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Curves in a four-space

(%

with non-positive-definite metric-form

1. — Introduction.

Forsyth in his book on Differential Geometry and Macduffee in a paper
published in 1957 had earlier studied curves in a four space equipped with a
metric of signature 4 and — 2 respectively . In the present paper we have con-
sidered the case of remaining two signatures viz. Two and zero. We have obt-
ained Frenet’s Formulae and also solved the converse problem in a particular
case when K, T, § are non-zero real numbers.

2. — Frenet’s Formulae when the signature is - 2.

Let the metric of the space be given by

(21) ds? ::z_(j,-,- da?,- dm,‘

R

where g.,'s are real numbers. We assume ¢,,’s to be symmetric so that the matrix
[9:s] is also symmetric. We firstly consider the case of signature two. The matrix
being of signature 2, (2.1) must be reducible to

(2.2) ds? == do? + dy? + dez?— de2

(*) Indirizzo dell’A.: Dept. of Mathematics, University of Delhi.
(**¥)} Ricevuto il 30 gennaio 1960.
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The matrix of the space is given by

1 0 0 0
0 1 0 0
(2.3) J =
0 0 1 0
| 0 0 0 —1 |

The set of all linear transformations leaving (2.2) invariant form the total
Lorentzian group, i.e. the translations

(2.4) = oy, Y=Y o B=toay, { =1+
Y =1 ’

along with the restricted Lorentzian transformations

K1

=%t QY AR Ayt

Y =An & + QY + Oy & -+ oy 1

(2.5) i
Z =0y & T Qe + Asz & F Gyl
T e=Gu @ A - G2+ Gyt
where,
(2.6) AT JA =J, A being equal to [a,].

A curve is defined as an ordered set of four functions
{@), y), =), tu)}
subject to the restriction
(2.7 EIRN VLI R LRSS |

the primes denoting differentiation with respect to the arc length s.
The distance betwenn two points on the same curve is defined by

(2.8)  s=[Ve Lty i+ e—du
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Let v and w be two vectors, by (2.5),
(2.9) v=Adv, w=Aw w’ =w" A%, so that 7 Jv = w® AT JAv = 0% Jo
which implies that «*Jv remains invariant, or if,

Vo= (A p, vy BY O and  w == (g, py, vy, k)7
then A4, -+ wuy -+ vry— kk; remains invariant. Therefore

(2.10) By == @@ o oy gD g gy g

is an invariant for all values of ¢ and j > 1. Let

il” {()” fl;”/ mw
?/I ?//l :I/I/I :I/it'
(2.11) A=
e . 2! 2" P 2t
t/ t” t/// tz‘v
Then,
(2.12) A7 T4 =H [= { D, ]]
Now H = H, and also
3 .
hyy =1, Iy =0, iy == — Ty, Ty = 3 Ry,
(2.13)
1, 1 1,
Doy = 5 Pgg 5 Tog = 3 h;'z — hggy gy = 5 Mgy
50 that
- 5 —
1 0 — 7L22 — 5 hza
1 1
0 oy 3 hiay 5 S
(2.14) H =
1 1
— Ty 5 Pas Figg 5 by
3 _, 1, 1,
5 Ty 5 [ 3 by, Taa
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J being of rank 4 and signature 2, the canonical form of H must be given by

1 0 0 0
0 K 0 0
(2.15) F =
0 0 K e 0
0 0 0 — K278 |

K, T, 8 being real function ofs. From (2.15)

! hll hlg 71’13
i g

!
K? — >0, KeT? =i hy hay Doy [>0

]!k:n figs  hrgg

By hay

and — K¢ T 8* = | H| <0

Also,
(2.16) G"HG =T
where,
_ e —
1 0 ¥ KK — K> 7
I{'l 1 ‘I/ 21{!3 _KI 1!!
PR T2 e _
0 1 K T* + I K L x: ' KT
G ==
0 o 1 2t
T K7
| 0 0 0 1 A

Let us form a matrix M by dividing the second column of ¢ by X, third by
KT and the fourth by KT8, i.e.,

T L o K K KT
7 78 T8
o 1 K T | K K" 2K K1
K T R2T KS ' TS KIS | OERTS ' K2TeS
2.1 .1[ ey
(2.17) o o 1 2K i
KT TS KT8
0 0 0 L
KTS
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From (2.17) we have

(2.18)

MTHM =J

Calculating the inverse of M, we have

1 0 — K= —3KK'
0 K K’ K'— K3 — KT
(2.19) D = Mt =
0 0 KT oK' T + KT'
| o 0 0 KT8 i
We have
AT TA = BT JO = (AD~)" J(AD™) = J
so that,

A @=1-must-he Lorentzian

Let us define,

(2.20)

i 2.1 Ag }-3 }'4
4 A g1 H1 Mo Hs e
7 Vy Vs Yy

|k k., ko ky |

From (2.20), we find

o' = A4, " = K2,, 2" = K%y - K" 2y - KT,
Y o=, Y =K y =K+ K oy + KTy,
2 =, 2" = Ku,, " = K2y, -+ K' v, + KT v,
v =y, 1" = Kk,, 1" = — K%k + K'ky -+ KTk,
2 =—3KK' }y + (K"— K —KT% A + 2K' T + KTI') 3 + KTS4,
y"* =—3KEK' py + (K'— K5 —KT?) py + QK' T + KT') ps + KTSp,
# = 3KK' p, + (K" — K5 — KT%) v, + (2K' T + KT') v, + KT8

£ = 3KK'ky + (K’ — E*— KT k, + 2K’ T -+ KT') by + KT8k,

5. — Rivista di Matematica
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From (2.21), we obtain
=Ky, A= KA A Thy, A =— T3 + S),
fy = K., ,u.; = — Ky, -+ T, y; = — Ty + Sy
v, = Ky, v; = Ky, + T, vy = Ty, + Sv,
k, = Kk,, ky = — Kky -+ Ths, ky = — Tk, - Sk,

From the fact that / is Lorentzian, we « btain

(2.23) Aot Ak —k =1, 2 4pu +ri—k =—1,
Aidy Fpips +viv;—ki k; =0 for i 7.
From (2.22) and (2.23), we obtain
(2.24) Ay = 82, Iu; = Sitz, v, = 8wy, k, = Sk,.

The Formulae (2.21) and (2.23) may also be written as

(2.25) A =40
where,
0 — K 0 0 |
K 0 —1T 0
(2.26) Q =
0 T 0 S
| 0 0 S 0




w0
w
b1
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3. — The converse problem.

Let S(s) be given of the form (2.26), to determine the curve upto a Lorent-
zian transformation is our problem.
Let A(s) be a matrix satisfying the differential equation

(3.1) A (8) = A(s) Q(s) .

Let /(s) be Lorentzian for some value s, in the interval s, <{s <s;, 80
that (s) will be Lorentzian throughout the interval s, <s<(s,.

‘We shall solve the equation only for the case K' =T’ = §' = 0 . In this
case @ is constant. We have :
(3.2) ‘ A = AQ, A" = AQ2, A" = A3, A = AQ*.

The characteristic equation of @ is

at (K2 -+ 12— 8t — K2 82 =0,

Since @ satisfies it,
(3.3) Q- (K2 +T2— 8P — K282 =0.

Operating 4, we have
(3.4) A9 4 (K2 T2 — 8% A — K282 A =0.

Its roots are easily seen to be of the form

+p, A

so that we have
(3.5) A = A cosh us + Bsinh us + Ccos ys + D sin vs .

Differentiating, we obtain:

(3.6) AQ = A" = uB cosh us + pd sinh us + »D cos s — vC sin vs .
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These functions being linearly independent, we have

(3.7)

(3.8) A =

Q-1

B =

AQ =uB, B@ = ud,

A, C. SHAMIHOKE [8]
CQ =vD, DQ =—1»(.
Taking (0) = I as the initial condition, we have from (3.7)
@+ el =@
i + %) e o )

Also, A = AD=—> AD*=/ so that the first column of A must be (z', »’

2', t)". Therefore
=
Yy
4 .
+
(3.9)

12 A a? ?

|G

P

2 g2

cosh us -+ !

sinh us

b

. \
B U0 ) B ')
0 S )

— K3

KTS

o2

i

KT

"

4 ©* sinws
Bt

1 sinh ps 1

+* n

sin vs
I L
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Integrating these equations sub%ect to the initial condition that («,
= (0, 0, 0, 0) for s == 0, and rearranging, we obtain

okt sin »s S ! sinh us
— - g == —sin » T A o = - )
KT " KT poHE
(3.10)
JE K p?: 4 S K
9 t = — (1~ cos »s Y - —— f = — (cosh us—
y ST 2 ( ) Y sT }Lg( #

The transformation,

- 1 92— K2 1 1 opt— 82

P == — e — z ‘T == e Y — —
VEFCTE TET Y 7Y T F ST
(3.11)
S 1 K2 4 p? - 1 1 »* 82
1o LR 1o 4 82
=5 T F KT =79 TF, 5T

will be Lorentzian, provided,

/[u +1,v //‘" 4 82
Py = + ]/ L =+
(3.12)
. u2+ P2 B /v‘2+7’2
7y = | o Fo= | o

It transforms (3.10) into the equations

1 — i

b= v sin & Y= 2, )’
(3.13)

z sink us 3 X cosh us —1)

F—sinhs, T = (oosh s —1).

After the translation,

I
Xl
l

(3.14:) & =] &, N =y —

jo]
o

-1

1)
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we have
(3.15) £ ==asinys, 7 =qacos»s, [ ==0bsinhus, u = 0bcosh us,

a® y?— b2 :“2 e 1

where,

>

e T —, and b2 == ] oy
2 I} vi Iy’ IS - STA 1

4. — Frenet’s formulae for the case of signature zero.

We now c¢.me to the consideration of signature zero. In this case the metric
form must be reducible to

(4.1) T st = da* 4 dyr—det—d*

so that the matrix of the space is given by

1 0 0 0
0 1 0 0
(4.2) J =
0 0 —1 0
) 0 0 —1 |

The set of all linear transformation leaving (4.1) invariant form the total Loren-
tzian group here, i.e., the translations

(4.3) =z to, Y=y +on, 2=2to, =140
and the transformations

T =0y ® + Uy + A + Aty

1’7 =l & F Aoa Y F (g & - oy Ty
(4.4)

B =0y 1 Uyl + Ay & + Uyt

f o @ 4 QY + G2+ gt
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where,
(4.5) ATJA =J, J being given by (4.2) A =[a,].
A curve is defined as an ordered set of four functions
{@@), yu), =(uw), Hu)}
subject to the restriction

(4:.6) m’? ,Jr. y’2_~/2_~_ tlz =1

the primes denoting differentiation with respect te the arc lenght s.
As in the section 2, we obtain that if (4, u, », k) and (4, w1, 1, k1) be two
veetors, then A, + upy — »v, — kk, remains invariant. Therefore,

70;’;‘ =y, @f
(4.7)

p— ) _}_‘y‘u) ?/(j) D gD L D

for all values od 4 and j > 1.

Left,
T mr .’B” m/ll xiv ™
Yy y" y" y*
(4.8) A =
z/ z!l zlll z“
B t’ t” t”l tlv B
Then,
ATJAd =H
Algo,
1 0 — Ttgy — —h,,
1, 1
0 Tigg 3 Py, 3 Trgp — Tag
(£.9) H = )
. - h;z hgs 5 h;a
3 1 1
-3 /L;2 3 h;'a——h33 3 h;a Togs
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New J being of signature zero, the canonical form of H must be given by

1 0 0 0
0 K* 0 0
(4.10) F =
0 0 — K2 T 0
| o 0 0 — K278 |
where,
hi By
L= K20
| 7021 h 20
(4.11) ‘
| Iy Ris Ty |
Togy Tegs oy | =— K32 T <0, |H|=K*T¢52>0
by Tigs Trgs
Also,
(4.12) G"HG = F
where,
— e -
1 0 K> KK' — K> T
K " 2 12 Xl
o 1 -z HTZ»+K2-§T+—{-§_+E
(£.13) G — i K KT
2K’ 1"
0 1 — ——
0 K T
0 0 0 1
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Leb us form a matrix M by dividing the second column of ¢ by K, third
by KT and the fourth by KT8, ie.,

i K st s
1 0 hstnsl o bt "v—'
T K K17 )
0 b K’ T K K" 2KE™ KT
K (e TS s T mETS T KETS KRS
(4.14) M == . - e
0 0 - oAy Al
KT K278 T
0 0 0 !
| KT8 B
Then we have,
@1sy CMUTHM =J.

Denoting by @, the inverse of M, we obtain

T1 0 — K —3KK' B
0 K K’ K'— K3 4+ KT*
(4.16) D = M-t =
0 0 KT oK' T + KT
0o o 0 ETS i

Now,

N JA = H = OF JO=> (AD-1)* J(AD) = J, i.e. ADP~* in Lorentzian.

Let us define

}.1 }»2 13 }'4
@i A—sea—| T BB
" Vo Vs Vs

Tey T, T Tey
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(]
L=y

From (4.17), we find
&' = 1y, 2" = I A, " = 24+ K A+ KT,
Y= Uy, y" = Ky, Y= K2y A K gy - KT,
2l =y, 2 = K, 2" e K2+ K vy -+ KTy,
v =k, 1" = Kk, " = K2k + K ky + KTk,
(4.18)
o = —3HK' A + (K" — K% + KT, + QK T + K12, + KT8
yiv = —3KK" py + (K" — K* + KTy, + CK' T + KTus + KTSp,
g% = —3KK », + (K" — K3 4 KT%v, -+ 2K’ T -+ KT")v, + KT8,

10w e B Joy b (K" K2 KTy - (2K T+ KTky = KT8y

From (4.18), we obtain

I

A=Kk Ay =—Kl + Tl Jo =Ty + Sl
/(.'1 == I, ‘u; =— Ky, + Tus, tog == Ty -+ Suy
(4.19)

’ ' ,
Y, == Ky,, v, == — Ky, -+ Ty,, VY, = Tvy + S,

ky = Kk,, k, =— Kk, -+ Th,, ky = Thy -+ Sk .

From the fact that /1 is Loventzian, we obtain

(4,20) Ay Ay Fpapui—vivi—Thiky = 0 for 29
(———1 for ¢=4§=238 4 =] =4

Y

From (4.18), (4.19), and (4.20), we obtain

(4.21) A =— A8y,  py=— 8y, vy =—vy, K, =— Sk,.
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The formulae (4.19) (4.21) may also be written in the matrix form:

(4.22) A = A
where,
[0 —K 0 0 7
I 0 T 0
(4.23) Q =
0 T 0 — S
[ 0 0 S 0

5. — The converses problem.

Let Q in the form k(4'.23) b‘e gwen Further, let A(s) be a matristatiSfying a
the differential equation

(5.1) A (s) = A(s) Q(s) -
Let /(s) be Lorentzian for some value s, in the interval s, <s <s,, 80 that

A(s) will be Lorentzian throughout the interval s, <s<Cs,.
Let K, T, 8 be non-zero real numbers, i.e., constants. Then

(6.2) A = AQ, A" = AQ?, A" = AQ®, AW = AQ*
The characteristic equation of @ is

(5.8) ot A+ (K2 + 82— T%e? + K282 =0

and since @ satisfies if,

(5.4) Q- (K2 4+ 82—T% Q2 + K281 =0.
Operating /1, we obtain

(5.5) A (K2 4 82—T%) A" + K282 A4 =0.

Now two cases arise:
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Case (i):

Let J*-+ 8% —2 2> 0, se that the roots of (5.5) arve of the form -- 4u, - iv.
Therefore,

(5.6) A = A cosus -+ Bsinus + ¢ cos ys + D sin vs .
4, B, €, D being real constant matrices. Differentiating (5.6),

(5.7) AQ = A" = uB cos us — pd sin ps + ».D cos vs — p( sin vs .
These functions being linearly independent, we must have

(5.8) AQ = uB, BQ =—ud, CQ =D, D@ =—C.
Taking A(0) = I ag the initial condition, (5.8) gives

(E_L)‘Z’V 2 2 ___(:Z,_,,Z[ e (P 2
Go) A CERL g @ar0 o —@eel o —@owg

B e -

P2 e = w(3? — p?) ? ¥ — g (2 — p?)
Also,
AD-v =/ implies mat (&, y', 2, t')" i§ un first column of A
Therefore,
= 17
y’ 0 »? 2
= COS s — cos ¥
P 0 (.Vz 2 “ P2 v >
=0
. K v? sin us n*  sin s
+ —_
0 V2 i P2 e ’ua »
— O —
(5.10)
i
-+ ° ! CO8 s ! ©0s
BT oa— 8 R— V8
— 0 —
o —_
+ — K + KT? 1 sinps 1 sin vs
0 ¥ — ¥ g »
| KTS R
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Integrating these equations subject to the initial condition that (=, y, #, t) =
= (0, 0, 0, 0) for s = 0, and rearranging, we obtain

p2 — K2 1 . ’ K2 —p? T,
L= e g == - SIS & A g == - SN us
‘ KT " KT P
(5.11)
82— I e I
Y— e f == o (108 ¥8) Y b b = - (1 —COS
y s »2 ( ) v ST /L""( cos us)
The transformation,
1 1y K2 -1 18—
== W o 7 Y= Yo e
7" F, KT Y=%9Y7"7%, "1
(5.12)
- 1 1 K2 —p? — 1 12— 82
z:‘“‘v‘f“_wf"‘:‘:{“z; t::—‘U?L-—L’“‘—t;
R F, KT F,7 0 F, ST

will be Lorentzian, provided,

e I
(5.13)
7, ——il/jz”‘”"“ 7, = iVS;”;

It transforms (5.11) into

- 1 ; _ K |
r = o, sin » Y= 7, (1 — cos »s)
(5.14)
z == o, sin us i = T (1 — CO8 us) .
After translation,
- - I - - K
(5.15) =2 n=y— (=2 %= f—

)
e
=
¥
&)
P
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(5.16) E=asinys u ==acosvs { =Dbsinus b = hcosus,
atyi—hrpt =1
where,
1 K2 1 K2
4% = —— = and b* = 5
»2 If] v F; u? Fi nr Iy
Case (i1).

Let K2 + 82— T% > 0, 80 that the roots of the equation (5.5) are of the form

o Ly
Therefore,

(5.18)

A = A cosh us -+ B sinh us + C cosh »s - D sinh s
where 4, B, 0, D are veal constant matrices. Differentiating (5.18),

(5.19) AQ = A’ = uB cosh us + uA sinh us + » D eosh ys -+ O sinh vs

These functions being linearly' independent, we must have
(5.20)

AQ = uB, BQ =ud, 0Q = yQ =»D, D@ =+C.
Taking A(0) == I as the initial condition we obtain

A—sz+sz B—~Q3+v2Q
- ut _ u(v? — p?)
(5.21)
c-L—r1 it
e — p? »(? — p?)

(18]
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[
g
-1

Also,
Ca ] 71T
?/’ 0 P2 2
== - cosh ps — - cosh vs)
' 0 pE— u® P2 e
= 0

k 2 sinh 2 sinh »

+ ( 3 sinh us — p*  sinh 13)
0 P2 — " P2 — u? ¥

— 0 —
(5.22)
e

0 1

-+ ( ——— cosh s — cosh ys)
S moe

—_— 0 —
=0 —
R 3 -+ KTe 1 sinh »s 1 sinh s
’ 0 »E — p? » ¥ — p? u
| K78

Integratingthese equations subjeet to the initial condition that (z, v, 2, 1) =
= (0, 0,0 0) for s = 0 and rearranging we obtain

2 4+ u? 1,
4 e
Tt # Msmh s
(5.23)
v? 4 52 I
Y ——37 t_l—ﬁ(eosh,us——l)

The transformation

5 1 1 9% 4 K2
=F°7F ®r °
(5.24) ‘
1 1 K24
LI e o A
7% TF KT

‘v2+K2z—1sin11 $
Lo TRy PTG

82 4 u? K

— t = — (cosh vs—1).
Y ST — (cosh » )
S | 1 92 4 82
Y=%Y"7 5T
3 1 1 82 4 p?
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will be Lorentzian provided,

N [ JO [
K2 42 82 4 p?
(5.25) ,
Ty o .2
FS::i//T{;"—Z”,,‘ F4:::i:l/'u !
K* 1+ 12 82 p?

It transforms (5.23) into

- | - K
& == — sinh »s y = —— (cosh pus — 1)
Iy pe I,
(5.26)
- 1 - K
2 = —— sinh us T = cosh »s —1).
T, Iz T, ( )
After translation .
— - K — — K
5 07 S e g e — — 1
(5.27) &=, N =Y PN ¢ =z, u =1 - T

we obtain:
(5.28) & =asinhps, 7 =bcoshpus, ¢ =>bsinhus, w = acoshus,
b2 ut—atyt =1

where,

1 K? K2 1
o and b = —mp =
(5.29) O =T ey . wiI; pF

2
-3

So far we have assumed that p % ». In the case when u = » calculations
may easily be done in the same manner.
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