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DonaLp GREENSPAN (%)

On Evaluating the Stokes’ Stream Funetion

by Means of a Symmetric Difference Analogue. (**)

1. — Introduction.

In fluid dynamics, the SToEES’ stream function, that is, the function which
satisfies

(11) o + Uyy — (1/:'/) Uy — 0 (y "/—L {))

is of considerable interest. This function is constant on the streamlines. The
problem to be considered is a DIRICHLET type problem. Let & be a closed,
bounded, simaply connected plane region whose interior is dencted by E and
whose boundary curve is denoted by §. Let & not contain any point where
¥ = 0. Let g(w, ) be defined and continuous on §. The problem then is to
produce a function wu(x, y¥) such that

(a) w(z, y) = g(», y) on 8,
and
{b) u{w, y) satisfies (1.1) in R.
(*) Address: Mathematics Department, Purdue University, Lafayette, Indiana,

U.8.A..
(**) Received December 10, 1957.
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Tnder gemeral econditions, there exists a unique solution [5] and
cases will be considered. However, the analytical determination

is guite another story from that of its existence and usually offers what
present insurmountable problems. The approach here, then, will be fx«
numerical analysis point of view,

2. - General Method.

Bince ¢ iy closed, and bounded, and no ¥ value of & is zero, then there existy
a positive pumber & such that 0<<h<|y|, for all ¥ in ¢ . Fix such a value
k for the mesh size. Let (%, y,) be an arbitrary, but fixed point of @ and denote
by &, the set of all points of the form (@, + mh, y, + nh) contained in &, where
m and n are integers. Two points (%, y,) and (w, y,) arve called adjacent
it and only i (% — o) + (4, — ¥:)® = h* and the straight line segment
joining them i8 contained in & The interior of &,, denoted by H,, is the
set of all points of &, whose four
adjacent points belong to &, . The
boundary of @,, denoted by 8, //m\ P
and called the lattice boundary, is
defined by &, = G, — R, . Tt is also
assumed that any pair of points of
R, can be joined by a connected

oo
w
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polygonal are consisting of siraight /
line segments which join adjacent 10 1 12 13 1%
points of R, .

Now, the technique proposed = m 7 3 y
will involve the application of a
difference equation to yield a system - - - - r‘
of linear equations whose solution ] )

is an approximation to the sclution
of the formulated DiricHLET problem
at the points of G,. The question of solving the linear system will not be
considered but may be approached by means of CRAMER’s rule, Gauvss’
elimination procedure, matrix inversion, relaxation, iteration, gradient
methods, and other fechnigues.

Suppose then that &, consists of » points. Number the points as in the
diagram, so that the numbers increase from left to right and also increase if one
reads down any column of points. Denote the coordinates of the point numbered
k by (2x, y:) and the unknown stream function at (w, ¥;) by U Ty Yy) = Uy, fOT
k=1,2, .,n Let (z, y,) be an arbitrary point of 8y, the lattice boundary.
Approximate u, by g(», y'), whare (2, ') is the nearest point of § to (@, ¥,).
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If (&', ') is not unigue, choose any one of the set of nearest points and nse ib.
The problem of finding numerical approximations te w(z, ¥) on the lattice boun-
dary is, though crudely done, adequate for present purposes. For the dia-
gram, this means that ab the points 1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 19, 20, 21,
22, 23 the values of the stream funetion have been approximated by values
at nearby points of &.
Now apply the difference equation:

1 1 1 i
2.1 2 w{w, 1 (~ A i —w—) »»»»»» lu{ow + B, o) - wle — h, )] —
(2.1) w(w, y) o T Ty Ll -+ hy ) + » Y

Zaule, y -+ Ry Zaulx, y—h)
a 2y 4 h 2y — h

=0,

to the points of K, . Start with the first, or highest, row of points; traverse the
rvow from left to right; proceed to the next row; traverse the row from left
to right; proceed to the next row, ete.; continue the process until all the points
of R, have been used. The process yields a linear system of n equations in n
unknowns which has a symmetric coefficient matrix (see [7]).

Hinally, one should note the following three points:

(a) Details for constructing (2.1) are described in [3], pp. 153-155.

(b} In actual practice, the subscript notation is most convenient. For
example, application of {2.1) at the point numbered 12 in the diagram would
yield:

5 < 1 1 1 ) 1 (, ) 2wy 2 Uy 0
@ U | — T+ + e Uy, b Uyy) — — =4.
"\ 29+ 2y —h Yo ® 2y t+h Zy,—h

In this equation w,, %, 4 and o, ave unknowns while %, is a constant
determined by the method for points of S, .

(e) No denominator in (2.1) is zero since 0<< h< |y |<|2y].

3. — A Theorem on an Error Bound.

In this seetion, let u{x, y) be the solution of the DiricBLET problem being
considered and U{w, y) the solution of the numerical method described in See-
tion 2. This means that at any point (», ¥) of R,:

1.
\”‘"; [U@ + b, y) + Ulw—h, y)] —

1
1) 2 e )} + 7

2g/~}—h+
20y +4 20 y—h
- 2y + h - 2y—h o
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Theorem 1. The solution of the system of linear equations which resulls
by application of the process described in Section 2 18 unigue.

Proof. It is sufficient to show that the debterminant of the system of
linear equations is not zere and this is done by demonstrating that the only
solution of the homogeneous systern which results by considering glx, ¥) =0
on § is the zero vector. Suppose then there exists a nonp-trivial solution for
the homogeneous system . For some peint of &, U s20. Suppose U >0.
Let the largest value M oceur ab (w,, ¥,) and let Uy =U(xz,, %), Uy =Ul@s+ k, %o},
U, = Ulwy, 4o + 1), Uy=Ulwy—h, y5), Uy = Ulwy, y,o— ). Then:

2 U, (1 ~ ! L ! I ([7 48 2Uz 2U4 0
0\?/0 S 2y +h 2y —h _;/5 ot 3)wzyo‘§“h/ w2'y0““h7 ’
or
4 y2 — 2 Zy2—h Zy24ha
(3.2) Uy = kL ~—(U1+Ua)+—12m Yo LYY Yo

2 (8 yg— h?) Byt —nr 0 gyr—pr Tt
Case 1. Suppose U, = U, = U; = U,. Then, from (3.2) it follows
that T, = U, and hence that U, =U, = U, =U, = U, = M .

Case 2. Suppose not all of U,, U,, U,, U, are equal. Then there exists
a maximum. Without loss of generality let it be U;. Then U, = Uy — &,
Uy= U, — ks, U, = U, —k,, where k,, &, k, are non-negative and at least
one is positive. Substitution of these values into (3.2) yields:

by — 2 y5 — hyy 2y: 4+ hy,
= — (20U, — k =0 k) A Te T I
b 2(8 y(z) o hz) ( U} ka) + 3 yg Y (U]. ..) “1" 3 7/5 R (Ul ?%)
or

&y — R 22— h 292 1}
(3.3) Uy = U, — Yo — 1 Yo— My Y2+ by,

P28y —hy) P Sy R CRyr e

Now since 0 << h<|y|, it follows that 2y} 4 hy,, Sy; —h* and 4y — h*
are positive . Also, since at least one of k,, k,, k, is positive, from (3.3): U, =
= [, — K, where K >0. Hence, U, > U,, whieh is a contradiction. Hence
Uy=U, =U,=U,=0,=M.

Using, then, say, (# + h, ) in place of (», ¥), the same argument as presented
above may be applied and continued in a finite number of steps to show that
U at a boundary point is equal to M . But this is a contradiction since g(x, y) =
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on 8 and the method deseribed for points of &5, implies U ab all lattice boundary
points is zero.

A contradiction is similarly reached if U is assumed to be less than zero
at {x,, v,). Hence, the only solution is the trivial solution, which proves the
theorem.

Now let:

o /1 B 1 ,{2 N . (1 i i N 1 3\
(3.4) Aot gl = -5 1 oz, Y) y 2y zy-»h)

] v{w -+ h 2u{x, y—h
! [o(@ + h,y) +olz—h,y)] — 2ol y £1) 2w y—h)
y S ’ 2y + b 2y—h |-

Lemma 1. If Alv] <0 on R, and v >0 on §,, then v >0 on R,.
(The proof follows as in [3], p. 156.)

Lemma 2. If — [ A[v,]| > 4[] on B, and | v, | <, on §,, then |u», I <,
on K, .
(The proof follows as in [3], p. 156.)

Lemma 3. If |Afv]|<4 on R, and if [v|<<B on 8§, and # is the
radius of a cirele which contains & and which is properly selected, as described
below, then |v|< A4 /4 4 B, on R,.

Proot.

4 2 A Y- R — 2

Let w(z, y) = FZ: {1 _ e ; w=" } + B, where (@ — a)t +
4+ (y — 8)? =% is the equation of any circle containing @ for which b >
=2y —1)(4y* — k*)/(6y), for all y in &. Note that this latter inequality is
equivalent to: 1/(2y) -+ 3b/(4 y* — h%) >1. At least one such value b exists
since & is closed and bounded and (2y — 1){4 ¥ — h2)/(6y) is continnous on G .

Direct caleulation yields Aw] = — A[1/(2y) + 3b/(4y2 — 28] < — 4, by
the above choice of 5. Algo, w > B on §,.

Now since | A[v]| < 4 on R,, by assumption, and it has been shown that
Mw] < — 4, it follows that — A[w]>]| A[v]| on R,. Since |»|< B on 8, and
w>=Bon 8, wxlv Hence: — | A[v]| = A[w] on R, and w > lv] on 8,.
v]on Ry, or |v|<w<Ar}4 -+ B. This completes the

By Lemma 2, w >
proof.

Theorem 2. If w(w, y) is of class C* in the closed region G, y 0 in G,
O<h<|y| for all y in G, u denotes the solution of the Dirichlet type pro-
blem associated with equation (1.1), while U denotes the solution of the linear system
which yesults from application of (2.1) according to the method of Section 2, then

(3.5) | U — | <24 { B2 Myfyp + B2 Mofye + b2 M, Jy } + 2k M,
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where: M’i == Max | 9t/ dnm oy |, over & for m 4m =4, § - 2, 3, 4:
=GLB |y | for all y in G; v is the radius of any cirdle of the type desc

W L@:mna 3.

Proof.
Lot @ = Au] — (u,, - - UylY iy . Bubstitution of the finite Tavion seriss
axpansions for w,, u,, u,, ¥, into the expression for § yields:

1 J Uy o N2 g alEy s ) BE Uy olE. ) RE

=" Lay—my & 7 24y Y
2 a1 5 B Ug, {7, md BE g 4L, n,) A ”%
TR T 2@y T2Eg—h |
Hence, since 0 <<h<|yl, it readily follows that |2y +h|>|2y| ~|h| >
>y, and |2y — h]>] 2yl —|k|>|yl, so that:
| Q1< Mok -+ Mo b2y + Myhefy?,  § = ais ly| in@.

Now, since we., — u,/y —+ u,, — = 8, it follows that
(3.6) [ 2] — (o = wfy ) | = | Au]] =] Q| <

<My R2y - M hey + M, ey,

Also, for any point ¢ of&,,, U was chosen as the value g(z' ; 4') at the nearest poin
(', y') on the boundary 8, and g(z' 2 ) = wlx', y') on 8. Thereby, for any point
(, y) of 8, as shown in [3], p. 158,

(3.7 | Ul, ) — ulw, y) | <20 M, .

Also, it must be noted that: i[U] = o, by (3.1). Hence

(3.8) [ Mw — U]] = | A[u] ~ J[U]] =] Aul].
Applying then Lemma 3 to (3.6), (3.7) and (3.8), one finds that, on R,,
[ U —ul|< )j My 2y 4 M, bty + M, b2y 2} +2h M, .

Hence the theorem is proved.
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Mote that (3.5} is an error bound for the numerical solution U,
rather crude one. One may easily refine it, bub its chief use here, for which
it iz more than adequate, iy the establishment of the following basic theorem.

Theorsm 3. Under the conditions of Theorem 2, the numerical solution U

converges to the analytic solution u as the grid size approaches zero, thai iz,

]
The proof is an immediate consequence of inequality (3.5).
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