 0V /0t = 0. From
the equation of continuity (6), ¢V,./éz=0 and therefore V, = V,(r). As in
an earlier paper of one of the authors (AGRAWAL [4]), or following GLOBE [1],
[8] or KApUR and JAIN [6] it can be shown that H, = 0; J, = J, = 0 and the
induced current having only a 0 component behaves like a solenoidal current.
Assuming H, to be either of the forms R(r) 4 Z(2) or R(r) Z(z) and following
GrosE [1], [5] or KApUR and JAIN [8] it can be shown that 8H,/cz= 0 and,
from equation (4), H,= w/r is the applied magnetic field and H, = H,(r).

Transforming equations (8) and (9) to cylindrical polar coordinates, and
simplifying with the help of the said results in the preceding paragraph, we
have:

p | wm dH; 19 [ fav,)e
(10) | PRI 1o —,ue;.a—rl’[”a*;} )
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{(Total derivatives have replaced the partial derivatives because V, and H,
are functions of » only).

Since the pressure gradient in the axial direction have been taken to be
constant we can write:

op

= — P = constant.
0z

(13)

From (10) and (13) on integration:
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if », is constant, so that once V, and H, are determined we can find the pres-
sure at any point in the channel (to the extent of an arbitrary constant) and
the pressure variation in the channel. '
The boundary conditions in this case are identical with those for Newton-
ian fluids:
No slip condition at the boundaries:

(15) Via)y =0, TV, (b) =0;
Continuity of the tangential component of the magnetic field:

(16) H(b) = 0.

Since .J, is zero in the wall (non-conducting) and at the fluid wall interface:

S 1 [9H,) § o
(17) (Jo)r=b = E [**BTJ ,.=b:: M, O"(T z H,.—~ T THZ)r———b = 0.

Tt is interesting to note that the coupled equations (11) and (12) and also the
boundary conditions (15), (16), and (17) are same as those for Newtonian fluids
(GLoBE [1]). Thus the velocity and magnetic field in this case are independent
of cross-viscosity, whereas the pressure is not. The values for magnetic field H.
and velocity V, arve same as those for the Newtonian fluids is a corresponding
problem and therefore the velocity profiles and magnetic field profiles also are
independent of cross-viseosity (since the values of ¥V, and H, are same as in
GLOBE’S case [1] we do not reproduce them). It has been observed that if the
walls of this channel are porous the velocity and magnetic field also depend
on the cross-viscosity.

3. - Limiting forms of the flow.

(1) The Harrmaxy flow of a non-Newtonian fluid can be derived as
a limiting case of this by making ¢ — oo and b — oo such that b — « remains
finite say 2 k. The expressions for velocity and magnetic fileds remain the same
as for Newtonian fAuids i.e. those in the analysis of HarTMANN flow (T. G. Cow-
nING [7]) (after setting B = 0). Thus the velocity and magnetic fleld in HART-
MANN flow of a non-Newtonian fluid are independent of the cross-viscosity, the
pressure in this case also is affected by cross-viscosity.

(2) For non-conducting fluid (o =€) there is no interaction in the
flow and field and therefore in the limiting case ¢ — 0, H, — 0 and velocity
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and pressure can be obtained for the corresponding hydrodynamie flow. The
pressure in this case is given by:

’ 10| [ov,)
e e - — P =0 ALt
P.+p A ‘“’Cf " a}_{; { ar” dr == constant

and therefore pressure field is affected by cross-viscosity whereas the velocity
is not.

(3) By making », = oo in this problem and the limiting cases (1) and
(2) the results for the corresponding flows of Newtonian fluids can be obtained.
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Summary.

Globe [1] has studied the flow of a Newtonian (viscous incompressible) fluid in the
space between two coaxial infinitely long circular cylinders in the presence of a radial magnet-
ic field. The corresponding problem for a non-Newlonian visco-inelastic (RBeiner -
Eivlin) fluid has been studied in this paper. It has been found that for constant values
of cross-viscosity and viscosity, the velocity and maynetic field retain the same value as in
Globe’s case, but the pressure field is affecled by cross-viscosity.






