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A Class of Symmetric ¢-Polynomials. (*%)

1. - Introduction.

Put
(1.2) 1?[ (1 —qrt) (1 — g~ at)? :”g(_ 1) oDt @ () &’
where

(Q)o = 17 (Q)n = (1 - q) (1 - !1")7

and | ¢ | <1. Properties of the polynomials H,(z), G.(#) have been discussed
in a number of papers [2], [3], [4], [], [T], [9]. In particular, SzEc6 [7] and
WiGERT [9] have obtained orthogonality relations satisfies by these polyno-
mials; see also [8].

A possibile generalization of (1.1) and (1.2) is furnished by [1], [8]:

<« .3 o 1
(1-3) H H (1 - q" @, t)_l = Z H, (mh veey mk) TN
n=0 Fe=1 n=0 (@) )
] k -] . i
@y  II IO —get) =3 (D¢ @y, oy @) 5
n=0 r=1 ne=0 [In
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where k22, Clearly H, = H,(», ..., @) and G, == Gy, ..., x) are pol-

ynomials symmetric in the ,; the coefficients are themselves polynomials in ¢.

Let B; denote the operator that replaces z; by ¢ z; but leaves the remaining z;
_unchanged. If we apply Z; to both sides of (1.3), we get

© f‘_?l w tﬂ
By Hy®y, .y @) —— = (1= ;1) > Hu(@yy ..., ) ——
ng() ( 1 b L) (q)n ( )ngn ( 19 bl k) (q)n’
which yields
(1.5) B, H, =H,— (1 —q) o, H,,.
If we now define the operators
. g g
7 Ly Ly
2, = (r=0,1, 2, ..),
v B, 2B, .. B,
then it follows from (1.5) that
(1.6) QH,=0 O<r<k~3),
while
(1.7) .Qk_a H,=1-¢)TH,,,
where T is the VANDERMONDE determinant:

(1.8) _ T =|a"| (ry s =1,2, .., k).
Also it is easily verified that

1.9) QH, =T (H,—(1—-¢)H, H,,).
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If 8, is any homogeneous symmetric polynomial in &, ..., #, then 7-1 Q. 8,
is either 0 or some symmetric polynomial of degree n 4+ — k& + 1. In par-
ticular for » = k — 1 it is of interest to consider the equation

(1.10) 70,8, =18,

where 1 is independent of the &’s. In the present paper we consider a number
of equations of this kind. However we limit the discussion to the case k= 3.
We construct several bases for the set of symmetric polynomials of degree »
and also show in particular that (1.10) is solvable if and only if A=q
o<r<n).

2. = Notation.

_ We shall use the following notation. Put

(2.1) X ==z—y, Y =0-—z3 Z =y —

1 1 1
(2.2) T= |2 y 2 | =YX,
@* y? 2?
1 1 1
(2.3) 0O, = @ Y 2z (r=20,1,2, ..,
B, gy B, zr B,

where B, replaces x by .qw, and similarly for E, and Z; k

1 1 1
(2.4) =0,=| & i 2
E B E

Then clearly

(2.5) Q=3 XB, =0 X B, +y YE,+2ZE,.

ot



186 L. CARLITZ [4]

We next put

(2.6) IOI (1 — g )~

and define H,, G, by means of

(2.7 };Iz e(xt) = :EH,,(m, Y, 2) 1,
(2.8) 7];1 (e(qat))— ‘;i , Yy 2) i

Notice that the new definitions differ slightly from (1. 3), (1.4); the new
definition leads to somewhat more compact formulas.

“We shall also require polynomials K,, L,, defined by

(2.9) IT e(xyty = 3 Ka(=, y, #)tn,
@,0,2 0

(210) H (C(qut))—l = Ln(wy Y, z) 4

2,9, 2

cMB

It is clear from (2.7), (2.8), (2.10) that

: K@, y, 2) = H,(yz, 22, xy),
(2.11)

La(w, y, 2) = Gu(yz, =z, ay);
moreover
K. (yz, 22, ay) = (vyz)" Hu(x, ¥, 2),
(2.12)
La(ye, 2o, ay) = (vy2)" G (@, y, 2).
Since

n+n/2
NM n

oMB

e(l) =3 — (elg)™ =2 (—~

o (@ ’ (@n
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it follows that

af z/] P

2.13 H, = —
( ) ik i k=n (@) (D)5 (D ’
- s " at gl oF
2.14 G o= (— 1) {E+ D+ G+ D+REFDY2 .
( ) n = ) i+f§c=n 1 (@): (@) (@

If f(q) is & rational function of ¢ we define

(2.15) - Mo =1/

Comparison of (2.13) with (2.14) shows that

B 7 N 7o

n? n
and in view of (2.11) we have also

L'=K,.

nt

217 L, =K,

We also define

min (m,n) qr (:17]/2)"

2 Pm n = N Gm—r Ln—r
(2.18) , gﬁ . ;
min (m,n) qr(r-n/z (.’IJ]/Z)"
(219) Qm,n = z (— 1)r —"'(-‘—_“‘ Hy K, .
r=0 ‘])r
Then if follows that
(2,20) P:n,n == Qm,n’ Q;,n = -Pm,ny

and, by (2.11), (2.12),

Pm,n (?Jz; zx, .7;’:1/) = (a"l?/z)72 Pm,n (.’E, ?/7 z)7
(2.21)
Qm,n (y2, 22, wy) = (wy2)" Qvn,n (@, ¥, 2).
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We remarck that (2.18) and (2.19) can be inverted. The formulas

¢ ayz)

min (m,n)
(2.22) GnL,= Y (—1)
r=0

(q) m—r Rt )
r
min (m,n) (;‘L“I/‘z)"
(223) Hm Kn = Z "‘"“”"Qm~rn—r
r=0 (@), )

are easily verified. We also note that

H e(xu) e(yzv)

@
92 .24 D, umpr = 2,7
( . 1) m,%o(‘) m, n g e(:vyzwv) y
(2.25) i P, ., umon = e(qryzuv) '
: mn=0 H e(gru) e(qyzv)
¥,z

3. — An immediate consequence of (2.7) is
, (3.1) 1—-E)H, =aH,.,,
with like formulas for ¥, and #_ . Similarly from (2.8) we get
(3.2) 1-E)G,=—qBE,G,,.
Similarly (2.9) and (2.10) yield
(9.3) B K,=K,—xz@ +2) K1 +22yz E,_,,
(34) - Ly=B,L,—qv(y +2) E, Ly +¢a*yz B, L,
In each case there are like formulas involving #, and F,. Note that in view of
(2.16) and (2.17), (3.1) and (3.2) are equivalent, also (3.{3) and (3.4) are

equivalent.
Returning to (2.7), if we replace ¢ by ¢¢ we get

L —at) (I —yt) (1 —=2t) > Hyt" =3 H, q" 1%,
o ¢
which implies

(3.5) (1—gyH, —~ (EJ') H,; + (zébjl/) H,,—ayz Hy, 3 =0.
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Again, I‘eplacing: t by ¢t in (2.8), we get
(1 — qat) (1 — gy (1 — g1 fG i = i G. 1
so that
(3.6) ¢"{ Gu — (D) Gpoy + (Z2y) Gomy — Y2 Gy } =Gy
The corresponding formulas for K, and L, are
(3.7) (1’— q") I, - Soy) K,y + oyz (Q0) Koy —0*y*22 K\ =0,

(38) qn {L" - (Z?E’IJ) Ln—l + ryz (z{l}) L'n—ﬁ‘_ x® ?/2 & L7z—3} == Ln .

Various combinations of the above formulas are of some interest. For
example, from (3.1) we get

(B, —E)H, +(y —a) Hp'a =0, y B, —aB) H, =y —a) H,,
while (3.3) yelds
(3 E,) K, =3 K, —2(Yay) Koy + ayz (2 ) Kns,
(B, ~B)EK, =@y —a)e K, —ayz(y —2) K.

Many other formulas of this sort can be obtained without difficulty.

4. — For brevity put

(4.1) D(u) = [T (elgmu)), W) =T (e(qeyv))—

x,9,2 21,5

Then we have

T-1 QP (u) P(v)) = D(qu) P(qo)- T~ 30 X (1 — qyu) (1 — qzu) (I — qyzv) .



190 L. CARLITZ (81

Now it is easily verified that
St X =T, 200 X (y - 2) =0, 2at X yz =

2 X (y +eyz =ayz 3 aX (y +2) = — ayz T, D w2y 2 = (ayz): S X = 0.

Consequently
T Qy(D(u) P(v)) = D(qu) P(gv) (1 — ¢ zyzuv) .
If we now make use of (2.8) and (2. ]0) we at once obtain

(42) -1 Qz(Gm Ln) - Qm+n (Gm Ln — xYz Gm~1 Ln-l) ?

'Vhele it is understood that if mn = - 0, then the ufrht ‘member of (42) is
" Gy L,
Next, referring to the definition of P, in (2.18), we have

min {m.n) ,2r BYZ
) s Oy L) =

r— -Q" Pm n
B ’ r=0 (@),

- ¢ (wyz)
- (g

== { Kakand (Gm-r Ln—r — Y2 G,n»r—l Ln——r—l) =

= qm-{—n 1 z %—')i Jm— Ln——r - Z ({L!/zz Gm—r Ln—r } —
r 1

7 (@) -
(wyz) . q"(wyz)
== gmin - 1 -1 —4¢") G Ln-—r == gnr Gn1~r Ln—-r
D7l it DT ’

and therefore

(4.3) T_l -Q‘l —Pm,n - qm+n Pnlﬂf

In the next place, we have, with the notation (4.1),

T Q(D(u) P(v)) = D(qu) P(qo)- T 3 2 X (1 — qyu) (1 - gzu) (1 — gyzv).
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Since
SaX =0, SeX(y +2) =1,
SaeX(y +2)yz =0, Sa Xyt = ayeT,
it is clear that
T-1 Q, (D(u) W (v)) = D(qu) ¥P(qe) (qu — ¢ ayzT w*v) .
It accordingly follows that
(4.4) T-1 QUG L) = ¢t (G Ly — 2y2 Gpes Ly

Consequently

g% (xy2)"

T—l ‘Ql Pm’n — z - qm+n—21' (Gm—r—l anr - fl’!/z Gm-—r~2 Ln—r—l) ==

T (@),
=gty oy=) -1 —q") Guorer Ley = " > v g2y =y Lner s
- () T {0
so that
(4.5) T2 Py = q"" Pry s

‘We next consider
T~ Q@(w) P(v)) = D(qu) Pqv) T X (1 — qyu) (1 — geu) (1 — qyzv).
Since
> X=0, > X (y +2)=0, > Xyz =T,
SX @yt yr = Qw) (OXXyz) — 3 Xaye=T3m, 3 Xyret=1T Jay,
we find that

T-1 Q(B(w) P(v)) = Plgu) P(go){ w2 — qv — ¢ wv D — ¢ v Dy },
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whieh yields
T-1 QG L) = ¢ (Gros Ly — G Loy + D @ Gy Loy — D 0y Gg Lyy) =
= v Gy Ly— @ (G — 2 0 Gy D 0y Grsg) Ly
Using (3.6), this becomes
@ Gy Ly — ¢ (G A @ 02 Gng) Lins
so that
| (4.6) T-1 (G Ly) = @+ Gy Ly — Y2 Gy Lpy) — ¢ G Ly

It follows from (4.6) that

1’~1 -Q P’myn -

2

@R o
= z 4 (q) - { qﬂh_n_“r (Gm—r—z Ln—r — TYs Gm—r—a Ln—r—l) - Q“_T G-m—r Ln—r—;} H
r r

and a little manipulation leads to

(‘1'7) rIr— -Q Pm,n = qm+" Pm——z,n - Q" vpmyn—l

The reduction of £ P, , is slightly more involved. Since

T-1 Qy(D(u) P(v)) = Dlqu) P(qv) - T > a®* X (1 — qyu) (1 — gzu) (1 — quzv)
and

S X=T3a, SoXy+a)=T{ae)-23a"— Syt =T73 ay,
St X ye=T ayz, 3 a* X (y+2)yz=wyz 2 2* X (y +2) ~ 0, 3 & Xy2zt=0,
we get

Tﬁl QB(Gm Ln) = Q'""’L" (Z & Gm Ln - Z Xy Gm—-l Ln -‘!I" Yz Gm—2 Ln — TYZ Gm Ln—l) .
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But by (3.6)
g™ (3 @ Gp— 3 Y Gy + Y2 Gpy) = (@™ — 1) G,
which gives
(4.8) T2 QG L) = "1 (¢ = 1) (Guy L — g™ 2y2 G Ly -

Using (4.8) it is easy to obtain

(4.9) T2 0y Py = (g7 — q") Py n

The formulas (4.3), (4.5), (4.7), (4.9) are concerned with P, ,. It is also
possible to obtain a number of like results involving @, ,. Thus, since

-1 Q{ TT e(ww) e(yzv) } =TT e(zu) e(yzv)- - SX (A —wu) (1 — ayv) (1 — wzu),

9,2 2,95

we find that
(410) - 'Q(Hm K,) = Hm Koy — Yz H,_; Kn~2 .

Now using (2.19) we get

(4«1 l) T“l Q Qm’n = Qm'n—l .

In a similar manner we obtain

(4‘]2) T_l Ql Qm,n = Q" Qm—l,n“{“ m.?lz Qm’n——'.:

A formula of a somewhat different kind that may be mentioned is ‘

(4.13) 71 QL L) = q"* Ly, L,

Returning to (4.9) it would be of interest to evalaate

(4.14) ' T 0, Py u

13. — Rivista di Matematica.
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for 1> 3. However even for » == 4 the computation becomes involved. Thus,
if &, denotes the complete symmetric function of weight 7, we find that

Tﬁl Qr<G171 Ln) == q7)1+'l{ [ h’r-’2 Gm - (hl hr—-z - h‘r——l) Gm—l “:_ 47;.’/’“2 71‘)‘»3 Gm—z] Ln -
— BYz [b’rwa Gm - (hl hr-—a - hr»‘z) Gm—l ‘L xrYs hr~4 Gm»—:‘z] L7z-—~1 } .
This does not seem to imply a usable formula for (4.14).
5. — It is familiar that the number of linearly independent homogenous sym-
metric polynomials of weight = is the number of solutions in non-negative in-

tegers of the equation

(8.1) 728 + 3 =mn.

See for example [6, Chapters 5, 6].
We shall now prove the following

Theorem 1. The sci

=t
S
)ﬁ
M
w
|
)
=
8
N
I
“

where v, s, t are non-negative integers that satisfy (5.1) constitute a basis for sym-
metric polynomials of weight n. ‘
Assume a relation

<53) Za'rst “Pr,s't:O b

r+254+3l=n

where the a,,, are independent of @, y, z. Since, by (4.3) and (5.2) ,

(5_4) -1 _(22 Pr,s,t = qrtstt P

r,s; i)

(5.3) implies

(5.5) Sttt P, =0 G=0,1,2, ..).
r+2s+3i=n
If we put
Ak :zarsiPr,s,t (0 <7\‘<’)’I/) y

r4-254-3f=n
re+sti=p
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then it follows from (5.5) that

20 A, =0 (G =0, 1, .., n).

k=9
Hence 4, =0 (k =0, 1, ..., n). Next applying (4.5) we get

(5.6) D e Py =0 (r=0,1, 2, ...).

Sp2tmn—l

Again applying the operator 7t 2, and repeating the above argument we get
g ppiying 2 ! & g g
(57) . (rse —Po,s,t =0 ’

where 8 + 2t =n— &, 8 +t =47. This implies { =n — k — §; since k, j are

arbitrary it follows that s, ¢ are also arbitrary. Consequently (5.7) implies

a.e = 0 for all P, 8, t.

Thus the P, , are linearly independent. Since the number of P, ., satis-
fying (5.1) is equal to the number of linearly independent symmetric polyn-
omials of weight n, the theorem follows.

Applying (2.20) we get the following corollary.

Theorem 2. The set

(58) ) Qr,s,t = (ﬂﬁyz)‘ Qr,s,i?

where v, 8, 1 are non-negalive integers that satisfy (5.1), constitute a basis for sym-
metric polynomials of weight n.
‘We now consider the equation

(5.9) T2, 8, = 28,

where S, denotes a (homogeneous) symmetric polynomial of weight n. In view
of Theorem 1, we may put

(5.10) 8, = z Argy Proy

r+25+3i=n

By (5.4) and {5.9)

)" z arst I)r,s,t = z _(Zr-i-s.H rst Pr,s,t i

r425+3t=n r 4254 3t=n
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In view of the linear independence of the P, weinfer that 2 == ¢"*+s for some

set of non-negative integers r, s, ¢ satisfying » + 2s -+ 3t ==n. Thus A -= ¢*
with 0 <<k <{n. This proves

Theorem 3. The equation (5.9) is solvable in symmetric polynomials of
weight n only when

(5.11) A =gt O<k<n).
When (5.11) holds the general solution of (5.9) is given by

{5.12) Sp =2 @y Pr,
r+2s+-3t=n
PhSqt=k

where the a,, are arbitrary .

It is clear from Theorem 1 and (5.4) that the operator 7! Q, induces a non-

singular linear transformation on the space R, of symmetric polynomials of
weight » . The rank of R, is the number of solutions of (5.1); the characteristic
values of the linear transformation arve given by (3.11). Moreover it follows
from (5.4) that the matrix of the linear transformation is in diagonal form
relative to the basis P, ,.
In the next place we may consider the equation
(5.13) P10, 8, = 8,1,
where S,_, is assigned. In view of Theorem 1 it will suffice to discuss the case

o B
Dpey == Pr,s,t 3

where 7, s, t are fixed integers such that ¢ - 2s - 37 == — 1. Then (4.5) yields
the particular solution ’

Sw =g Py
Also it is clear that the general solution of
10,8, =0
is furnished by

(5.14) Zy =3 oy Pog s

254-38=n
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q

where the g, are arbitrary. We have therefore

Theorem 4. The general solution of the equation
(5.15) -+, 8, =rP,,,,
where v, s, 1 are fived integers such that v -+ 25 -+ 3t = n ~ 1, is given by
(5.186) Sy =q 7 Py oo + Zny

where 7, is defined by (5.14).
As for the equation

Zy_l Q Sn = S1l—27

it is advantageous to use ¢, , rather than P, ,; this is clear “hen (4 11)
“compared” W1Lh (#4.7) 7 "We obtain the following result

Theorem 5. The general solulion of the equation
(5'17) T_l .{2 Sn _ Qr,s,i L]

where ¥, s, t are fiwed integers such that v -+ 2s + 3t = n — 2, is given by

(5'18) Sn - !Z"‘ Qr,ﬂ-l,t + Z,:,
where
= z Ayor Qr,n,t
r4-3¢=n

and the a., are arbitrary.
The final equation we discuss is

(5.19) . T-10Q, 8, = S,Qd .
Since (4.9) implies

TP,y = (¢ — ¢ ¢! Proga sy
it follows thzt (5.19) is solvable only when

(520) . Sn+1 = z Argy Pr+1,x,i .

r428438=n
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We may state

Theorem 6. The equation (5.19) is solvable for S, if and only if S,y s
of the form (5.20), in which case

(129N

! rst

kS“ - rebs s—1Y) ot Pr,s,t *
rtassot=n (@ —q1) ¢

In particular, when (5.19) is solvable, the solution is unique.

6. — As an application of (4.13) we consider the representation

(6.1) LywL, = 3 a,,P,,;

r+254+31=2m+-2n

~the possibility of such a representation is clear from- Theorem 1. Now, using~

(#.13) and (5.4), we get

qm+n Lm Ln == z qr+6+t (4299 -Pr,s,l .

T 428 +3t=2m-}-2n
Comparison with (6.1) indicates that a,, =0 unless # +§ ¢ = m - n.

Since also 7 + 2s 4 3t = 2m + 2n, it follows that r =1, s = m + n — 27,
s0 that (6.1) reduces to

(6,2) Lm Ln == z a, Pr,m+n-2r,r ’

r<m+4n

where a, = @, winor,. Next, making use of (2.21), we find that (6.2) becomes

(63) G Gy = z ay Pm+n~2r,r;

er<m+n

in view of (2.16) and (2.20) we have also

(6-4) Hm Hn = z a’: Qm—%n—-:}r,r 3

2r<men

where the asterisk has the same meaning as in (2.15). It remains to determine a, .
If we put 2 =0 in (6.4) and note that

Qm,n(w; Y, 0) = Hulz, y, 0) K,(, y, 0).
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But
K, (2, y, 0) = (wy)" /()

so that (6.4) becomes

« (my)r
H,.(x, y) Hau(w, ¥) =Z a, —(Q_/)“ Hoppnor(®y ¥)

where H.(z, y) = Hpu(z, y, 0). But by [4, formula (1.7)], we have

- Hm-‘.-n—‘.zr(m; .7/) 3

Hm(my ?/) Hn(iﬂ, :?/) == (q)

min (m,m) {m +n ——27‘J (wy)

<o m-—7

where
T (q)r (q)m—r )
Thus
: e m o no—2r
a, —_ [ ! :l > a, == q‘y‘(m—r)(n_r) [ t }
n —7r o

Therefore (6.3) and (6.4) become

min (m,n

)
(6'5) Gm Gn e z q—(m—r)(n-r) {
r=0

m o4 n—2r

},—Pm%—n-—‘zr'r bl

m —r

min (m,n) m 4+ n— 2y
(6_6) Hm Hn - {

gl n—r

] Qm+ n—ar ;

we have also

min (m,n) m + n — 2
L]

(6.7) Lm Ln = Z 'Z—(m"” tw=n l: ] Pr’mﬁ—n—“.'r,r il

N o—

(6.8) Km Kn =

min (m,) [m 4 —2r
=y m—r

] Qr, mtn—-2rr -

r

These formulas may be compared with (2.22) and (2.28) .
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