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Some Theorems on Infinite Series

wich are Self-reciprocal in a Certain Transform. (**)

1. - Introduction.

Consider the series:

(L.1) f(@) + f2a) - f(32) + ..,

(1.2) | f(@) — (32) + j(5@) — f(Ta) + ...,

(1.3) ) ~ f(3) — f(52) + {(Ta) + f(92) — ..,
(1.4) f(2) — 1(52) — f(T2) + j(l1a) + j(132) — ...,

where 1, 5, 7, 11, 13, are number prime to 6.

In a paper entifled « Self-reciprocal functions» G. N. WATsON [117 has
investigated the behaviour of the individual function f(z) when the series (1.1)
and (1.2) are self-reciprocal in the HANKEL transform of order ». In the same

paper he proved that the series (1/2)I'(») +22(nm\/;/_‘2_)-1i‘v(mc fg) is
n=1

B afer -

S./C. Mrrra [6] and later on S. €. Mrrrae and A. SmArMA [7] have ob-
tained some results showing the self-reciprocal property of some particular
cases of the series (1.2) and (1.3) in a certain HANKEL transform. We shall
get some of their results as particular cases of some general results obtained
by us here.

(*) Indirizzo: Depa,ftment of Mathematics, Engineering College, Bilaspur M. P.,
India.
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The object of the paper in the first instance is to investigate the conditions
under which functions involving the series mentioned above may be self-reci-
procal in the generalized transform ‘:’nlmz,-m"n(w) and to put these results in
the form of some general theorems. It may be remarked that the known re-
sults may come out as particular cases of the theorems. Moreover we shall
confine our approach to the series (1.2) and observe that similar results can be
easily obtained for series (1.1), (1.3) and (1.4) and other series of like nature.

The kernel E)ﬂl’ny_ u, (@) was defined ([1], (1)) as

(1.5) B (@) =

12 o

- 2 2 @ \ df; db, ... di
=/ [ [ / Tuty) Jo(te) oo Ty (byy) Jnn(” t ) L Aty .
K / # R
0

o

bto ooty

0

where the %, can be permuted amongst themselves and n, 4 (1/2) >0 for
m =1, 2, ....
A funetion self-reciprocal in this transform is denoted by R, , .. , . Also
N,

(1.6) 0, (2) = J,_(24/Z).

Pyr—1

We have assumed hereafter that the series > (— 1)1 f((2r — 1)) is uni-
r=1

formly convergent in (e, oo). For this we observe:
(1.7) Let U,(®) be a continuous function of « in the interval (a, b) for all

values of » and let the series > U,(z) converge in the interval (a, b), then the
. n==1
points of uniform convergence of U,(x) form a set which is everywhere dense
in (@, b) and has the cardinal number of the continuous ([10], p. 351).
We have frequently inverted the order of integration and summation which
can be justified on the lines of H. S. CarsrAw ([2], Art. 76, p. 179), viz.

(1.8) Let Uy(z), Usx), ..., Unlz) be continuons in 2 > a and let the series

> U.{x) converge uniformly to f(#) in the arbitrary interval (a, o), where o
n=1
may be taken as large as we please.

Further, let the integrals f U (z) da, J U.z) dw, ... converge and the series

of integrals

fUl(w) do - f U,(z) do + ...
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converge uniformly in @ > a. Then the series of integrals

[0 as + [T, a0 + ..

a

fesd
converges and the integral f flz) dz converges. Also

a

ff(m) dy = fml«"l(m) de -+ fmUz(:v) dz + ...

a

2. — Harpr and TITCHMARSH [4,(1)] have defined a class A(w, @) of fun-
ctions, where 0 < w <z, ¢ < 1/2. They are:

() Analytic functions of » = re'?, regnlar in the angle 4 defined
by » >0, |9 < wo;

—
o
s

~—

(if) O(}@ | *% for small a;

L (i) O(] @ |70 for large w;

for every positive 0 and uniformly in any angle Pl<o—79<wo.
For this class of functions B. M. MEHROTRA [8] gave some results as follows:

If f(») belongs to R, and

cfim
@ P :5% [2°Is/2 + w2 + 1/4) T(s/2 = /2 -+ 1/4)-y(s)-0~* ds,
where
2(8) =zl —3),
then
(22) g(@) = [ {(y) P(ay) dy
[}

16*



168 V. K. VARMA [4]

belongs to B;

. ) + i
(i) (o) = 5o [ 2 T2 + 2 +114) - TE/A 4 2/2 = s/2) () &~ ds,

c—iw

where y(s) == (1 —s), then
(2.3) g(@) =

belongs to R, .
In particular if f(z) is R, then

[e]

(24) o) =" |

0

yt U )

(b.. 4oyt )[(,u+z)/"]1~1 dy

is B,.
We prove some analogous results where some of the functions involved are

infinite series of the type mentioned before.
Let f(z) belong to 4w, «) and be R, , . then ([1], (3)) it is of the form

ctim
1
(25) flo) = 5— f 9mslt. [g/2 4+ g2 - 1/4) ... T(s/2 -+ /2 -+ 1/4) - y(s)a s ,

where w(s) is regular in e <<o<1 —a (s =0 -+ i), 1.e

(2.6) w(s) is O(elmn=w+nl-ltly
and sat%sﬁes w(s) = p(l — ). Let us write

oMl (112 + 8/2 + 1/4) oo T(unf2 + 8/2 -+ 1/4)-9(s) = Pts),
and consider

F(a) Z(— )t f((2n — 1)) .

fim= 1
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From above, we have

c+ i

1 o ~
2.7) P(w) =5 3 (— 1) / P(s)-((2n — Do)y ds =

¢4 i
1 ~
- Ej P(s)-L{sg) w2 ds.

c—1m

Let s == ¢ -~ it and consider the integral

I = j P(c -+ it)-L{c -+ it)-a~ " dt.

— o

Putting @ == re'”, where |9| < w and r >0, we see that the modulus of the in-
tegrand does not exceed a constant multiple of

(2.8) r=e- |P(e -+ it)] - |L(o -+ it)] -e"t 1

Since by hypothesis P(s) is O(e‘~®*7!) uniformly in e<o<<1l-—a a8
|t] — co, the absolute value of (2.8) is not greater than

(2.9) : y =g @TTIO (e - it)] (t >1,) .

Hence (2.9) — 0 uniformly and the integral I is uniformly and absolutely
convergent in any domain of # interior to the angle 4. Hence P(s) L(s)
is regular in ¢ << 6 << 1 — @, and by theorem 31 '[9] Flz) *~* e L{p, oo) . Con-
sequently F(z) belongs to A(w, ) and ultimately to L*0, co). In fact

. flf’(m) s de - ]oi (= )" f{((2n — 1)z)as—t ds= L(s) ]?]‘(zv) x1ds.

Hence the MELLIN transform of F(x) is P(s) L(s), where P(s) is the MELLIN
transform of f(x).
Now consider

2.10) (o) = [y~ F((@fy)/7/2) gly) dy ,

0
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where we take g(y) to be £, o ye Stbstituting the MELLIN-BARNES's type
integral for F(z) from (2.7), we get

1 N 1 fﬂ"f‘” @ 1/7 —s
(2.11) ) == [ 90 [ P(o) 166) l/g) ds .

Inverting the order of integration and using MELLIN’s inversion formula for
9(y), we get

ct 100 _
(2.12) Do) = 5 [ Pl Bis) Z0s) (o )2 as,

where F(s) is the Meriix transform of g(x).
By hypothesis R(s) is of the form

R(s) = 2RI g2 4[24 1/4) ... T(s/2 - vy2 + 1/4) T'((s + 1)/2) 5(s),

where y(s) = z(1 —s), and is O(elF+v—otalltly ypitormly in the strip
a< o<1l — . Hence

c+im
i .
(213)  Pla) = [ 20 Hmslt Py )2 1 sf2 4 1/4) o D)2 + /2 - 1/4) -

L2 +8/2 - 1/4) .. T2 4 s/2 + 1/4) w(s) o ds ,
where

w(s) = 25 70 ((s + 1)/2) wis) x(s )I(s)

is Q(eltmr ol —ttaialith ang satisfies w(s) = (1 — s) by the functional equa-
tion (5) satisfied by L{s), viz.

(2.14) @/y/7) (s + 1)/2) I(s) = (2/\/a)~T(1 —8/2) L(1 —s) .

Hence O(z) € A(x, a), ¢ = o + ' and is R iy - The inversion in the

order of integration in (2.11) is justifiable under theorem 42 (TrrcHMARSH [9],
p. 60) provided ! g(x) belongs to L(0, oo). Hence
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Theorem 1. Lef
(i) fl@) be comtinuous in = >0,

(i) > (-~ 1)1 §((2n — 1)x) comverge umiformly in (0, oo) o F(z),
Nem ]
(iii) @9 (w) be continuous in (0, oo) and belong to L(0, o),

iv)  flw) and gla) belong to Alw, a) and f(x) be its own R
transform and g(z) its own va,_m:,k. Then

fgseeastip

@

o) = [ 7 Gf5) e

4]

18 By iy s DYOVIded the integral emists.

From (2.7) and (2.14) we have

Corollary 1. If flz) is ils own R,.,. s tronsform then the series

3
iM8

(=1)"1 f(2n — 1)an/7]3) is R, , |

1

waliy”

Examples.

f (1) af ?(.‘”0) :7: 2J#(\/2E) Kﬂ(\/ﬂ) iS R/z—(1/2),;L+(1/2),1/2,-1/2 - ([1]’ p' 66) ?
() = " M® e==Fjg R , then

D) =2 [y71J (/2y) K, (+/2y) 3 (= 1)"7 (20 — 1) (@fy)y/m]2) -

=l
e~ /20020 — 1)1 ¥ 7730 dy

is R;t-(l/Z),y—}—(llZ),r,——1/2 (>0, v>-—1/2).

(i) fl@) =T (@) I8 B, 0, ram (1], D. 55), gl@) = e "is Ry, _1jes then

(.15) Dlz) = fy-—l z (— 1)1 o= Cn=1wi7R J (afy) dy
1] ne=l

i8 R, jmvrajm,-12- On inverting the order of integration and summation,
and integrating term by term, we get

D(w) =2 3 (— 1)1 (20 — 1)ay/2m) EY((2n — 1) +/27),

n=s1
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ag self-reciprocal in w,_, 129,w aj,—j2 bransform. In (2.15) if we sum the series on
the right we get after a slight adyustment

@

/@ D(z\/2]7) = f;l/"m sech(1/y) /wy J,(xy) dy .

0

Showing that #~%? sech (1jx) is reciprocal to @ +/2x) /7 in the HANKEL
transform of order ».
Trom (2.15) we also find that @(x4/2/x) is the image in the LAPLACE

transform of the series #™* > (— lv)"‘1 J((2n — 1) &),

n=1

(i) 1(0) = 3y () i8 B, (11, (2), . 122),
g(w) = '\/2—1/?” sin # is R1/2,1/2 ([1], (1), p. 66),

@

@) =|/2 [y siny 3 (= 17" . ((2n— 1)ely)y/7T2) dy

. n=1
[

I8 B e (0 >=1/2, v >~1/2). On inverting the order of integration and
summation, we get

0 = |2 3 (= 17" [ 3,420 Dalp/aR) sin gy dy =
in=1 B
0
:ni(.— D™ 6,620 — 1)1 /7]2)
since by definition
Dpyra(®) = ch,,,v(m/y) Jy) ™ ay .
0

Term by term integration ean be justified in the following way: Consider
the series of integrals

N«
B =3 [,y sin(@n—1y)y-dy.

n=x5 0
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Since @, (#) is O(@~") for large # and is O(x"+™®, p*+*?) for small @, it can
be seen that

(=]
~ p ~1
[ @ ely) y~* dy
0

converges absolutely for » 4+ (1/2) >0, x -+ (1/2) > 0. Hence, by the RiEraaNxs-
LeBESGUER'S theorem ([8], p. 11), B, 0 as # — oo, N' >N > N,, the same
N, serving for all y in (0, «), where @ may be taken as large as we please. Hence
the inversion is justifiable vide Carsraw cited before.

(iv)  fl@) =1 (x/2) )i R, _my yrqjw(c. [8]), g(@)=a e~ is R, then
D(x) = | ¢TI (= 1)L — 27Ny T A /A2) K (0 — 27y T W/ )2) dy
0. Nl

is B,y crqm- Leb us consider a particular case of Thoerem 1, with

0
2) =3 (— 1) @y (20 — D)aa/aj2) ,
n=1

which is uniformly convergent in (0, oo). We known that &, 4.(®) is
Ry ipnapse ([, (2), Do 122). Let g(w) satisfy the

relation
1 0(%) =y ,
then
(o) = [ g0) 3 (= 1" oyl — Dy ~/aT2) dy
0 n=1

is Ry gpap- Writing 1/y for y, the R.H.S.

= fy GO S (= 1) Gy el (20 — Ly A/73) dy =

Noa ]l

= (= 1" [ () @ope, el (20 — Lwya/7]2) dy -
0

N=x1
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The inversion in the order of integration and summation can be justified,
since we take g(z) to be continuous and € L{0, c0). Now let us denote the
LAPLACE transform symbolically as

8
8

D) =3 (= 1" [y &(@n — Day/=)2) dy [e™ h(t) At ==

A=) [} [}
=3 (=1t f R(t) dt f Yo" @y (20— Daya/7/2) dy ==
n=1 0 (]
o« /; ci Lo
=S (=1 2n — 1) [/': [ emenmp=t IR By 472 it
n=1 “ v .
0

Since # ¢™" is self-reciprocal w.r. to the kernel wy,,,(») and we assume the in-
tegrals to be absolutely convergent. Further let

o~
Lo
j
~1
~—

tHz) = 1),

\

then we have

(2.18) D(z) = (— 1" 7((2n — 1)z/7[2)

is Ra,g’a/g’l,2 provided the series converges, and x(z) is integrable in (0, oo}
and -0 as x — co. Hence

Theorem 1A. ‘Lci

(1)  gly) be continuous and belong to L(0, oo) and satisfy the relation
(1/y)-gLly) = g(y)-

()  glp) = h{t), where t-h(1[t) is O(’) € L(0, &) and e~?* h(t) € L(0, co).
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(i) At == x(p), where x(p) is continuous and integrable in (0,

and —0 as p — oo; then

D) = [17'9(1) 3 (= 1) Gy 1ol (21 — Loy ™ /7[2) dy =
0

n

s

(= 1" 7((2n — 1)z /7[2)

e

is R3/2,3/2,1/2 .
Examples.
1) g =y/Q +y)® =y gl/)y),
g(p) xp/(l +p) e = a),
e Tt == 2p Ko(24/D) = y(p) ,

hence

(1 = Z;F z (“ 1) (Uslz 1/0(( = 1 m 1'\/75/2)
! n=ji

=23 (= 1)" (2n — Dan/7j2) Eo(2V (20 — 1) wy/m2)

AMB

I
(i) gy) =@ + ) = 1fy) 9(L/y),
9(p) = (1 + p)** == (1/3)82 Jo(t) = h(t),
tRLJE) = (1[3)172 Jy(1/t) = (2/3)p J1(+/2p) Ki(+/2p) ,

then

©

Y < 1 —-1. ;=5
[+ g 2 (= 1 Dypypl(20 = L)ay ™ /m]2) Gy =

=23 (=1 @0 — Dan/aR I,V O — 1)ar/27) Ey(V (@1 — 1)z /2m)

is Ba/z,S/z,l/a .
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