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Ecxrorp CoHEN (%)

Some Analogues of Certain Arithmetical Functions. (**)

1. - Introduction.

- Lt py, ., ... denote the increasing sequence of the primes, and for positive
integers n let e (n) denote the multiplicity of p; as a divisor of n for each i > 1.
In particular, e;(n) =0 if p, . n. Given a positive integer k, we say that n
is k-free if e,(n) < k for every 4 > 1, and that » is k-full if e(n) > & for every 4
for which e,(n) % 0. By the unique factorization law, it is evident that » has
a unique decomposition of the form

(1.1) , o=y (N, M) =1, meQ,, mnel,,

where @, and L, denote the sets of k-free and k-full integers, respectively. In
the representation (1.1) we call #, — o () the k-free part of n and n, — P
the k-full part of n.

In this paper we consider an analogue of the EULBR totient function D(n)
which arises when n is replaced by o, (n), where » is an arbitrary positive in-
teger. For this purpose, we write @,(n) = Br(n) D(ay(n)), and note that B,(n)
represents the number of integers (mod =) relatively prime to o, (n).

It is recalled that

(1.2) D(n) = nYy u(d)/d = 2u(d)s,

din do=n
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where w(n) is the inversion function of Mésrus. In (2.3) we deduce a corre-
sponding representation for @.(n). The function which replaces w(n) in this
representafion is denoted g,(n). In (2.4) we obtain an «s-analogue » of the cha-
racteristic property of u(n),

(1.3) > ud) = e(n) =
dln 0 (n<0).

In the familiar generalization {(5.2) of (1.3), &(n) becomes the characteristic
funetion q.(») of Q.. An r-analogue of this result is deduced in Lemma 7.
The function corresponding to ¢,(n) in this analogue is denoted v {n).

In n. 3 we obtain an estimate for the average order of @,(n), corresponding
to the familiar asymptotic formula for @(n),

(1.4) O(x) = > P(n) = (30%/n?) + O(zlog ®).
nsae

The proof of this result (Theorem 3 b) is based on an estimate essentially
equivalent to (1.4). In Theorem 4 we prove an analogue of the well-known

property of gi(n) (k>2),

(1.5) Qum) = 3 gu(n) = (#/L(K)) + OWm),

nse

where (s) = > n~° for s >1.
n=1

The method employed in proving the asymptotic estimates of this paper
makes no use of analysis beyond the classical properties of DIRICHLET series
in the real domain (see n. 3). A cruder argument of the same sort leads to the
less refined estimates of n. 6.

2. - Formal properties.

Let p denote an arbitrary prime and ¢ an arbitrary positive integer. A mul-
tiplicative function f [(that is, a funetion satisfying f(mn) = f(m) f(n) if (m, )= 1,
f(1) =1]1is evidently determined by the values assumed when # is of the form
n = pe. On this basis, by (1.2), @(n) is the multiplicative function for which

(2.1) D(p°) = p(1—1/p) .
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Define now u,(n) to be the multiplicative function determined by

pr (e =r-+1)

0 (otherwise) .
We prove

Theorem 1.

(2.3) Dp(n) =n Z p@)fd =7 p(d)d

dln do=n

Proof. There exists, by MoBIUS inversion, a umque function g(n) =

=.g.(n).such that .

Di(n)n = 3 g(d)/d,

d ] n
from which

gn)/n =3 (DAd)/d) u(6) .

do=n

By (2.1) and the deﬁmtlon of @,(n), it fo]lows then that g¢(pe) = u,(p?).
But g(n) is mmultiplicative, by the multiplicativity of @.(n), and hence g(n)
= u{n) for all n.

Let y(n) denote the largest square-free factor of n. We prove next

Thedr‘em 2.

yrn) if nel,,
(2.4) zlur(d) =p(n) = '

@in 0 otherwise.

Remark 1. Olearly, the function v(n) defined by the right of (2.4)
is multiplicative.

Proof. Let f(n) denote the necessarily multiplicative function defined
by the left of (2.4). Then by (2.2)

10+
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That is, f.(p°) = »(p?), and hence by Remark 1, f.(n) = v,(n) for all n.
We also note for later use the identity,

(2.5) ) = z vr(d)’ w(d),

dé=mn

which is an immediate consequence of (2.4), by M{BIUus inversion.
Y

Remark 2. By definition, @(n) is the limiting case of @,(n) as r — co.
Moreover, by (2.2), u(n) arises as the corresponding limiting case of u,(n). The
relations (1.2) and (1.3) can therefore be regarded as limiting cases for (2.3)
and (2.4), respectively.

3. - Lemmas based on Dirichlet series.

Define for real s >1,

1 pr '
(3.1) yr == 1;[ (1 e + ps(m)) ’

where the product is over the primes p.
Lemma 1. Ifs>1, the Dirichlet series

(3.2) S v(n)/ns

n=1

converges absolutely and its sum is equal to L(s)as,, where a,, is defined by (3.1).

Proof. The product in (3.1) converges absolutely for s >1. Hence by
the EuLer factorization of (s), one obtains from (3.1},

Ls)a,, = TI {1 + 1—{’;, (1 — 1)" } ,

,ps

and it follows on the basis of Remark 1 that

@ pT
(3.3) &s)as, = 17[ (1 + gl 27;(7:1)) =2
Lemma 2. Ifs >1, then

(3.4) i vm) Ll 1) —1) & Z,(o:) R

ST T @l ) —r) Sy
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where the series on the right converges absolutely for s > (r + 1)/(r -+ 2), the coef-
ficients A.(n) being determined by (3.6) below.

Proof. By (3.3) we have for s >1,

2 va(n) I

(3.5) 25 =11 (1 +?~)S7(’m)}/3,,s,

where f, ; is defined by

_ L7\ N pr ] _ &
(3.6) Prs =H{1 + (1 *7;7;:)) (1— ;7) ;,WT)}ZZ el

b

The product, and hence the series in (3.6), converges absolutely, provided
the series

- — PN L e
BT ,Z‘fr,s:(p) =§<1 Tm) (1 ) elra ?

Nz
converges. But

1 -1 pr ] —1
pir,s(p) < (1 — 2—3) z W = (1 —_— 2_5) z /pr—s(r-}—z) ,

4 r

and the latter series converges if s(r - 2) —7» >1. Hence the series in (3.7)
converges for s > (r - 1)/(r + 2), and the lemma results from (3.5), by the
Eurer factorization of the zeta-function.

Let g.(n) be the arithmetical function defined by

g, sl 4 1) —1)
(5.8) 2w T n—p & D-

Then by Lemma 2 and the uniqueness theorem for DIRICHLET series, one
deduces :

Lemma 3.
(3.9) v (1) :dz (d) g.(9)
Sd=n
and

> dréeru() it 9 = mrtt
(3.10) g(n) = { 9=m
0 if » is not an (r + 1)-th power.
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temark 3. The O-constants in this paper arve assumed to be depen-
dent upon the parameters r and %, when they oceur.
Lemma 4.

(8.11) Nz) = r,(n) = 0(x).

nsw

Proof. By (3.10), for suitable positive numbers ¢ and ¢/, depending at
most upon 7,

1 2am|=| X aep0)|< X &=
nsz @sy" T lga dit < tlir+1)
= z 52 z dr < z o2r Senlarta) <
o= @TH2) gy firtn S <AL/ @7+ 2) ;
<cery (1) <ex Y (1/6Y) =c'z.
S<u d==1

Hence G(2) = 3 g(n) = O(x), so that by (3.9) and Lemma 2,
n<x

Nofa) = 3 1) g49) = 3 24D Gulafd) = 0 (2 3 | 24D |/d) = 00 .

dd=x d=x d<sa

The latter result leads to the following estimates involving ».(#).

~

Lemma 5.

(3.12) > vn)fn = O (log =),
(3.13) 2wy =0 e i s >1.

Proof. Using partial summation, if follows as a consequence of (3.11)
that

s s wm) (3— : >+ i)

ner W e n w41 [} +1 "

n<u n=e

1 1
=Y O(n) e i < 0'(2 3;) = 0 (log =) .

This proves (3.12). Similarly, we have

v,(n) 11 ()
2 — 2w (»T_ (n + 1>s>_ ]+ 1°

s
n>a T n>x

= 0(n) (1 4+ (I/n) —1 . O(a) 0 (2;1;

n + 1) o ) 1 O@@9) = O@@—) . -
n>x .

n>z
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4. - Average order of D, (n).

The relation (2.3) suggests an indirect approach to ‘D.(n) by way of the
«mean-totient », @,(n)/n. We adopt this point of view, noting in this con-
nection the following analogue of (1.4):

(4.1) D'(@) =3 D(n)/n = (6zfn2) + O (log®), =z>2.

The relation (1.4) is a direct consequence of (4.1) by partial summation
[cf. Remark 4 and the derivation of (4.5) from (4.3) below]. We now deduce
an estimate for the average of ‘@,(n)/n, based on the estimate (4.1) for the
average D(n)/n.

Lemma 6.

dé=n

Proof. Let the operation of DiricHrET multiplication be denoted °
and let j denote the identity (j(n) ==n). Then by (2.3), (2.5), and (1.2), one
finds that @,(n) = y,j = Ve'pf = v,-@, which is (4.2).

Theorem 3a. If x> 2, then

(4.3) D) =3 Bun)n = a, & -~ O (log® z),
n<z

where

(4.4) U = oy =TT {1—(1/p?) + (1/pr+2)}.

Proof. By (4.2) we have (
Dyw) =3 {v.,(d)/d}{@(é)/é} =2 {v(n)/n} ' (w/n) .
dé<a nsg
Application of (4.1), Lemma 5, and Lemma 1 (s = 2) yields

n<(zf2) @/y<n<g

D) = (6j%) 3 ()i} -+ O3 {o(mn}log (am) + O (3 (myn) —

= (Bw/m2) ;_‘ v(n)fn® + Oz Y 1},(%)/%2) + O(log & 3 v(n)/n) — ‘

n=1 n>g n=<g

= (62/7%){(2)a,, + O(1) + O (log* @) =a, & + 0 (log* @) .
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Teorem 3b. If =2, then

(4.5) D) = 3 P(n) = (a,a*2) + O(x log? &),

n<x

where a, is defined by (4.4).

Proof. Applying partial summation, one deduces by (4.3)

D, (x) =— 3 DUn) + Dla)([z] +1) =— 3 Dyn) + 2D, () + Ow) =

n<a n<e

= —a, > n + 0 (X log*n) + a, #* + O(xlog®w) =

n<wo n<e

= — a,((#*2) + 0®)) + a, #* + O(x log® @) = (a, #*/2) + O(wlog*w) .

Place B(n) = Gy(n). We have

Corollary 1 (r =1). If 2> 2, then

(4.6) S B(n) = (aa*/2) + Ol log* ) ,

n<g

where @ =T[ {1 — (l/pz)r + (1/p%)}.

Remark 4. The result in Theorem 3b can, of course, be proved di-
rectly on the basis of (1.4), just as Theorem 3a was deduced from (4.1). Ho-
wever, an attempt to deduce (4.3) from (4.5) by partial summation leads to
a remainder term of order O(log® z). For proofs of (1.4) and (4.1) and generali-
zations, the reader is referred to ([8], § 7, p. 9); also cf. ([1], Lemma 2) and the
references listed there.

5. - Average order of v, .(n).

We can generalize v.(n) as follows. Let Ly 4, denote the set of those n for
which ¢;(n) is not on the range, &k <e < (r + 1)k, i > 1. We define now (see n. 1)

, fyf’(/)’,».(n)) if nel,un
(5.1) irln) = i

0 otherwise.

Evidently, v, {n) = v{(n).
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In this section we obtain an approximation to the average of v, ,(n), k& > 2
based on the estimate (1.5) for ¢i(n). We note the familiar identity

’

(5.2) 4 gx(n) r;g w(d) .

Analogous to (5.2), we have the following generalization of (2.4):

Lemma 7.
(5.3) vo(m) = 3 pud).
dr§=n

Proof. By (2.2)

Tooifoe
z wd) =13 pr i e>(@ +1k
d":!pg

0 if k<e<(r+1)k

which is v, ,(p¢) . The lemma follows, like Theorem 1, from the multlphca,tlwty
of the occurring functions.

Lemma 8.

(5.4) V(1) = zw) :(6) -

d¥s=

Proof. By (5.3), (2.5), and (5.2), we have

Visn) =3 3 (D) w(B) = SvD) u = 2 7(D) Z pE) =3 vr(D) qu(e) -

d¥5=n pp=d DPERS=n Dre=n . EFo=e DPe=n

Theorem 4. If k>1, then -

(5.5) Nes@) = 3 i p(n) = o, 0 + O(Walog 3) ,

n<z

where ey, is defined by (3.1).
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Proof. By (5.4), (1.5), and Lemmas 1 and 5, as in the proof of T heorem 32a
we geb

Niep(®@) = 3 v,(d) qu(0) = 3 vy(n) Qulw/nF) =

dFs<a <l
= (@/L(]) 3 o (m)fn* + O(Va 3, wm/n) =
n<xk ne ik

= (2/L(k)) 3 v(n)/n* + O(2 3 v(n)jw¥) + O(Va 3 vo(n)[n) =

n=1 ) >3k n<gz
=, s + O @) + O(Wzlog ) = Qry @+ O(Wzlog ) .

‘Prlya(‘:e‘ h,(n):vzr(n), h‘('n‘)"’_? hl(n), zmd 1ét ar and a be deﬁned as in n. 4
[ef. (4.3) and (4.6)].
Corollary 1 (B =2).

(5.6) ‘ 'Z he(n) = a,(z) + O(+/71og ) .

n<g

Corollary 2 (k =2, r =1).

(5.7) 2 b(n) = ax + O(/wlog ®).

nEe

6. ~ A final remark.

We point out here that the arguments of n. 3 based on the otherwise super-
fluous functions A.(n) and g.(n) can be avoided if one is content with estimates
of a less precise order of magnitude. It is quite easy to prove the estimate

(6.1) No() = z v,(n) = O(a'*?)

n<g

for every £ >0, as a replacement for the sharper appraisal of N,(«) contained
in (3.11) (a proof is given below). On the basis of (6.1), the O-estimates in
(3.12) and (3.13) are then replaced by O(z°) and O(1/2°~'7®), respectively. The
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same approach as that employed in nn. 4 and 5 for the proofs of (4.3), (4.5),
and (5.5) leads, as a consequence, to the corresponding asymptotic evaluations,

(6.2) S B —a, @ + 0,

(6.3) 2 Bin) = a, 32 + O'*e),
nsa

(6.4) z Vi AN) = Gy r & O(x(llkwe)’ k> 2,
n<ax

where ¢ is an arbitrary positive number.

Proof of (6.1). The series (3.2) plainly diverges for s — 0, and fors >1
converges by Lemma 1. It follows that the abecissa of convergence c, of (3.2)
is <1. Moreover, if y is the lower limit of those f for which N, (2) = 02",
then o, =y, by .a classical result-on the partial sums of real DIRICHLET series
([2], pp. 122-123). Thus (6.1) results.

Remark 5. By the definition of »,(n), it is easily seen that (3.2) di-
verges at # —1, and therefore that o, = 1.

Bibliography.
[1] B. Frizpyan and I. NIVEX, The average first vecurrent time, Trans. Amer. Math.
Soe. 92 (1959), 25-34,

[2] L. Laxpav, Handbuch der Lehre von der Verteilung der Primzahlen, Bd. I, Teub-
ner, Leipzig 1909. ‘

[3] A. WINTXNER, Eratosthenian averages, Baltimore 1943,






