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Parallelism and Covariant Differentiation

in a Generalized Finsler Space of 7 Dimensions.

Introduction.

The present paper deals with the problem of parallelism and covariant
differentiation in a generalised FINSLER space. A generalised FINSLER space
differs from a FINSLER space essentially in the non-symmetrie character of the
metric tensor. Since FINSLER spaces have been studied mainly in two ways
[1], [2], this paper has been divided into two sections. The first Section deals
with generalised FINSLER spaces of first kind viz. the spaces obtained as a
generalisation of the FINSLER spaces of RUND [1]; the second Section deals
with generalised FINSLER spaces of second kind viz. the ones obtained as a
generalisation of the FINSLER spaces of CARTAN [2].

Section I.

Let F, be an n-dimensional manifold in which a point is represented by
means of an ordered n-tuple of real numbers.
A transformation of coordinates will be represented by

(1.1) @ = ¥ (@) |

In analogy with FINSLER spaces we postulate that the distance between
two neighbouring points P(2?) and @(x’ + da?) is given by

ds = Pz, da?),

where the function F' satisfies the same four properties [1].

(*) Indirizzo: Central Mechanical Engineering Research Institute. Durgapur, India.
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Let 2¢ be an arbitrary contravariant vector. With each point z? of F, we
associate a second order tensor g;;(=, @) which is, in general, non-symmetric in
its indices. g, §ps Will denote the symmetric and skew-symmetric parts,
respectively, of the metric tensor. The symmetric part is supposed to be the
same as the metric tensor of a FINSLER space with the same distance function:

.1 @Fs, @)
(1.2) Junl®y &) =5 o
We also assume that
9945] _
(1.3) Pl 0

Therefore ¢;; will represent the metric tensor of a FINSLER space if g;,;) = 0;
and that of a generalised Riemannian space if

1 1 99y
(1.4). Cip = 7 Ay = 3 éL—,] =
We have
(1.5) Cpn @t = Cipp @ = Coyp &% =0 .

The totality of all the contravariant vectors attached to the point P is
defined to be the tangent space T',(P) at P. Thus we associate a tangent space
with each point P of F,.

Let x¢ be any vector of this 7,(P). Then we define the associated covariant
vector ¥, by

(1.6) . Ys = Jun(®, w) @,

The totality of all such covariant vectors y; attached to the point P is
defined to be the dual tangent space T,(P) at P. |

Proceeding in the same way as RUND [1], we can establish one to one cor-
respondence between the elements of 7',(P) and T.(P). The conjugate tensor
of the tensor g.;, is given by

1.7) Jun G* =6},
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Magnitude of a vector: if X* be the contravariant components
of a vector, then

gule, X) XX? = Pi(z, X)

is defined to be the square of its magnitude.
Angle between two vectors: if X? and Y¢ be the contravariant

components of two vectors, then the angle between X* and Y*¢ is defined by

_ Gunle, X) X"Z’_'
cos(X, ¥) = w e

Evidently this concept of angle is, in geneial, not a symmetrical one.

Parallelism: LetX?bea vector field defined along a curve C': ¥ = wi(t).
Then under the coordinate transformation (1.1), we have

(1.8) Xt = ALX7,
where

1.9 o

( . ) i m.

Differentiating (1.8) with respect to ¢, we obtain

dX . dXx e
(1.10) o = A (8 A)ar XY
where
R O
(]'11) a," A,-I _ 5;,:7—1 Fe — dt .

In analogy with other spaces [1], [8] we assume that the vector X¢ under-
goes parallel displacement along the curve C, if

axt

‘E— :‘P;k(w, (i') X $.k,

(1.12)

where P;, are to be determined as functions of » and 4.
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Since the concept of parallelism has to be invariant through a fransfor-
mation of coordinates, we have

dx#

e i nl o onied
dt M'“——Ph'k’ X‘ &y

(1.13)

where P}, are the components of P}, in the new coordinate system.

q X €U
Substituting the values of (Tt and from (1.12) and (1.13) in (1.10),

Tt
we obtain

Y 2
.”Uh' a.l}’" hk

[a‘_x + Pl A, A%, — PY, A::,] X g o,

In view of the arbitrary character of X% and hence of X%, we obtain

ot .. . . . .
(1.14) S O b Pl ARy @ = Pl AL @
Thus we require the functions Pj, to satisfy the transformation law (1.14).
By direct calculation it is easily seen that the functions

(1.15) Pi(, &) = Alla, &) — O, &) AfLw, G,

where A4, denote the generalised CHRISTOFFEL symbols, satisfy our require-
nment.

Thus equation (1.12) together with (1.15) defines the infinitesimal parallelism
for any vector X°. Moreover equation (1.15) can also be written as 6X¥dt =0,
where

oXi dAX:

- PRI i P h ok
(1.16) TR T P (@, ) X2k,

This delta derivative is defined as the intrinsic derivative of the vector
field X*. This definition of the intrinsic derivative may easily be extended to
a tensor of arbitrary order, e. g,

oy AT

6t dt

-+ P;m T?k {bmmPl;mT;;k {‘Um - PZmTjha}m

can also be shown to be a tensor of the same type. It can further be shown
that this derivative satisfies the usual laws of differentiation for sum, difference
and product of tensors.
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From the definition of a generalised CHRISTOFFEL symbol we deduce:

1 99
A(i:i)k == Ak(ii) =3 “51‘%

Ay = Appa = dpong =— B = — dpmn = — dpgg

<i‘?{1[r‘:‘] n Oy 2@_1_])

(1.17)

bO | o~

k| pwt | on

(hl) h {m}

where {h"k} are the CHRISTOFFEL symbols of the second type formed with
respect to the symmetric part of the metric tensor.

Covariant differentiation. Let X"(mk) be a vector field defined
in & region R ot F, . Then, under a transformation of coordinates (1.1), we have

(1.18) Xi= 4, X
Differentiating (1.18) with respect to a* we obtain

oX? oxy ) St
o = Ao A+ X040 47

(1.19)

Y

0X i
5 are not the components of a tensor. We
r

Equation (1.19) shows that

therefore seek functions P;', which are such that

ox*
(1.20) Gdki = — + Pl Xn

are the components of a mixed tensor of second order for an arbitrary vector
X de,

(1.21) 8. X1 = Al A¥§.X¥,
where

axi
(1.22) SuX ¥ = 4 PhLXY,

P}l being the components of P}l in the new coordinate system.
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From (1.20), (1.21) and (1.22) we obtain

201
. g o ; sen! ¥ ;
il B pki gk &n k i o
X (ax"'avk’ AY 4 PR AL, — PR AY A,,,) =0.

Due to the arbitrary character of X', we have

o2t

4 ®i h k Hf H
2! Yk’ Phl 11 ! ‘4 ! 3 £

ript

(1.23)

as the transformation law for P}’.
In analogy with other spaces |1], [8], we impose the condition

(1.24) P gk = P ok

It is easily seen that the functions
(1'25) P:;i — A}i;];“ G (Clxml Chml hp (Jyhkl P:’np) ‘,i:”
satisfy our requirements.

Thus (1.20) together with (1.25) defines a process of covariant differentia-
tion, which may again be extended to a tensor of arbitrary order. This process,
as can be easily verified, satisfies the elementary laws of differentiation for
the sum and product of tensors. From (1.25), we have
(1.26) Phiy = dig -

We also define the associated quantities PJ, by
(1.27) Pl = gom PE,

so that

_P:F . 1 a(/(U)
Bk T g gk

CZ]"I ‘P"l {Lp
(1.28)

.Z)E::-j] = A[if]k ‘}"" (Gj[;t .Pi 0211 ij)uv"‘ .
Evidently, much of the development in the subject is not possible without

the covariant derivative being defined for tensors involving the directional
argument also.
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For this purpose we suppose that the field of the directional argument @;
is given in the neighbourhood of the point where the covariant derivative is
to be evaluated. Then we define the covariant derivative of a tensor Tz, #) by

(1.29) 0 Ty =t - 2 — P, PET,.

It can be shown that these quantities form the components of a tensor
with one order of covariance more.

Towards the conclusion of this section, we quote a few special cases in
which covariant derivatives have been found out with a view to further deve-
lopment of the subject:

dut .
(1.30) O gein = 2 Cin (ﬁ + Pim w”‘) )
“h dat ! A am 9 Al s
(1.31) i a® = o+ P @7 — 2 Apey 27
(1.32) O Jun =2 Com S 2t + 2 A’fkm] @m).

From (1.32), we deduce

(1.33) @ 8 Guan = @7 O gup =0 .

‘We observe that the covariant derivative of the symmetric part of the
metric tensor is different from the one obtained by Runp [1] for FINSLER
spaces, though of course the principal advantage drawn out of it, viz. (1.33)
is maintained.

(1.34) 6 6F =0,
(1.35) 0 G = — G G717 5y gy s
and

. 1 . .
(]36) il 67: Oiih e ’2“ 51,- GJony = — Cl;‘h(ék wl -+ 2A{lkm] .’l}"') .
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Section (II.

Consider a manifold /', endowed with a local coordinate system gz (i =— ,
...y %). With each point P(z¥) we associate a dirvection zf so that if ¥ be the
components of that direction in a new coordinate system, then we have

(2.1) @i = AV g

The set of 2n quantities (27, #%) is defined to be the element of support at
each point P(z). F, will be called a generalised FINSLER space of the second
kind if:

(i) A metric tensor with non-symmetric components g;(z, z) (in ge-
neral) is given such that the square of the distance between the centres 2 and
@' + do’ of two neighbouring elements (¢, #) and (» -+ dw, & + di) is given by
the expression

(2.2) ds® = gy{w, @) de* A’ = gup(z, ) do da,

(No relation between z* and da’ is implied).

(ii)  An analytical expression is given for the variation of the vector .X:
when its element of support (z, #) changes to (# -+ dw, @ -~ d#). This variation
called the geometrical vallmtlon 1s represented by means of an absolute dif-
ferential

(2.3) DX? = dXs -+ ¢, Xt da* -+ T, X dak,

The magnitude of a vector X is defined by Vi gz, ) X1 X7 =V Gosnl@, 2) X X4,
It is of course assumed here that the quadratic form

(2.4) gilw, &) XX

is positive-definite for all X? and for an arbitrary element of support (:v, z).
g:(w, @) is supposed to be positively homogeneous of degree zero in the at.

Cl(z, =) and I'i (=, x) occurring in (2.3) are to be determined as functions of
the element of support, and are not absolutely arbitrary. In fact they satisfy
certain transformation laws which may be obtained from the fact that DX
form the components of a vector:

2.5) Al + T, b Ch AN Al ot =T, AL (Af s = 84 A1)
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and

i h k i’ {
(2.6) Ohk Azxz' A == ;z’k’ Ai" :

Following CArTAN [2], in analogy with FINSLER spaces, we make the follo-
wing assumptions of an intrinsic nature:

a) If the direction of a vector X coincides with that of its element of
support, then its magnitude is equal to F(w, ).

b)  The magnitude of a vector undergoing infinitesimal parallel displa-
cement (i. e. when its geometrical variation is zero) is constant.

e) Let X and Y be two vectors with the same element of support
(#, »); Let DX and DY be their absolute differentials when these vectors con-
serve the fixed contravariant components X7 and ¥¢ and when their common
element of support undergoes the same infinitesimal rotation about its centre.
Then X-DY =77 -DX.

d) The absolute differential of a vector with fixed components X*
and whose direction coincides with that ot its element of support, corresponding
to an infinitesimal rotation of its element of support about the centre is null.

e) The components I';* which enter the expression for the absolute dif-
ferential of a vector when its element of support is displaced parallel to itself,
satisfy the equation

O % 3
(2.7 F[ka] == A[i];;k} = Yun [*n;] .

As in Section I, here also we assume that 8g,/00* = 0.
Conditions (a) to (d) give us

09 (i5
(2.8) Ly + Ty = 8;7’:) ’
1 B (x, )
2 Vi = = =
(2.9) O 4 daiowigar
and
' .1 022, i)
(2.10) Gun (@) @) == 5 — e

In addition F(x, #) is positively homogeneous of the first degree in the a'.
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Condition (e) gives us

(2.11) ]1,:;“ o ]—':}h = Ay — dan
where
(2.12) ]1;:’;;{ = ]77:7. - C/i;z Iy

From (2.11) and (2.12) we have

(2.13) Dojp— I'/cjh = Ahik—' Ak:‘h + (Chs sz— Crn F:h)‘i‘ .

Also, from (1.17) and (2.8) we obtain

(2.14) T + Do = Apgre -+ A -

(10]

Equations (2.13) and (2.14) fix all the components of [ . We now proceed

to find an explicit expression for [ .
Introducing the quantities

(2.15) Sim = Lsgn— Augn

we obtain from (2.13) and (2.14),

(2.16) Sim + S =0
and
(2.17) Sin— Snie = (Cin I',f.;,—" Cun F]\l:i) zk .

This type of equations were solved by Carrax [2]. Proceeding according

to his technique we obtain

(2.18) Spis = Cisn Ty &8 — Cap I 0%,

giving us

(2.19) o Ty = Apy + iy T, &% — Coyy TY, 0

and

(2.20) T = Ap; + (Copy Th— Co Tt — Cu T o
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Angle between two vectors. The angle 0 between two vectors
with contravariant components X and Y7 is defined by

Gunln, &) XX
V g X XEV g, Y7 T

cos 0 =

We notice that if I* and I, be the unit vectors along the element of support,
we have

g o
T P, ®)
(2.21)

or

li == a—. .
i

Therefore
—i 1 ar )
Di=w = ﬁ dat — 1,',2$’ + ]—‘Ij,:,&a)h da*

giving us

.. —i r .. .
doi==Fo -+ 7 wi— I3, ot dat .

Therefore if we consider a tensor, T,,(x, x), covariant of second order and
homogeneous in the a7, of zero degree, then an easy manipulation gives us

ol AT, . . . .
(2.22) DTff:( o i‘,..w3~T,-hJ“.,f*;"~—TMI’,-’Z'> et

oxk o

—k

or..
+(F .”""T,‘h.éi_?k‘”‘Th;A’;k>w.

oxk

The coefficient of da* in this expression is defined to be the covariant deri-
vative of X7 with respect to #* so that if we adopt the notation e,,.Ti, for it,
then ‘
] . 2 ,11'” aT,- . , " )
(2.23) Vil = -‘a;f—‘ “a‘_;;f Iy ot — Ty F;kh““ T T3
The coefficient of @ in (2.22) is defined as the covariant derivative of X*
with respect to #*. It will be denoted by

Ty,

oxF

1
(2.24) VT, = F = — T Ay — Thy A,

where A = FC}, .
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It can be shown that both these processes satisfy the elementary laws of
differentiation for the sum and product of tensors.

In the end, we quote the following results obtainable by simple direct cal-
culation and which are likely to be useful at a later stage:

[ 0

0 0 0
(2.25) Vi gun =0, Vidj =0, VG =0, Vil =0, Vi =0,

[ 0 0
(2.26) at vaihi = gt Vid iy = @ Vidas =0,
ary. .

(2.27) ‘5;—; rtw! = O,

ar:il'- '»0 | T B AL I AE "k
(2.28) S xt = aiV; O + 2 (G5, (ne] Cir [ik]) )

apl‘z’l s e 1 o h s 14 A
(2.29) *'a;;' »$J =g V,-Cir -+ A(Oh,r (] T Cir A[hk]) x”,

api*} 0 [ . 0

2.30) asorj = V0, + V,0, — GV, Cy —

(O Ve O+ OV, O — OV Ol 2 AT, i (O O+ Gl O +
+ 2 Ch, (O Afsg + O i) & 2 O OO Ay —C,, Afg) @ —
—2 (Crlzr ?ii] + Clibr A[tih] + O?r fx‘h]) .
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