CARMELO LONGO (*)

Terne di E2 appartenenti a fasci di cubiche.

1. – C. F. Manara (1), dimostrata l'esistenza di una cubica equianarmonica razionalmente determinata da una terna di E_1 e costruiti per mezzo di essa gli invarianti proiettivi di una terna di E_2 , se ne è servito per scrivere le relazioni affinchè i tre E_2 appartengano ad un fascio di cubiche. E. Bompiani ha poi assegnato il significato geometrico delle dette relazioni, pervenendo ad una caratterizzazione dei precedenti fasci (2).

Nella presente Nota arreco vari complementi al precedente problema.

Anzitutto assegno alcune interpretazioni degli invarianti di una terna di E_2 per mezzo di coniche, proiettivamente invarianti, determinate dai loro E_1 , e determino poi alcune configurazioni collegate a due E_2 ed un punto, traendone anche altri significati dell'invariante di due E_2 .

Considerati due E_2 ed un punto P le tangenti agli E_2 di centro P che insieme ai due dati E_2 appartengono ad un fascio di cubiche sono determinate [Bompiani, loc. cit. in (2)] dalle tangenti principali alla C^3 per i due E_2 ed avente un punto

^(*) Professore str. della Università di Parma. Indirizzo: Istituto di Matematica, Università, Parma, Italia.

⁽¹⁾ C. F. Manara, Cubica equianarmonica legata ad una terna di E_1 , Boll. Un. Mat. Ital. (3) 9 (1954), 353-359.

⁽²⁾ E. Bompiani, Geometria degli elementi differenziali, Corso policopiato dell'Ist. Mat. Univ. Roma, Roma 1954 (cfr. pp. 171-175).

I fasci in esame sono determinati: 1) dalla C_1^3 per due dei tre E_2 ed avente un punto doppio nel centro del terzo; 2) dalla C_2^3 appartenente alla rete di C^3 spezzate in una tangente e nella retta per gli altri due centri contata due volte. Dati due E_2 ed un punto P, la C_1^3 determina due E_1 di centro P; fissato uno di questi, la C_2^3 determina un E_2 per esso che insieme ai due dati individua un fascio di C^3 .

doppio in P, od anche dalle tangenti principali alla jacobiana della rete di C^3 per i due E_2 e per P.

Al variare di P tali tangenti determinano un doppio sistema di curve caratteristiche. Nel pennello di E_2 individuato da P e da una di queste tangenti sono individuati ${}^{1}E_{2}^{d}$ della C^{3} con punto doppio in P, ${}^{1}E_{2}^{J}$ della jacobiana, ${}^{1}E_{2}^{J}$ della curva caratteristica, e ${}^{1}E_{2}^{*}$ che insieme ai due dati determina un fascio di C^{3} . Dimostro che, indicato con \mathcal{E}_{2} l'elemento eccezionale del pennello, tra i detti elementi si hanno le relazioni

$$(E_2^*, E_2^J, E_2^d, \mathcal{E}_2) = -1,$$
 $(E_2^d, E_2^J, E_2^J, \mathcal{E}_2) = -1,$

le quali permettono di determinare rispettivamente l' E_2^* e l' E_2^l .

Dimostro infine che l' E_2^* è di flesso se e solamente se i due dati E_2 appartengono ad una conica, e dati due tali E_2 ed il punto P caratterizzo l' E_2^* di flesso; e viceversa.

2. – Consideriamo in un piano proiettivo π tre elementi differenziali regolari del secondo ordine $\stackrel{i}{E}_{2}$ ($i=1,\,2,\,3$) in posizione generica, tali cioè che i centri O_{i} non siano allineati e le tangenti siano a due a due distinte.

I tre $\stackrel{'}{E_2}$ ammettono quattro invarianti proiettivi dei quali ci proponiamo di assegnare alcune interpretazioni geometriche.

È sempre possibile scegliere in π il riferimento \Re in modo che i tre $\stackrel{i}{E}_2$ siano rappresentati rispettivamente da

(2.1)
$$\begin{cases} \stackrel{1}{E_2}: & z+y=ay^2+[3]; & \stackrel{2}{E_2}: & x+z=bz^2+[3]; \\ & \stackrel{3}{E_2}: & y-kx=cx^2+[3], \end{cases}$$

ove k, a, b, c sono i detti quattro invarianti.

Nel fascio di rette di centro O_i è determinato il riferimento \mathfrak{R}_i costituito dalle rette che proiettano i centri degli altri due elementi ed il punto U_i comune alle tangenti ad essi.

L'invariante k, che dipende dai tre $\overset{.}{E}_1$ appartenenti rispettivamente ai tre $\overset{.}{E}_2$, è, p. es., il birapporto della tangente all' $\overset{.}{E}_2$ rispetto alle tre rette per O_3

che determinano il riferimento \mathfrak{R}_3 . Se k=1 le tre tangenti agli $\overset{,}{E_2}$ formano fascio; se k=-1 i tre $\overset{,}{E_1}$ appartengono ad una conica (3).

Consideriamo la rete di coniche per i centri dei tre $\stackrel{'}{E}_{2}$.

Tra queste la conica per l' \dot{E}_2 ha come tangente in O_3 la retta x+ay=0. Ne segue un significato geometrico dell'invariante a. Analogamente per gli invarianti $b,\ c$.

Ricordato che due E_2 , in posizione generica, hanno un invariante determinato dall'invariante di contatto di uno dei due E_2 e dell' E_2 della conica tangente in esso e passante per l'altro E_2 , si ottiene un altro significato degli invarianti a, b, c, determinando un E_2 intrinsecamente caratterizzato. Si ottiene questo nel modo più semplice considerando tra le coniche della detta rete quella per due dei tre E_1 . Se p. es. si considera la conica per l' E_1 e per l' E_1 , per ciascuno di questi sono determinati rispettivamente gli E_2 :

$$(2.2) z + y = y^2 + [3], x + z = z^2 + [3].$$

3. – Determiniamo ora alcune configurazioni, intrinsecamente collegate a due elementi E_2 e ad un punto $P(\xi, \eta, 1)$ del piano.

Considerata per P la retta

$$(3.1) y - \eta z = k(x - \xi z),$$

sia $\stackrel{i}{C}$ la conica passante per l' $\stackrel{i}{E_2}$ $(i=1,\ 2)$ dato da (2.1) e tangente in P alla (3.1) .

Posto

$$(3.2) X = 1 + \xi, Y = 1 + \eta,$$

la retta congiungente gli ulteriori punti base del fascio $\lambda \dot{\hat{C}} + \mu \dot{\hat{C}} = 0$ ha la equazione

$$(3.3) \quad ak^2(b + kX^2)x + b(ak + Y^2)y + (bY^2 + ak^3X^2 - ab(\xi + \eta))z = 0.$$

⁽³⁾ P. Buzano, Sull'invariante proiettivo di una terna di elementi curvilinei del 1º ordine, Boll. Un. Mat. Ital. (2) 3, 201-207.

Indicato con Q il punto di intersezione di questa retta con la (3.1) e indicati con P_1 e P_2 le intersezioni della (3.1) rispettivamente con le tangenti a ciascuno dei due $\stackrel{i}{E_2}$ ($i=1,\ 2$), posto

$$(QPP_1P_2)=J$$

le quattro rette per P

$$(3.4) X^4 k^4 - JX^3 Y k^3 + 2aXY(J-1) k^2 + JXY^3 k - JY^4 = 0$$

determinano lo stesso birapporto J.

Le precedenti rette coincidono a coppie se e solo se

$$XY = -(8/9)(a + b),$$

ed è notevole il fatto che in tal caso si ha necessariamente

$$J = -I = -a/b,$$

ciò che pone in evidenza un altro significato dell'invariante I dei due $\stackrel{i}{E}_{2}$.

La retta (3.3) passa per il punto P, e quindi $\stackrel{i}{C}$ e $\stackrel{i}{C}$ si osculano in P se e solo se

$$(3.5) X^3 k^3 + I Y^3 = 0.$$

Questa relazione pone in evidenza che k non varia al variare di P sulla congiungente P con il punto U_3 comune alle tangenti ai due $\stackrel{i}{E}_2$. Il valore di k determinato dalla (3.5) dipende quindi dalla retta per U_3 e da $\sqrt[3]{I}$.

Si ha così un altro significato dell'invariante I.

Se poi le due rette (3.1) e (3.3) coincidono, le due coniche \mathring{C} e \mathring{C} si iperosculano in P. Ciò avviene solo per i punti appartenenti ad una delle tre coniche determinate da

$$(a + b)X^3 Y^3 + 6abX^2 Y^2 - 8a^2 b^2 = 0$$

ed in tal caso vi sono per P due rette per cui ciò avviene . In particolare, per I=1 (a=b) si hanno le due coniche $XY=a,\ XY=-2a$.

Consideriamo ora la conica del fascio $\lambda \dot{C} + \mu \dot{C} = 0$, spezzata nelle due rette che da P proiettano gli ulteriori punti base.

Si ottengono così due rette per P determinate dai due E_2 e da un E_1 per P . Se $P\equiv O_3$ tali rette hanno l'equazione complessiva

$$(3.6) (ak+1)y^2 - (1+k)xy + (b+k)x^2 = 0,$$

le quali al variare dell' E_1 , ossia di k, variano in un'involuzione le cui rette unite sono date da

$$(3.7) (4a-1)k^2 + 2(2ab+1)k + (4b-1) = 0,$$

che quindi risultano intrinsecamente collegate ai due E_2 ed al punto.

Altre due rette intrinsecamente collegate ai due E_2 e ad un punto P sono le tangenti principali della C^3 passante per i due E_2 ed avente il punto P doppio. Tali rette sono determinate da

$$(3.8) X^{2}(a-XY)k^{2}+(ab-X^{2}Y^{2})k+Y^{2}(b-XY)=0.$$

In particolare, se $P \equiv O_3$ si hanno le rette

$$(3.9) (a-1)k^2 + (ab-1)k + b - 1 = 0.$$

Si osservi che se la (3.6) è soddisfatta da y=kx si deve avere $k^3+I=0$ e quindi, come è evidente, si ritrova la condizione affinchè $\overset{\circ}{C}$ e $\overset{\circ}{C}$ si osculino . Le direzioni (3.9) sono indeterminate se, e solo se, a=b=1. In tal caso i due $\overset{\circ}{E}_2$ ($i=1,\ 2$) appartengono alla conica Γ :

$$(3.10) xy + yz + zx = 0,$$

e si ha un fascio di C^3 spezzate nella Γ ed in una retta per O_3 .

4. – Consideriamo ora la rete di C^3 per $\overset{1}{E}_2$, $\overset{2}{E}_2$ ed un punto P. Supposto $P\equiv O_3$, la rete ha l'equazione

$$\left\{ \begin{array}{c} \lambda_0(xy \, + yz \, + zx)z \, + \, \lambda_1 \, \big\{ \, (y \, + z)x^2 - (ax \, + y)z^2 \, \big\} \, + \\ \\ + \, \lambda_2 \, \big\{ \, (z \, + x)y^2 - (by \, + x)z^2 \, \big\} = 0 \, \, . \end{array} \right.$$

Tra queste, in generale, vi è una sola C^3 passante per l' $\stackrel{3}{E}_2$

$$(4.2) y = kx + cx^2 + [3]$$

determinata da

(4.3)
$$\begin{cases} (1+k)\lambda_0 - (a+k)\lambda_1 - (bk+1)\lambda_2 = 0 \\ (k+c)\lambda_0 + (1-c)\lambda_1 + (k^2 - bc)\lambda_2 = 0 \end{cases}.$$

Quindi, condizione necessaria e sufficiente affinchè si abbia un fascio di C^3 per i tre $\stackrel{i}{E_2}$ $(i=1,\ 2,\ 3)$ è che la matrice

$$\begin{pmatrix} 1+k & -(a+k) & -(bk+1) \\ k+c & 1-c & k^2-bc \end{pmatrix}$$

abbia rango 1. Debbono perciò essere soddisfatte le relazioni

$$(4.4) \qquad \begin{cases} (a-1)c + k^2 + (a+1)k + 1 = 0 \\ (b-1)c - k\{k^2 + (b+1)k + 1\} = 0 \\ (ab-1)c - (k^3 + ak^2 - bk - 1) = 0 \end{cases}$$

Supposto $a \neq 1$, $b \neq 1$, le precedenti relazioni implicano che k soddisfi l'equazione (3.9). Le direzioni determinate da questa relazione sono altresì le direzioni delle tangenti principali alla jacobiana della rete (4.1) nel suo punto doppio $P \equiv O_3$. Quindi:

Dati tre $\stackrel{i}{E}_2$ ($i=1,\ 2,\ 3$) generici, condizione necessaria affinchè essi siano base di un fascio di C^3 è che considerata la rete di C^3 per due dei tre elementi e per il centro P del rimanente, la tangente in quest'ultimo sia tangente alla C^3 della rete avente punto doppio in P; od anche, sia tangente in P alla jacobiana della rete.

Da quanto si è detto alla fine del n. precedente si ha che se a=b=1 le C^3 del fascio si spezzano nella conica (3.10) ed in una retta per O_3 : diremo che in tal caso i tre E_2 appartengono ad un fascio degenere di C^3 .

Osserviamo inoltre che se nella (4.2) è k=-1, ossia se i tre $\stackrel{'}{E_1}$ appartenenti agli $\stackrel{'}{E_2}$ appartengono alla conica (3.10), dalla (4.4) segue

$$(a-1)(b-1) = 0,$$
 $(b-1)(c-1) = 0,$ $(a-1)(c-1) = 0.$

Si hanno perciò necessariamente fasci degeneri di C^3 .

Infine, se è a=1 (ovvero b=1), dei due possibili fasci di C^3 uno è necessariamente degenere .

Nel seguito escluderemo i detti fasci degeneri.

Le due direzioni definite dalla (3.9) coincidono con la direzione definita da y = kx, se e solo se

(4.5)
$$a = -(2k+1)/k^2, \qquad b = -(k^2+k).$$

In tal caso si ha

$$(4.6) c = k(k+1)$$

e l' $\overset{_3}{E_2}$ è quello a contatto armonico con l' E_2 della cubica equianarmonica razionalmente definita dai tre $\overset{_i}{E_1}$.

Nel caso generale, si hanno due direzioni distinte definite dalla (3.9) e, dalla (4.4), per $\stackrel{\circ}{L}_2$ definito da una di quelle direzioni si ha

(4.7)
$$c = -\frac{k^3 + (a+2)k^2 + (b+2)k + 1}{2(a-1)k + ab - 1}.$$

5. – Caratterizziamo ora l' $\overset{3}{E_2}$ definito dalla (4.7).

Per questo osserviamo che nel pennello di E_2 che si ottiene al variare di c nella (4.1) sono caratterizzati, per ciascuno dei due E_1^* determinati dalla (3.9):

1) L' E_2^J appartenente alla jacobiana della rete, corrispondente a

$$c^{J} = \frac{k^{3} - (a-4)k^{2} - (b-4)k + 1}{2(a-1)k + ab - 1};$$

2) l' E_2^d relativo alla C^3 con punto doppio in O_3 , corrispondente a

$$e^a = -\frac{(a-1)k + b - 1}{2(a-1)k + ab - 1} \ k \ .$$

Si verifica facilmente la relazione

$$(5.1) c = 2c^d - c^J.$$

Ricordato ora che gli E_2 del pennello (4.2) si rappresentano su una retta centro-affine [il cui centro corrisponde all'elemento di flesso (c=0)], che si può ampliare considerando anche l' \mathcal{E}_2 eccezionale ($c=\infty$), dalla (5.1) segue che l' \tilde{E}_2 è determinato dalla relazione

$$(5.2) (\mathring{E}_2, E_2^J, E_2^d, \mathscr{E}_2) = (c, c^J, c^d, \infty) = -1,$$

ossia l' \vec{E}_2 richiesto è quello che insieme all' E_2^J della jacobiana divide armonicamente l' E_2^d e l' \mathcal{E}_2 eccezionale .

Al variare del punto P nel piano gli E_1^* definiti dalla equazione (3.8) si distribuiscono nelle due famiglie di curve integrali dell'equazione (3.8). L' E_2^I di una tale curva determinato da un E_1^* , supposto $P \equiv O_3$, corrisponde al valore

$$c^{I} = \frac{1}{2} \frac{k^{3} - (2a - 5)k^{2} - (2b - 5)k + 1}{2(a - 1)k + ab - 1}.$$

Si hanno le relazioni

$$4c^{I}-3c^{J}=c$$
, ossia $(E_{2}^{I}, E_{2}^{J}, E_{2}^{3}, \mathcal{E}_{2})=3/4$,

ovvero, per la (5.1),

$$2c^{I}-c^{J}=c^{d},$$
 ossia $(E_{2}^{d},\ E_{2}^{J},\ E_{2}^{I},\ \mathcal{E}_{2})=-1,$

le quali caratterizzano l' E_2^I , e quindi le curve integrali.

6. - Indiehiamo con $\{\mathring{E}_2\}$, $\{\mathring{E}_2\}$, $\{\mathring{E}_2\}$ i tre pennelli determinati rispettivamente dai tre \mathring{E}_1 . Dati questi, ossia k, ed un $\mathring{E}_2 \in \{\mathring{E}_2\}$, la (3.9) determina un $\mathring{E}_2 \in \{\mathring{E}_2\}$, caratterizzato dal valore

$$(6.1) b = -[(a-1)k^2 - k - 1]/(ak + 1),$$

e quindi un $\stackrel{\circ}{E_2} \in \left\{\stackrel{\circ}{E_2}\right\}$ in modo che i tre $\stackrel{i}{E_2}$ appartengano ad un fascio di C^3 . Dato $k \ (\neq -1)$ si hanno così ∞^1 di tali terne di E_2 .

La corrispondenza $\overset{1}{E}_2 \longleftrightarrow \overset{2}{E}_2$ determinata dalla (6.1) è una proiettività τ non degenere per $k(k+1) \neq 0$. Sia σ la corrispondenza $\overset{2}{E}_2 \longleftrightarrow \overset{1}{E}_2$ che si ottiene associando ad un $\overset{2}{E}_1$ l' $\overset{1}{E}_2$ appartenente alla conica per l' $\overset{2}{E}_2$ e per l' $\overset{1}{E}_1$.

La corrispondenza prodotto $\sigma\tau$ è una proiettività dell' $\{\stackrel{i}{E}_2\}$ in sè, rappresentata ancora dalla (6.1). Tale proiettività è involutoria se e solo se $k^2=1$, ossia, avendo supposto $k\neq -1$, se e solo se k=1 (le tangenti ai tre E_1 formano un fascio).

Gli elementi uniti nella proiettività $\sigma\tau$ corrispondono ai valori a=1 (e quindi b=1, come è evidente ottenendosi un fascio degenere) ed al valore

(6.2)
$$a = b = -(k^2 + k + 1)/k.$$

In quest'ultimo caso si ha c=0. Viceversa c=0 implica la (6.2). Quindi dei tre elementi E_2 di una terna uno è di flesso se e solo se gli altri due appartengono ad una conica.

Se $\stackrel{1}{E}_2$ ed $\stackrel{2}{E}_2$ appartengono ad una conica, dalla (6.2) si ha che gli $\stackrel{3}{E}_2$ (per il centro O_3 e di flesso) che insieme ai due dati elementi appartengono ad un fascio di C^3 sono determinati da

(6.3)
$$k^2 + (a+1)k + 1 = 0.$$

Al variare della coppia $\overset{1}{E}_2$, $\overset{2}{E}_2$, ossia della conica nel fascio Φ di coniche bitangenti nei loro centri ai due $\overset{1}{E}_1$ ed $\overset{2}{E}_1$, le coppie di rette (6.3) descrivono un'involuzione π , in corrispondenza proiettiva al fascio Φ .

Alla conica doppiamente degenere $(a = \infty)$, all'ulteriore conica degenere (a = 0) ed alla conica per il centro O_3 (a = 1) corrispondono rispettivamente le tre coppie di rette:

$$k = 0, \quad k = \infty;$$
 $k^2 + k + 1 = 0;$ $(k+1)^2 = 0.$

Considerate le tre rette che da O_3 proiettano i centri O_1 , O_2 ed il punto comune alle tangenti ai due $\stackrel{i}{E_2}$ ($i=1,\,2$), siano r_1 ed r_2 le rette che con esse formano gruppo equianarmonico.

Le rette della seconda coppia sono le coniugate armoniche di r_1 ed r_2 rispetto alle due rette O_3O_1 ed O_3O_2 costituenti le rette della prima coppia. La terza coppia (retta unita in π) è la tangente in O_3 alla conica corrispondente.

Sono così caratterizzate sia la proiettività sia l'involuzione π , e quindi gli $\overset{3}{E}_{2}$ di flesso corrispondenti ad una coppia $\overset{1}{E}_{3}$, $\overset{2}{E}_{2}$; e viceversa.

Sunto: Si studiano le terne di E_2 di un piano, con particolare riguardo alle terne appartenenti ad un fascio di cubiche.

Summary: The triplets of the plane E_2 's are studied and especially those E_2 's which belong to a pencil of cubics.