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On the Order and Type of Integral Functions. (**)

1.~ Let f(2) = Y a,2" be an integral function of order o and lower order 4,

Q

M(r), u(r) denote respectively the maximum modulus of f(z) and the maxi-
mum term of the series for |z | =+ and »(r) denote the rank of this term.
Further, let W(z) be an indefinitely increasing positive function continuous
in adjacent intervals. It is known that ([1], [2])

r

(1.1) log M(r) = log M (r,) +f

o

¥ (@)

do,

@a 2) hm Sup loglog M(v) o __ m sup  log W(r)
B >0 inf log r % oo inf logr )

Also, f(z) is said to be of type I’ and lower type ¢, if

(1.3) lim 4P log M) T
' e 1N 7@ t

Tf the limit in (1.3) exists (Le., T =1t), f(2) is said to be of perfectly regular
growth. Further, SHAH [3] has shown that, for 0 <g < oo,

(1.4) mint 0840 11 g sup 108 #0)
>0 »(r) o} A 00 v(7)
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and for every integral function of infinite order

(1.5) lim int °8MO

T »(r)

In this paper we derive relations between the types of two or more integral
functions of the same finite order. Using (1.1) and (1.2), we derive the anal-
ogues of '(1.1) and (1.5) for M(r) and W(») and establish some relations between
the order and type of an integral function.

We require two lemmas.

2. -~ Lemma 1. If @) ~yw(w) then for any finite constant k and
2> 0, { gla) }ie ~{ pla) ¥,

_For, let P ={p@)/p)}¥, then. .

log P = (k/) [log{ p(x)/p(z) }] -0 as @ — oo,

since g(z)/yp(e) -1 and so P —1 as # — oo.
Lemma 2. If gp®) and w(x) be non-decreasing positive functions, con-
tinuous almost everywhere for o> 0 and p(w) ~ w(z), then

f(p(a;) dw ~ J y(z) dz, 2,>0.

@, 2,

For, since ¢(x) ~ y(x), we have for any &> 0,
(1 — &) v <g@) <@ + ¢ pla),

for # > 2,, and so

(=) [ylo) o< [gla) do< (1 + &) [ p(o) da

"o o o

and the result folldws.

Theorem 1. If fi(z) = % @, &7 fi(2) = % b,z be integral fumctions
of the same order p (0 < o << o), aond types T, (0 <0 T, <<oo) and Ty (0 < Ty<<co)
respectively and f(z) = 5: en?®y, where e, | ~ |A/a, b, |, then f(z) is an

o

integral function of order o and type T such thart T <\/ 7, .
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Proof. fi(2) and f,(2) arve of ovder p and types ', T, if and only if,
(Boas [6], p. 11)

lim sup{ n | a, e} = e, limsup{ n|b,|*"} = oeT,.
N—r D H—>0
Hence, for any ¢ > 0, we have for sufficiently large »

Zlan] <1y e, Zlbalt <y e

Therefore

n\2
(2F 1 o o] B e < 1, 7, + o)

since Ty, 7, are finite. Therefore
n > loln n of@en ofen oom
2.1) —{v/a, b, o < " | an |91 b, |29 <A/, T, + 0 (1).

Thus, if |¢.| ~|+/a, b, |, We have from lemma 1,

! Cn ig/" ~ I V @y bn ;Ql'" ?

since ¢ is finite. Therefore, from (2.1) we get

2 ea o1 ~ =y by 9 < /T T, A+ 0(1).

Therefore

lim sup{ #| ¢, |} = eoT < eo /T, Ts,

fi—rC0

or T<A/T,T,.

Corollary 1. If |awf@ul, [ Dufbass| are mon-decreasing funmctions,
£1(2), fa(2) are of perfecily regular growth and -of the same finite order g, then
s0 s f(z) and T = +/7, T, - ’
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For, SuaH [5] has shown that if | a./@u [ is non- decleasmg, then the lower
type of f (2) is given by

t, = lim inf [» | @n ]a/n}

N> l
Hence, if f,(2) is of perfectly regular growth, i.e., ¢, = 7, then

lim inf{ n| a, |9/"} = egt, = epT, = lim sup{ n| a, | el

n—>o >0
so that

m{ n| a, |efn } = ¢oT), .
n—>rco

Similarly, we have

Hm{ | b, | }=eoT, :

N>

- Hence
im{ n| v/, b, "} = eo \/T1 T,

and the result follows if |e¢,| ~|+/a, b

n['

Corollary 2. If
z) = > apPan k=1, 2, ..., m)
0

be m integral functions each of order g (0 << p < o0) and non-zero finite types
Tyy Ty, ooy Tw respectively, then the function f(2) = .27, where]e,| ~
0

~|al .oal? |t ds an integral function of order o and type T such that
(2.2) T< (T, Ty... T,) tim

Corollary 3.  If fi(2), fo(2), ..., ful(2) are each of perfectly regular growth
and the same finite order g, | alja®, | (K =1,2, .., m) are all non-decreasing
functions of n, then f(z ) is also of perfectly regular growth and finite order o and
its type T = (T, T, ... T,)1™ ~

Corollaries 2 and 3 follow as 1mmed1ate genelahzamons of Theorems 1 and
Corollary 1 respectively.
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3 _ Theorem 2. If f(z) be an integral function of order g and lower
order A, then
(3.1) fiming 108 MO 1 ] gy g 108 M)
r—ro Wi(r) e LA oo Wir)
Proof.

Trom (1.2) we have, for any &> 0,

e W) <12t for 1= = 1o(f) -
Hence

r

r Wiz [
’ =l dw < [ rr(’) dn < ’ gete=t da .
7, T

[ Ta

Using (1.1) we therefore get

(e — =) (A — ) < log{ M)/ Mlrg) < (27 = 15¥) (e + €) -

On dividing by W(r) and proceeding to limits the result follows sinee M (r)
and 7, are finite and

,r?.— E/W()) < 1 < ?.Q+€/W(7.) .

Corollary. For every integral function of imfinite order

(3.2) limint 2280 o,

v W)

This follows immediately from the first inequality in (3.1) since ¢ == oo.
Remark. An alternative proof of Theorem 2 can be given on the
game lines as given by

sixeu ([7], p. 10) for the functions u(») and »(r) .

4. — Let

(£.1) “lim sup - W) _

T—r®© 111f_ e ﬁ

Tn what follows, we give some relations betw

cen. the order o (0 << g <<oo)
of the integral function f(2) and the numbers «, 5, T and ?.
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Theorem 3. If a=p, then f(z) is of perfectly regular growth and its
type I = afp.

Proof. Since o =, we have from (4.1} W(#) ~aa°. Hence, in view
of lemma 2, we have

Mr W ' :
) / ) do ~ [ar:ﬁ‘l dm="2 (1 —r2).

10g M{ry) ::_ x o o
Therefore
lim 108 M) _ = ,
f—>c0 re Q
80 that ¢ =T =g/p.
Theorem 4. We find:
(4.2) ‘ o< eoT,
(4.3) B < ol,
(4.4) o+ B <eol,

equality cannot simultancously hold in (4.3) and (4.4) .

Starting with the relations (1.1), the above relations ean be established in
the same way as established by Smau [4] and Sixcu [7] for the functions u(r)
and »(r).

Finally I thank Dr.S. K. Bose for his suggestions and guidance in the
preparation of this paper.
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