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R. S. MISHERA (%)

Non Holonomie Sﬁbspaces. (*%)

The object of the present paper is to introduce « Non Holonomic » (NH)
curvature tensor, NH-Ricct tensor, the normal to NH-hypersurface and

‘then to generalise the MaINARDI-CoDAzzI. relations in the NH-hypersurface.

1. - Non Holonomic Curvature tensor and NH-Ricci tensor.

Let V. be the covariant components of a NH-vector, we have by
NH-covariant Pfaffian (Pf) differentiation [1] (1):
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where
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7,} is the CHRISTOFFEL symbol of the NH-space.

The NH-covariant Pf-derivative of V, ; in the direction w* is given by
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Subtracting from this the corresponding equation found by interchanging §
and k, viz.: ‘
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we obtain

(1-1) Vig— Vi = Va Biy,
where
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Since V¥, is an arbitrary NH-covariant vector and the first member of (1-1)
is a NH-covariant tensor of the third order, it follows that R, is a mixed
NH-tensor of the fourth order. It is called the NH-curvature tensor for the
NH-metric g,;. From the definition (1-2) it is clear that the tensor is skew
symmetric in j and &, so that '

(1-3) | Rip=— R,

and from (1-2) it follows that

(1-4) Rt Ris + Ry =0

By successive NH-covariant Pffdel'ivative of V¢ we obtain

{1-5) . V,lg'k - V,ikj =— Ve R:;:ik .
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The NH-curvature tensor may be contracted in two different ways. One .
of these leads to a zero NH-tensor

Ri,, :f—-(f—, log \/,(j) vui, (l(a log \/!—,> +{bij} { ibk},{ l‘)ik } {ibj} =,

by interchanging the dummy indices ¢ and b. The other method of contraction
leads to NH-Rriccr tensor

BTN I
(].6) _Rij = Riia - ;;; 1 i IM‘U}" 1 i ,’ J {
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Tt is clear that R, is symmetric in the subscripts.

2. - Notation. Unit normal.

Let L, (m = n -+ 1) be a NH-manifold of dimensions m (== n-1) and class
not less than 4. The subspace I, is called the NH-hypersurface of NH-
enveloping space L,i;. Let y*(x =1, ..., n + 1) be the coordinates of a
point in L,.; and #? those of the same point in L, . Let the fundamental form
for L, be denoted by g¢.; w* w’ and that for L, by Gmﬁi We W8. We have

e T

(2-1) aB i i = {5

As the functions y* are invariants for transformations of the coordinates
in L,, their first NH-covariant Pf-derivative with respect to L, are the same
as their NH-derivative with respect to the variables #’. That is

oy — We

Yoo = i -
Thus (2-1) becomes
2-1) Gop ¥ Y=g -

For a fixed value of ¢, the vector of L,., whose NH-contravariant compo-
nents are y%, is tangential to the curve of parameter &’ in L, . Consequently if
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N are the NH-contravariant components of the unit vector normal to L,,
these must satisfy the relations

(2-2) | G NP =0,
(2-3) G N NP =1.

3. - Generalised NH-covariant Pf-differentiation [2].

Let u,, »# be the components in I,, of two unit NH-vector fields which are
Pf-parallel along € (a curve in L,) with respect to L,, and similarly p¢ the com-
ponents in L, of a unit NH-vector field which is Pf-parallel along ¢ with res-
pect to L,. Then

du,
ds

[
1 |
s ﬁ ,a = .
EJF{[X (S}HQ) a =0,
[
l

dp?

ds

Let I'§, be a NH-tensor field, defined along € which is a mixed NH-tensor
of the second order in L,, and a NH-covariant vector in L, . Then the product
u, W p T4, is a scalar invariant and along C it is a function of s. Tts
NH-intrinsic Pf-derivative with respect to s is also a scalar invariant.
Obtaining the Pf-derivative of the product with respect to s and using
the above equations of Pf-parallelism of the vectors, the NH-intrinsic
Pf-derivative can be written as ‘

PO L TR B P A B | al’fd_fk} o W
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It follows from the quotient law that the expression in square brackets
is a NH-tensor of the type 773, . Let us call it the Pf-intrinsic derivative of
this NFH-tensor with respect to s.

If ¢ is any curve in L, and the functions 7%, are defined through out the
hypersurface. The above Pf-intrinsic derivative can be written as \
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Now w’/ds is an arbitrary, unit NH-vector in L, . Since the direction of
¢ is arbitrary, its coefficient in square brackets is a NH-tensor. We
denote it by T;,;. Thus ‘

o aT“i % ¥ ¥ L4 ma Je I3
(3-2) — L +I I T;’;i ?/?i”‘j’ 1 T ?/,Sf"'“jij}” Tﬁk'

BEd 7T g 1 y o JG 1 B o L; 1

Let us call it the generalised covariant Pi-derivative of 17, with respect
to L, or precisely as the Pf-tensor derivative of 7', with respect to L, .

The Pf-tensor derivative of the fundamental tensors G,, and g,; are both
zero as is easily verified. These may therefore be treated as constants in
Pf-tensor differention.

4. - Second Fundamental Form.

Since y* is an invariant for the transformation of 2’s, its Pf-tensor deriv-
ative is the same as its NH-covariant  Pf-derivative with respect to z's
so that

) “ N a?/a Wa
(4-1) Y: =Y, = =i

’ w? w?

The Pf-tensor derivative of this is

(4-2) Yo =

eye [ 1)
I

whw |4

a “ 18
Y Yy
Jh {ﬁng/, /:

Taking the Pf-tensor derivative of (2-1) with respect to L, we have
Gup Yo Yy + Cug ¥ 90 = 0.

Let this be subtracted from the sum of two others obtained by interchan-
ging 4, §, k cyclically. Then, since 35, is symmetric in the subscripts we find

(4-3) Gop ¥y Y5 =0

We see that y7;; regarded as a NH-tensor of L,4, is normal to L,. It may

therefore be expressed as

(%‘: '4) ) y;aﬁ :—:;.Qij l\Ta.



354 " R. 8. MISHRA

That the coefficients £2,; are the components of a symmetric NH-covariant
tensor of the second order in L,, is obvious, for the functions y%, are of
this nature. It follows

7

(4-5) Qo= 4, Gy N°.

5. — Pf-tensor derivative of the unit normal.

The unit normal N* is a NH-contravariant vector in I, whose Pf-tensor
derivative with respect to L, is given by

dNa
(6-1) Ny = +{ﬁ“5}N‘*y$-

w?

Taking Pf-tensor derivative of each side of (2.3) we have

(5-2) G,z NNt =0,

which shows that N?, regarded as a NH-vector in the y 's is orthogonal to the
normal and therefore tangential to the hypersurface. It can be expressed as

(5-3) | N = AE .
Tziking the Pi-tensor derivative of (2-2) with respect to L, we find
G Yoy NP+ Gyl NG =0
substituting from (4-4) and (5-3) we obtain, by virtue of (2-3) and (2-1),
Q= — Ga/; :I/?i :l/fjk A?:—“ — Y *’15 -
Multiplying by ¢'* and summing for ¢ we deduce
(5-4) Q. g™ =’-— Al
Thus (5-3) becomes
{5+5) Ni=—Q45 9"y -

This is the Pf-tensor derivative of N
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Since y“ are components of a NH-covariant vector in L,, it follows

K. g% Y3 e @ PPD 0 h
(5-6) Yise Y= Y5 Riy= ¥y 9™ Byep -

o= 00 N
by (-L '*,1?), hence
o= Qo N 0, N

Y= i 4

Also

Therefore

24 o . % N
Yirsn = [g/,ﬂii + { By } ’3/,6«' J/,Ii} . T { B o } .’/,/7; ?/?ﬁ =

@ | a o B ) . % . . 3 g . o
=Yz T o { B v } Yoyl { By } [?/,ﬁik Yo Y5 ?/,'ik] a { By } 3/:)70 y;ﬁz‘j :

Equating the two values of y%,, we get

=4
V" 0 a2 i 8 f g s
040 N0 —Qy; Qua g7 7, = Y + { 8 5 } (Vo 075 + ¥5 ¥0) +

aye | By

f o v |8 £ \ , 3 f a)
e w? | P P By
‘ 1 By } Y ('I/"tj ' { S e I ‘I/:iyfj) T Ya Y -l/f"' g ,[ )
Interchanging j and &k we obtain
v s x " N 3 , s . 3
—Qﬁ:,i N Q. 2y, g ;I/f; = 3/?,'7.-;‘ E { B } [i’/:k L’/?ﬁ - .7/:7; .'1/31;,- - ¥ .ij),-k T
R i,

D 7 i3

i fjl;sl‘?‘/ .5,;',saj“
T {(5 E‘J’-I/,i Yulil T U .’/,k}/,j"a'g‘/zlﬂ 7/} .
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Subtracting we get

y?‘i}'k VVVVV - .’/‘,ZIAJ = \ 41(.(2“/ o ‘-(211 )) (/1))‘(" i .(..)]U --' 2 ) -
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by suitably changing the dummy indices. Or
y,nl I/ z],”“ *\ (‘-‘-'117 - [)I ) -+ I/a JML(--ﬂ sEpy T Qu = Ih) "E_ ;435 /I/ ./,7 I/ E?

where ﬁf‘ are 1 II Rimmaxx symbols for the NIH-tensor &, B evaluated at points
of the NH-hypersurface.
We can write (5-6) as

—
Jt
-1
~—

./ L/l I_I{/zul - (Qh,' s& gk T th Qu)] -
— N4Qyj 50— 2t 1) — E;ss ?/’z y?ﬁ == 0.

Multiplying (5-7) by @ Nﬂ and summing with respcet to « we obtain, by
virtue of (2-2) and (2- )

— s W7 e Je
Qz’j,kmgik,j"i" R[J’?-)S _L\Tﬁ — — =0

wé awd ak
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Similarly multiplying (5.7) by G, y% and summing with respect to e, we have

= We Wy Wwe e
Ry = Qy; Qu— Qu 24 + Ry = — —

wl oaed ol wk

These are the generalised MAINARDI-Copazzr relations in the NIH-system.
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