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GracoM0 S ABAN (%

On Generalized Darboux Lines. (*%

1. — A generalization of DARBOUX lines, recently suggested by GOROWARA (1),
~ean-be -obtained-by considering; together-with-the sarface-8;-an-arbitrary-line
congruence I, and determining the lines I on S at every point P of which the
center of the osculating sphere of 1 in P lies on the ray of K through P. Dar-
BOUX lines are included amongst these curves and correspond to the choice
of the congruence of normals as congruence XK.

Although a family of curves obtained in this manner will not, in general,
reflect any intrinsic geometrical aspect of the surface S whatsoever (since,
given a random family of oo! curves on the surface S, it is sufficient to join
each point of each curve with the center of the corresponding osculating sphere
to obtain a line congruence with respect to which the curves are generalized
DarBoUX lines), some interesting properties can be found by choosing the
congruence I conveniently.

2. — Tiet the vector funection

(2.1) ¥ o=, )

i

represent the surface S and let S be the base surface of the congruence K.

—

= k(?"y Q)

=

(2.2)
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being the unit vector of the ray through P, we may write

—>

¢ p —
(2.8) Pou= :5(1(., v) -+ whu, v).

Consider now a curve I, traced on § and passing through P: if dots are to de-
note derivation with respect to the are length s of I, I being given as v = u(s),
v == v(s) on S, we have

(2.4) @ =1,
(2.5) B =g,
(2.6) P ALR—— ge? -+ Q'—ﬁ -+ QTZ),

where ¢, n, & are the unit vectors of the tangent, principal normal and binor-

mal of the curve ! and g = 1/R, v = 1/1" ave its curvature and torsion. The
> . . . . .

vector ¢, joining P with the center of the osculating sphere, C, is then given by

(2.7 ¢ =Rn + R'TH

and consequently

a1

8}

(2.8) 2.6 =0,

i
o

as shown elsewhere by SEMIN (2).

Now, if 7 is to lie on the ray of K passing through P, the unit vector of
the ray, 7?, must be parallel to ¢ consequently it will be orthogonal both to z
to 75, 50 we may write

(2.9) %@ =0,
(2.10) . =o0.

(2) . @EMIN, On Darboux lines, Rev. Fac. Sei. Univ. Istanbul (A) 17 (1952),
351-383. '
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This system of differential equations defines the GD-lines (as we shall, from now
on, call generalized DARBOUX lines) of the surface S with respect to the congruence
K, straight lines and circles excepted (°).

As for the exceptions contained in the previous statement, since the oscu-
lating sphere of both straight lines and circles are indeterminate, straight lines
and circles drawn on S are GD-lines, provided the rays of the congruence I through
each point of any such line or circle cut it under right angles.

Similar direct considerations can yield further results: for instance, since
the osculating spheve of a plane curve (different from a circle) coincides with
the plane which contains it, a plane non-circular curve on 8 is a GD-line of S
only and only if the rays of the congruence K through each of ils points stay normal
to the curve’s plane.

TFurthermore, as the center of the osculating sphere of a MONGE curve is
its center of curvature, we find that « Monge curve (different from circle)
belonging to S is a GD-lines of S only and only if the rays of the congruence K
~through each of its points coincide with the curve’s principal normals.

(3) This result, obtained simply enough above, can be worked out aunalytically in
full detail. Because of (2.8), ¢ can be expressed in the form

(a) = gl)(@ AT [g(s) 5% 0]
provided that
{b) T NB 0.

Equations (2.4) and (2.6) show that this last condition is not verified by straight lines
(for which 2 = 0) and circles (for which T 5= 0). Consequently, straight lines and
circles execepted, the equation for aD-lines,

can be rewritten by means of (a): we then get

X7z — (k. 2@ =0,

and sinee a linear relation between z- and T obviously contradicts (b), this last equa-
tion reduces to the two scalar equations (2.9) and (2.10).
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3. — Reverting to equations (2.9) and (2.10), let us point out that for DAR-
BOUX lines, where % is normal to S, the first equation of the above system is
identically verified, whatever the nature of the curve on S, and equation

= =
koo =0

(S,EMIN’S equation) is sufficient to define such curves. It is however insufficient
to solve the problem in the general case of ¢D-lines, hence GOROWARA’S assump-
tion (%) is incorrect.

If the curve I is referred to a parameter ¢ different from its arc-length, equa-
tions (2.9) and (2.10) can be easily obtained in their more general form (%)

(3.1) o' =0,
(3.2) (22)(k.3") — 3(z".3") (. 2") =0,

where dashes indicate derivation with vespect to ¢.

It can be easily proved () that the second differential equation of the
system (2.9), (2.10) [or that of their more general equivalents (3.1), (3.2)] is
at most of order two. Since the first is always of order one, it defines a di-
rection (a tangent element) at each point of the surface, while usually the se-
cond equation, if considered by itself, defines a simple infinity of tangent ele-
ments at each point. Consequently, in the normal case for a given surface-con-
gruence system, we will obtain a family of co! aD-lines. If however equation
(2.10) [and consequently equation (3.2)], for one reason or another reduces
to a first order equation, it will define at each point a tangent element of its
own, and then a question of compatibility (ecoincidence of the two tangent
elements thus obtained) will arise: it may happen that the surface congruence
system has no &p-lines. Similarly if equation (2.9) [and similarly (3.1)] vani-
shes, the surface-congruence system may have co® Gp-lines, as is the case with
DARBOUX lines.

(}) Loc. cit. in (1), formula (1.7), p. 302.
(5) L.oc. eit. in (%), p. 357. T
(®) Loc. cit. in (%), formula (4.7), p. 357.
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4. — Independently from the above considerations on the solution of the dif-
ferential equation system for ep-lines, let us take a DARBOUX-RIBAUCOUR tri-
hedral associated with such a curve. Let ¢ be the unit vector of the tangent,
¥ that of the surface normal and 7 that of the tangent to the surface S, trans-
verse to 7 and such that the trihedral 'Z}, —i’, N is right-handed. The unit vector
s through P can be expressed in fterms of these vectors, in the form

(4.1) E =m
Since the curve under consideration is admiftedly a ep-line, it must verify
both equation (2.9) and equation (2.10). The former implies that m,== 0,
so that the ray of the congruence through P will lie in the normal plane of

i3 = s
the curve. If ¢ is the angle between the normal & of the surface in P and the
ray of the congruence, we nay rewrite (4.1) in the following manner: )

5 S — sing N oS
On the other hand
(4.3) T =1

and on derivating we have

(4.4) T == 0, T + on N,
(‘15) ?I}) = 92 ? ’:’“ (Q; — On Ty)T + (Q;z ":“ @y Ta)l_\?;

where g,, . and 7, are respectively the geodesic curvature, the normal curva-
ture and the geodesic torsion of the curve. Then the second equation of the
system reduces to

(4.6) (Q;7 — 0. T,) Sing -+ (g,’, + 0, T,) COSp =0 .

The various remarks on plane curves and MONGE curves which are also GD-
lines, formulated in paragraph 2, can be deduced analytically from this last
formula, which can easily be rewritten in the form

(4.7) 0" cos (0 —@) + grsin (0 —¢) =0
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by means of the expressions
(4.8) on == 0 €08 0, 0, = o sin 0, T, =1 + 0,

0 being the angle formed by the surface normal in P and the principal normal
of the curve in the same point.

‘When the congruence K coincides with the congruence of normals, sin ¢ = 0,
and equation (4.6) becomes

(4.9) o, + 0,7, =0,

which is the form in which it is to be found in $EMIN’S paper () on DARBOUX
Jines. '

If, on the other hand, the rays of the congruence K are tangent in P to
the surface S, we obtain a further class of special agb-lines, called by Goro-
WARA (%)~ TD-lines;-which-are-simultaneously-a-sub-class-of-the-family-of-curves—
whose osculating spheres cut S orthogonally in P, and which have been
considered previously by 8. Ozritrg (). For such curves cosg =0, so
equation (4.6) becomes

(4.10) 0, 0nTy =V .

5. — Let us first rewrite the previous equation for TD-lines
(5.1) Q; T On Ty = 0

and suppose that a TD-line is simultaneously an asymptotic line of the surface
§: then together with (5.1), we will have

(5.2) on =0, Qs = 0y
so from equation (5.1) it follows that
(5.3) 0 =

() Loec. cit. in (?), formula (4.7), p. 359.

(8) Loc. ecit. in (), heading b), p. 304.

() 8. Ozrtmk, unpublished Habilitation Thesis, presented in 1955, and unavai-
lable to the present writer.
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and this proves that every asymptotic 1D-line is a MoXGE curve. Conversely,
since equation (5.1) can be rewritten in the form

(5.4) o 8in - preos f =0

by means of the formulae shown in (4.8), if a TD-line is & MONGE curve we have

prcos =0

—
ot
T
=

and the Tp-line is a straight line (p = 0), a circle (o = const., 7 =0) or else
an asymptotic line of S.

Tf a curve on S is both an asymptotic and a MoXNGE curve, equation (5.1) is
identically satisfied but this is not sufficient to show that it is a TD-line, precisely
because equation (5.1) contains intrinsic invariants of the surface but gives

“qio element about the congruence. Indeed, the curve being a MONGE-curve,
the center of its osculating sphere lies on its osculating plane, and since it is
an asvmptotic line this plane is the tangent plane of the surface so that the
only result achieved is that the curve has the property that the center of its
osculating sphere at any point lies on the tangent plane of §at that point.
Tor the curve to be a Tp-line we must further require that the ray through the
point considered lie in the tangent plane normally to the tangent of the curve.

We may therefore state the following theorem:

Given a surface 8, a congruence K whose rays are tangent to S, and ¢ TD-line
on 8, each of the following properties:

a) to be an asymptotic line,
b) to be @« Monge curve,

implies for the TD-line the remaining one, straight lines and circles excepted.

6. — Let S be a surface and K the congruence formed by the tangents of one
family of its lines of curvature: the orthogonal trajectories of the rays of the
congruence lying on § are the lines of curvature of the remaining family, and
since for lines of curvature we have

(6.1) T, =0,
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the condition for the lines of curvature to be Tp-lines for § for this choice of
I ig that

(6.2) 0, == const.

which shows that the condition for a line of curvature to be a TD-line with respect
to the congruence formed by the tangents of the lines of cwrvature of the other fa-
mily is that its geodesic curvature be constant (geodesie circle in DARBOUXS sense).

On the other hand, the curves under consideration being p-lines, their
radii of geodesic curvature equal their radii of spherical curvature, so that
condition (6.2) implies that lines of curvature which are TD-lines with respect
to the congruence formed by the tangents of the lines of curvature belonging to the
other family, are sphervical curves (or else are plane) (1),

Tndeed, curves whose radius of spherical curvature is constant either lie
on a sphere, or else have constant curvature. In the latter case the Hne of cur-

vature, being a Tp-line, would, by the previous theorem, be also an asymptotic

and consequently must necessarily be plane.

Suppose that conditions (6.2) is imposed to all the lines of curvature of the
surface S: then these lines of curvature will form a double family of orthogonal
curves with constant geodesic curvature, but this is possible only for surfaces
whose linear element can be written in the form (1)

du? - dv?

T U £ VR’

(6.3) ds®

consequently if the lines of cwrvature of « swuiface are TD-lines with respect to
the congruences formed by the tangents of the lines of curvature of the other system,
the swrface must be isometric.

Fuarthemore, the surface will have all its lines of curvature spherical; then,
taken a surface with oo® plane lines of curvature (for instance a surface of rve-
volution), a surface enjoying the property stated above will be obtained from
it by inversion (12).

Consider now a minimal surface S: the asymptotic lines on § form an or-
thogonal system and if we are to choose as congruence K the tangents to one

(%) This remark was suggested by Prof. I'. Seax.

(1) L. Biaxcui, Lezioni di Geometria differenziale, Vol. I, N. Zanichelli,
Bologna 1927 (cf. pp. 308-310).

(**) Loc. cit. in (1), pp. 503-504 and p. 530.
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{family of asymptotics, the asymptotics of the second family constitute the
3 ymy. s 3 \

orthogonal trajectories of the rays of K on the surfaces S. Sinee asymptotic
lines are characterized by having

,6.4) 0, = 0,
the condition for these lines to be Tp-lines is again that

(6.5) 0 = p, == const.,

=

50 the condition for an asymptotic line belonging to a minimal surface to be a TD-
line with respeet to the congruence formed by the tangents to the asymptotics
belonging to the other family is that its cwrvature be constant.

7. — We can now return to the equation

(7.1) (0,~ 0. T,) Sing@ + (0, -+ 04 Ts) COS@ = 0

of the p-lines of a surface S with respeet to & congruence X.
If the ¢p-line is an asymptotic line on §, we also have

(7.2) 0n = 0, cos 0 =0
S0
(7.3) Oy == 0y Ty =T

and the above equation becomes
(7.4) o sing + greosp = 0.

If furthermore the GD-line is a MONGE curve, equation (7.4) becomes

:\1
ot
-

or cosp =0

so that the Gp-line is a straight line (¢ = 0), or a circle (z =0, p == const.)
or else cos g == 0, i.e. ¢ ==x/2. Now, by the BELTRAMI-EXNEPER theorem, the
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torsion of the two asymptotic lines through a point of a surface is expressed
as the function -4/ — K of the Gaussian curvature J, hence every non-recti-
linear asymptotic Mongean GD-line on a surface of constant cwrvature is a TD-
line.

Similarly, suppose a aD-line is a geodesic of §: then

{7.6) g, =0, sin @ =0
$0
(1.7 0n == 0, T, =T

and equation (7.1) becomes

{1.8) o cosp—prsing =0.

If furthermore the curve is of consta‘r;t cuwatum, we find
(7.9) prsing =0

so that the @p-line must reduce to a straight line (p ==0), a circle (v =0,
o = const.) or else ¢ = 0. Then cvery non-planar geodesic Mongean GD-line is
necessaiily « Darbous line.

The results obtained in this paragraph can be considered partial extensions
to gD-lines of the theorem on page 6 for Tp-lines and of a theorem of ’SEML\"S
on DARBOUX lines (*%).

8. — Some of the results obtained above can be applied to ruled surfaces,
4o which it is possibile to associate easily various special ray sistems.

Let d :?Zf(u) be the striction curve of the ruled surface S, referred to its
arc-length u, and Uy, ?1,)2, @, be the unit vectors of the generator, the surface
normal and the surface tangent transverse to the generator (geodesic normal
of the generator) in the central point. We have

—

(8.1) :—1?(10, @) = d(u) + v Zl(u),

(%) Loe. cit. in (2), theorem (5.4) on page 362.
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$0, using BLASCHKE's notations (**), we get

—

-

- —> . — . >
@t o= QU vy WPy - U P g

Consider now the congruence I defined by means of the unit vector 7;3,
which is tangent to § in the central point of the generator: the ap-curves on S
corresponding to this choice of the line congruence will be given by equations
(2.13) and (2.14), where % is to be substituted with @,. The first of these equa-
tions reduces to

(8.3) wp =0,

consequently the GD-lines of an arbitrary ruled surface for the congruence
- — » - .
defined by ay are the surface’s gemerators. Indeed, if w = 0 we have

—

> — —
i s, R

(8.4) T 0 Ay,

and both equations of the system are identically verified. The above result
can also be reached directly, since the congruence I defined by @, is sach
that its rays cut the generators under right angles and the theorem on straight
Gp-lines given on page 2 can therefore be applied.

Tf, however, the ruled surface under consideration is developable, we have
p =0, and consequently the first equation of the differential system for GD-
lines is verified identically: the GD-lines will therefore be given by the remai-
ning second order differential equation

8.5 wd pg = 3u Fepg -+ 3vw o pg + v g v® dp =
(8.5) P T oU T TP ov ¢~ T @ ’

(4} W. Brascuxs, Vorlesungen iiber Differential Geometrie, Bd 1, Dover Publi-
cations, New York 1945 (cf. pp. 260-277'. We have

> — - — — — -
dajdu = pa,, day/du = —pa, -+ qas, day/du = —qa,

and the tangent of the striction curve is

— e e =
t =qa, -+ pa,
—r
t

— e — . —
so that ¢ = cos {t, @;) and p =sin{(t, a).

5. — Rivista di Matematica.
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which, provided ¢ 5% 0, can be rewritten as

du | 5 Udp v dg) fdu)2 Lodu 3 d2u 0
8.6 — 1 42 =+ - =) +3 = 4+ 3 —| =
(8.6) dv " p du q duj\ dv ? dv d»?

or again

du I o fdu\e du d2u 1
8.7 — [T v A — ] + 3 — 4 3v - =0
(8.7) dw 1[ v< (]()'] (dz!) ' dv v dw? J
where
2 dp 1 dg
i (‘)‘ Q .A’i 't pa ‘*:" T .
{8.8) () pdu ' qdu

Equation (8.7) gives the generators of & as one set of the apn-lines of the deve-

lopable;-as-was-to-be-excepted-by virtue-of-the theorem-quoted-above; but-the—

complete family is given by the general selution of equation

L fdu\e A dzu
8 L -ed)f{—] + 38— 4 e
(8.9) [ v A (e )J((M) :

therefore given a developable swrface S and the congruence defined by dy, there
are ool GD-lines threugh each point of 8. Of course, the surface being develo-
pable, a, defines a congruence whose rays are tangent to the surface in all the
points of the generator and consequently these GpD-lines are TD-lines.

If p =0 and ¢=0, then @, is constant, so the surface § is a developable whose
generators keep parallel to a plane and is therefore itself a plane ruled by the
tangents of one of its curves: both equations (2.13) and (2.14) are verified iden-
tically, hence all the curves contained in the plane are Gp-lines with respect
to @y .

Let us now take for % the unit vector of the central normal of the surface,
W, and examine the nature of the p-lines corresponding to this particular
choice of the congruence K. As first equation of our differential system we
obtain

(8.10) vup == 0.
It is easily seen, both by direct reasoning and from this last equation that

. . . , X =
again the GD-lines of an arbitrary ruled surface for the congruence defined by «,
are its generators.
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v == 0 gives the line of striction of &, which will also be a ¢n-line if the
second equation of the system is verified. Since in this case

(8.11) F=
(8.12) T =gy (P — D) @y + D T
(8.13) T = g+ (P — D) — qplds - ...

the condition for the line of striction of S 1o be « GD-line for the congruence K
. —_ . .
defined by a, is that

(8.14) g+ (pg—qp) —qp* =0

If this condition is verified, the line of striction of § is a DarBoux-line, and

N Ciste s 3 o T
-not.only of 8, but also of the surface &% generated by «,, which has same line
of striction and central normal as S. Since the invariants of §% are

(8.15) P = q, q* = p, pE = ?/' q* = }39

this last result is confirmed analytically by the symmetry of equation (8.15),
which can be rewritten in the form

(8.16) g +pg=2qp +qp.

Finally if in equation (8.10) we have p = 0, the ruled surface S reduces to
a cylinder, the vector ?L)l is constant and is the binormal of any normal section
of the surface, while the principal normal @, of this curve is also the surface
normal. The G¢p-lines are then the DARBOUX lines of the cylinder.

As last case, let us assume a, as defining the econgruence K: the first
equation of the system of differential equations of the @p-lines is then

Q17 - dw dv 0
(8.17) glu) o -+ % =0

which defines the orthogonal trajectories of the generators. For these to be
GD-lines the second equation must be verified: it is given by

d2u dp du\‘2 du dv
4 3 ) — g —_ . 2 e e
dsz "7 v du plu) () (ds/ - 2p) ds ds 0

(8.18) 3v p(w)
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and it is readily seen that for (8.17) and (8.18) to be compatible the ruled sur-
8.17

face must be specialized. TIndeed, since (8.17) and (8.18) can be rewritten as

_ du
Q e
(8.19) q dw s
, o du (3 dp - dude O dPu 0
8.2 2p — (30— L+ qp )l + 3ep = (),
(8.20) ! dv ! du 1 dv) ! de?

we can deduce from the first of these equations that

(8.21) v =— [ q(u) du,
(8.22) du/dv =—1] q,
- a1 dq du {7
(8.23) At @du dv @ du

and consequently, by substituting these expressions in the second equation
we obtain the condition

“du

— - f— d -
(8.24) qp—2p ¢t +3 (q b ]1) [(1 da == 0.

Condition (8.24) shows that cvery ruled surface does not possess GD-lin-s corres-
ponding to the choice of o, s the unit vector defiving the congruence K. However,
if this condition is satisfied the p-lines are TD-lines, since the congruence
defined by @, is formed of tangents to the surface.

1t the ruled surface S is such that its generators cut the line of striction
under right angles, ¢ = 0 and the condition given above reduces to

(8.25) gp =0,

30 that ¢ or p must be zero for Tp-lines to exist on the surface. In the first case
(g =0, 7 ==0) the surface is a right conoid, in the second (p =0, ¢ =0) a
cone, hence the orthogonal z‘;a;ccl(mc’s 0]‘ the generators of concs and vight conoids
are TD-lines for the congrience T = ;.



