Riv. Mat. Univ. Parma 4® (1959), 103-113

L. C. Youxe (™

Partial Area -I. (**)

1. — The geometry of o surface is traditionally based on constructing suf-

“ficiently elementary systems-of its-curves.-However; on-a surface of finite-area; oo

it is by no means evident that there exist even rectifiable curves; and on a
generalized surface there is no immediate notion of curve whatsoever. The
machinery for remedying this somewhat elusive state of affairs originates in
s familiar inequality of elementary analysis, connecting m-and (m -+ k)-di-
mensional measures, which has been much used in area theory and earlier in
dimension theory and in H. A. SCHEWARz's treatment of the isoperimetric pro-
perty of the sphere. '

We shall sharpen this inequality into an equality, one form of which is
really nothing more than a special case of FUBINI’s theorem, and the equality -
is highly analogous to the identification of LEBESGUE area with GEOCZE area.
In fact this central identification theorem may perhaps be reached more directly
by means of our equality, which is logically simpler.

We shall apply the machinery to generalized surfaces of the type needed in
PLATEAU’s Problem and we shall derive from it, by means of SCHWARZ sym-
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metrization, a comparison theorem which furnishes a simple criterion for de-
generacy of a surface of least area. Another application is an expression for
area, related to well-known but unpublished work of ArRoNsSzAIN and CHo-
QUET, which we use elsewhere to estimate certain geodesics and, in particular,
the minimum perimeter of a disc equivalent to a given surface.

Part I. - Various expressions for the partial area.

2. — We denote by [p + ¢] Euclidean space of dimension p -+ ¢, or more pre-
cisely the product space of two Euclidean spaces [p] and [¢], termed horizontal
and vertical projection of [p 4 ¢]. We write # = (y, 2) for a point of [p -+ q],
and z € [q] is termed the level of #; we term horizontal section, or simply sec-
tion, of [p + ¢] at this level the subset for which z is kept constant. We write

~..[E]* for a coordinate subspace.of [p.+ ¢] of dimension-k,-and we term-it-hori--——

zontal (vertical) if it is either a subspace or a superspace of [p] ([¢]); otherwise
it is non-horizontal (non-vertical).

A function of [£]* for a fixed & will be termed %-dimensional multivector
in [p + ¢]; its value for each [%]* is termed the corresponding component, and
the latter is said to be vertical if [k]* is so; the vertical components themselves
define a multivector, termed vertical projection of the given multivector,
and which is actually a k-dimensional one in [¢] if ¥ < ¢ and a (k — g)-dimensio-
nal one in [p] if ¥ > ¢. We term norm of a multivector the square root of the
sum of the squares of its components, and partial norm the norm of its vertical
projection.

An ordered set of k vectors defines a k-dimensional multivector, termed
their skew product, whose component fo' any [k] * iy the determinant of their
projections in [£]*. Multivectors oceurring in the sequel will be so expressible,
or will be vertical components of ones so expressible, unless termed composite.
(It is desirable to avoid the overworked adjective simple).

We shall be concerned with Lipschitzian maps into [p + ¢], from a subset W
of an affine m-dimensional hyperplane [m]. We shall use Cartesian coordinates
for the points w of W, just as for the points # of [p + ¢]; however, the quanti-
ties that we ultimately wish to study are easily seen to be unaffected by an iso-
morphism of the spaces [m] and [p + ¢] into themselves, i.e. by an affine tran-
sformation of [m] combined With Euclidean movements in [p] and in [¢]. By
the norm of such an isomorphism we shall mean the greater of the LipscHITZ
constants of the affine transformation and its inverse. Maps, sets, figures, etc.,
transformed into one another by an isomorphism will be termed isomorphic.
We shall suppose the dimensions fixed and subject to < m<p + ¢.
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Given a map @(w), we W, the skew product of the m partial derivatives
will be termed Jacobian and denoted by J(w), the corresponding matrix ter-
med Jacobian matrix and written J(w), and the vertical projection of J(w)
termed partial Jacobian and written j(w). These quantities will be regarded
as defined only wherever xz(w) is differentiable (almost everywhere in W if
@(w) is Lipschitzian). The integrals over W of |J(w)| and [j(w) | will be
termed classical m-dimensional area and partial m-dimensional area: we shall
write them A(7) and a(T), where 7' is-the map x(w), w € W. In the higher
dimensions the terms length, area, volume are interchangeable, and the choice
of one term in preference to the other two is generally dictated by considerations
of analogy. Here length will be used for dimensions < m, volumes for dimen-
sions > m, and the reference to the dimension m will be dropped.

3. — The terms length, area, partial area will also be used in another context.

"By a multiple system M in a metric space X, we shall mean a function M) T

termed counting funection, or multiplicity function, whose values are cardinal
numbers; and for our purposes the infinite cardinals need not be distinguished
in this respect. A set of points in X is regarded as a special case, the counting
function being then identified with the characteristic function: however, the
notation will disagree mildly with standard set theory notations as a result,
and to avoid confusion a multiple system arising from one or more sets of points
by our operations will be distinguished from a set arising from similar opera-
tions in set theory notation, by stating that it is a multiple system.

Union and intersection of multiple systems are defined by addifion or mul-
tiplication of the counting functions, with the convention that zero takes pre-
cedence, i.e. 0-co = co-0 = 0; and if £(=) is a map of X into another metric
space &, we denote by &(M) the multiple system in & whose counting function
at £ € & is the sum of the values of M(x) at the distinet points # € X for which
&) takes this value & We observe associativity: if 7 [£] maps further &
into H and #(») denotes the combined map # [&(»)], we have n[£(M)] = n(M).

A multiple system 3 will be termed measurable (relative to a measure or
to an additive class of sets) if each set M, is measurable, where M, denotes the
set of # € X for which M(®) > », and » is a positive infeger. Any measure yx is
extended to such multiple systems by writing u(M) = > u(M,). The set I,
in particular, will be termed carrier of the multiple system A .

Given, for subsets & of X, a non-negative function g(#), termed gauge,
we associate with it an outer measure y given by

y(B) = Hhm y(E, &), y(E, &) = Inf z 9(&,) ,

&0



106 L. C. YOUNG '[4]

where the infimum is for all sequences of sets £, of diameters < ¢ such that
UE DO E.

In Euclidean space, if ¢, denotes for any positive integer & the usual measure
of the k-dimensional ball of unit diameter, we shall use particularly the gauges

g(E) = ¢ ax and g(E) = Cy Cim—qg ((Z’)m~q (d”)”,

where d, d', d" are the diameters of I and of its horizontal and vertical pro-
jections, i.e. the projections in [p] and [¢]. The corresponding outer measures
will be termed, respectively, k-dimensional length (or area or volume) and m-di-
mensional partial area; usually k& will here be m — ¢ and reference to it will be
omitted.

We shall write A(3) and a(M) for the area and for the partial area of a
multiple system 3, just as for a map. We write further M, for the section of
M at the level z, i.e. for its intersection with the corresponding section of
[p + ¢], and s(BL,) for its length (of dimension m — ¢).

4. — As an immediate corollary of a recent version of FusinNI’s theorem [1]:

(4£.1) For any multiple system B, measurable with 7~eépect to a in [p+q],
we have '

a(M) = fs(M:) dz .
‘We shall establish further:

(4.2) If Tis a Lipschitzian map into [p--q] given by x(w), w € W, where W
is @ Borel set in [m], and if M denotes the multiple system x(W), we have

(M) = a(T).
Theorem (4.2) supplements a theorem of FEDERER [2, Th.4.5, p.448]
which states

(4.3) Witk the hypotheses of (4.2), we have A(M) = A(T).
Before proving (4.2), we interpose some preparatory material.

5. — Evidently for a map 7 we have A(T)>a(T). The corresponding
relation for a multiple system M is, however, far from obvious, and perhaps
even false, unless we weaken it by a constant factor ¢ = ¢, ¢p/Cn. It then
reads

(5.1) a(M) < o A(D)
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and is clearly valid for BOREL measurable multiple systems M in [p -+ ql,

since the gauge used for a does not exceed ¢ times that used for A.
Similarly, since the gauge used for ¢ is not increased when the sets concerned

are subjected to a projection P of [p + q] into any flat subspace, we have

’(5.2) a(PM) < a(M).
Since (5.1) holds in particular for a set of area 0, it follows that
(5.3) A-measurability implies a-measurability.
Similarly, a-measurability of a seﬁ, or multiple system, implies that of its pro-
jection, and we can extend appropriately the class of multiple systems for

which (5.1) or (5.2) is asserted. :
Of course in an m-dimensional flat subspace, A (E) agrees with the LE-

BESGUE. measure | B | of dimension m. We observe that this special case of

(4.3) implies:

(5.4) An elementary property of the m-dimensional ball: its measure is
not less than that of any set in [m] with the same diameter.

For otherwise, with arbitrarily small disjoint replicas of such a set, obtained
by change of scale and translation, we could cover, by VITaLt’s theorem, al-
most the whole of a simple figure F, and deduce that A(#) <|H|.

From (5.4) with m replaced successively by m — ¢ and by ¢, and A replaced
by appropriate lengths, it follows that a similar elementary property holds
for the dicylinder, i.e. the Cartesian product of a horizontal and a vertical ball
of dimensions m— ¢ and ¢:

(5.5) The measure of the dicylinder is not less than that of any set whose
horizontal projection has the same diameter and whose vertical projection has
the same diameter.

From this last remark we easily derive by VITALI's theorem the equality
a(M) =| M| = A(M) for a multiple system I situated in a vertical [m]*.
And by applying this equality to a projection PM of an a-measurable multiple
system M into a vertical [m]*, we find that for such a projection, by (5.2),

(5.6) A(PH) < a(M).

It is important ot observe further that with the notation of (4.2),

(5.7) The quantities a(7) and «(M) are unaltered by isomorphism.
A linear map whose Jacobian does not vanish will be termed non-singular,
and we then define its vertical rank » to be therank of the Jaocobian matrix
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of its vertical projection. The map and its Jacobian matrix g will be said to
be in siendard form if the matrix of the first m — r rows and columns of J and
that of the last » rows and columns are identity matrices I, and the remaining

elements of § vanish except those of the rectangular matrix

1 X shown in the figure. X is formed of the first m —r
columns and the last » rows of J and is not subject to any
X I special condition. We term standard isomorphism of our

map, one which transforms it into a linear map of the same
vertical rank, in standard form: it need not be unique, but we easily verify
that, by elementary constructions,

(5.8) We can attach to each non-singular linear map from [m] to [p -+ ¢],
a corresponding standard isomorphism.

‘We shall require one more elementary result, in which ¥, + denote fixed
integers > 0, 5 is an arbitrarily small positive real, and ¢ a suitable positive real.

~We-denote-by-@-the-dicylinder-in-[m]-defined-by-the inequalities*““["u‘{‘<‘l’,"'”

|v] <8, where u, v consist of the first m — » and the last r coordinates in [m],
respectively. We term two maps a(w), «'(w) differentially close in W if the dif-
ference (w)— w*(w) exists in W and has a Lipschitz constant < J. An ele-
mentary calculation establishes for a suitable ¢ the following statement:

(5.9) Let a(w) be differentially close to a non-singular linear map in
standard form, whose Lipschitz constant is << ¥V and whose vertical rank is 7,
and let £ denote the carrier of »(WQ). Then

gEY<n|Q| it r<yg gE)<(A +n9)| Q] if »=gq

where ¢ is the gauge used in defining partial area.

6. — The proof of (4.2) will be in three parts.

1) We observe that, by (4.3) and (5.1), the formula to be established is
certainly valid in the following two particular cases: (I) when the Jacobian
J(w) of x(w) vanishes almost everywhere in W, and (II) when the counting
function M(x) of M is infinite everywhere on its carrier. As a result, we can
make some preliminary reductions. We may suppose in the first place that W
is bounded, that the counting function M(x) is never infinite, and that j(w)
exists and is 5= 0 for all we W. Each subset of W in which #(w) remains con-
stant is then a finite set, and by ordering in familiar fashion the points of [m]
we can select from each such subset a first element, and therefore locate in W
a BOREL subset W' on which «(w) is one-to-one, and for which #(W’) coincides
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with the carrier of M. Since this implies that W is a countable union of disjoint
BoreL sets on each of which x(w) is one-to-one, we need only treat the case in
which #(w) is one-to-one on W itself.

Again by the theorems of STEPANOV, LUSIN and EGOROV, we may Suppose
that W is a closed set on which ®(w) is continuously differentiable and the se-
quence of functions

| w(w’) — o(w) — dw) (w' — w) |
f” (w) = Sup |w' —w |

Jw!—w < 1r
w! #w,w &w

converges uniformly to zero. Finally we may suppose that there is a fixed
positive integer N and an integer r, where 0 <r < ¢, such that for each we w
the linear function, of w’, z(w) + J(w) (w' —w) has an isomorph in accordance
with (5.8) in standard form, for which the vertical rank is », and the LIpPscHITZ
constant and the norm of the isomorphism are << N. Since the general case

follows by addition, all these additional hypot}heses are immaterial.

2) Suppose 7 = ¢. It will suffice to prove, for an arbitrary small >0,
the two inequalities

(6.1) 1+ a[o(W f [f(w) | dw> (1 —n) als(W)].

We may suppose W contained in a sufficiently small ball |w—w,| < g, and
J(w,) in standard form. Since the norm of the isomoprphism which secures
this is < N, all the additional hypotheses listed in 1) remain in force, and mo-
reover | j(w,) | =1.

Let P denote projection of [p + ¢] onto the vertical [m]* comprising [¢]
and the first m — ¢ coordinates in [p]. The map P x(w) has a Jacobian J,(w)
for which |J(w)| = |jwe)| =1. Hence if p is small [j(w)| <
< (1 4+ )| Ju(w)| throughout W, so that by applying (4.3) to the map P a(w)
and using (5.6), we find that ‘

f!yw)ldw € 4 ) jl Jaw) | dw = (1 + 5) APM)<Q + 7) a(),

which establishes the first inequality in (6.1).

We now determine 8 > 0 so as to secure, for our values of 5, r, N, the va-
lidity of (5.9) and » so that f,(w) < /2 for all we W, and we then choose o < 1/»
small enough to malke ’

{6.2) ) [a(w) —J(wy) | > 6/2 and | j(io)éj(zoo) |>n* for —weW.
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From the former of these two inequalities, it follows, since f,(w) << §/2, that
| o) — w(w) —3(wo) (W' —w) | < O |w' —w| for weW, weW,

and therefore that z(w) is differentially close to the map in sta dard form
@(w,) + J(10,) (10— wy). “

Applying (5.9), we now cover W by a sequence of parallel similar dicylinders @
of diameters dQ < ¢/ N, such that > |Q|<|W 4+ ¢|. The corresponding
sets B = x(W@) have diameters <C ¢ and cover (W), and the gauges satisfy
gB)<(1 +7)|Q|. Hence by addition a[z(W), &] <1 +n) (| W] + &),
and by making e— 0, a[o(W)] <@ + x| W!. Multiplying by 1-—7,
we derive the second inequality (6.1), since it clearly follows from the second
inequality (6.2) and from |j(w,) | =1 that

(1 —n?) W <f [ j(w) | dw .

3) Finally suppose r < ¢. Then j(w) = 0 and it suffices to prove that
(6.3) C afxW)] <y | W].

We may again suppose that W is contained in a sufficiently small ball
| w— 10, | < g and that J(w,) is in standard form-this last amounts to proving
(6.3) for the original quantities only with » replaced by # N, but this is imma-
terial since N is fixed.

Arguing as in 2), and using the case » < ¢ of (5.9), where the relevant gauges
now satisfy g(E)<#|Q|, we find that «[a(W), &] <% (| W| + & which
leads at once to (6.3).

7. — There is a further important expression for the partial area in a special
case. We now suppose ¢ <m < p, and we denote by 2(y) a fixed map from
[p] to [p -+ q] whose value for any particular y € [p] is the associated level. To
any map vy(w), we W into [p] we associate the relicf map a(w) = (y(w),
2 [y(w)]) into [p + ¢]. We write P for the operation of projecting from [ +¢
into [p], so that P wx(w) is simply y(w), and we denote by J,(w), J,(w) the corres-
ponding Jacobian and Jacobian matrix of y(w).

Let € be the Jacobian matrix of y, 2(y) with respect to y and let « and 8
denote respectively a vertical and a horizontal [m]*. We write &C_ for the matrix
derived from SC by restriction to the columns of «, X _; for the determinant of
the square matrix derived from &C_ by restriction to the rows of f. By the elem-
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entary rule for composite differentiation we find that the component j (w)
of j(w) is the determinant of the matrix &€ J (w), so that, by the LAGRANGE
identity

Jolw) =3 X (I p(w))g -
8

Evidently X ; vanishes unless §5 Pe in which case it is the value of the matrix
of the restriction to the rows of /P« in the Jacobian matrix % of z(y) with
respect to y. Denoting this determinant by Z,,, we have thus

(7.1) Ja(w) = 3 Zyp (T (1)),
. B D pPx

and this formula, which gives j(w) in terms of J,.(w), is valid wherever all the
functions concerned are differentiable. We have to extend it to the case of

~Lipschitzian-maps-z(y)-and y(w):

Let y denote a horizontal [¢]*. We have to define a (¢)-dimensional multi-
vector Z with components Z, such that (7.1) is valid for almost all w; in the dif-
ferentiable case, Z is the Jacobian multivector corresponding to 3 and is a fun-
ction only of the point y €[p] concerned. In general, however, we shall use
instead a reduced Jacobian, which d-pends ony and J,. We shall denote it by A,
so that (7.1) will now read

(7.2) Jow) = 3 Ay (T (1)) .
B ra

We define A = A(y, J,) to be 0 if J,=0, while if.J,, # 0 we define it for
almost every y of each m-dimensional hyperplane in [p] parallel to J,, by means
of an isomorphism, or change of axes, which transforms this hyperplane into
that of the first m coordinates of [p]. In that case (J,), vanishes unless f is
this hyperplane f, and Z, exists for y = [¢}* c §, for almost all y & f§,. We
set A, = 7, for y c f, and /, =0 otherwise. The ¢-dimensional multivector /1
is then defined in the original setting by reversing the isomorphism. Evidently
the formala (7.2) is then valid for every linear map y(w) from [m] to [p]. We
have to exstend it to arbitrary Lipschitzian maps.

The function

f, I = 1., 1) =3 Agnly, J,) (T,);
£ P

is now defined for almost every y of each m-dimensional hyperplane parallel
to J, and satisfies obvious conditions of boundedness and measurability. Mo-
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reover, if § is any closed oriented m-dimensional polytope in [p] the integral
of f(y, J,) on S coincides with that of j, on a corresponding closed Lipschit-
zian parametric surface in [p -+ ¢], defined by a corresponding relief map.
Hence this integral is zero. We express this by saying that fy, J,) is homolo-
gous to zero. We shall see that such functions are always defined almost every-
where on any Lipschitzian m-dimensional hypersurface and that the formula
(7.2) holds for any Lipschitzian map. In consequence, the partial area of the relicf
map corresponding to a Lipschitzian map y(w) from W C [m] into [p] may be
written in the form

(7.3) [ {3 Agus [y0), T1(0)] (Jp(w)), }2]% dw.

w w B Px

This last expression may be written more shortly

(7.4) ~ [ | Ay (w), I, @w)]|]J,@w)]|dw.

o W,

To see this it is sufficient to observe that in (7.2) we may suppose by a rotation
of the axes that there is only one f for wich the quantity (J » (lw)) g7 0. Squar-
ing and summing with respect to o we deduce that the square of the integ-
rand in (7.3) is

a

A2

2={(J, W) Pl Al =1,

and therefore that the integral in question reduces to (7.4).

| j(w)

" Note added.

At the 1958 Summer Institute of the American Mathematical Society spon-
sored by the National Science Foundation and devoted to Surface Area and
related topics, several mathematicians have reported .on researches closely
connected with the notion of Partial Area. H. FEDERER has anounced a theorem
virtually equivalent to the equality

(T = fs (I1,) dz;

he states it in a less general form (for a RIEMANN metric) however the general
case can be deduced almost at once. Also W. H. FLEMING has used Partial
Area in his work on hypersurfaces in the non-parametric form and on func-
tional completion. Both FEDERER and FLEMING refer, in this connection, to
pE GrorGi. Finally L. CEsArI has staded that he has a proof of the Partial
Area identity for parametric surfaces. ‘
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