R. S. MISHRA (*)

Non Holonomic Subspaces. (**)

The object of the present paper is to introduce «Non Holonomic» (NH) curvature tensor, NH-RICCI tensor, the normal to NH-hypersurface and then to generalise the Mainardi-Codazzi relations in the NH-hypersurface.

1. - Non Holonomic Curvature tensor and NH-Ricci tensor.

Let V_i be the covariant components of a NH-vector, we have by NH-covariant Pfaffian (Pf) differentiation [1] (1):

$$\boldsymbol{V}_{i,i} = \frac{\partial \boldsymbol{V}_i}{\boldsymbol{w}^j} - \left\{ \begin{array}{c} \boldsymbol{l} \\ i \ j \end{array} \right\} \, \boldsymbol{V}_i,$$

where $\left\{ egin{array}{c} l \\ i \ j \end{array} \right\}$ is the Christoffel symbol of the NH-space.

The NH-covariant Pf-derivative of $V_{i,j}$ in the direction w^k is given by

$$\begin{split} V_{i,jk} &= \frac{\partial^2 V_i}{w^j w^k} - \frac{\partial V_i}{w^l} \left\{ \begin{array}{c} l \\ j \end{array} \right\} - \frac{\partial V_l}{w^j} \left\{ \begin{array}{c} l \\ i \end{array} \right\} - V_l \frac{\partial}{w^k} \left\{ \begin{array}{c} l \\ i \end{array} \right\} + \\ &+ V_l \left\{ \begin{array}{c} l \\ b \end{array} \right\} \left\{ \begin{array}{c} b \\ i \end{array} \right\} + V_a \left\{ \begin{array}{c} a \\ i \end{array} \right\} \left\{ \begin{array}{c} b \\ j \end{array} \right\}. \end{split}$$

^(*) Address: Delhi University, Delhi-8, India.

^(**) Received August 8, 1955.

⁽¹⁾ Numbers in brackets refer to the References at the end of the paper.

Subtracting from this the corresponding equation found by interchanging j and k, viz.:

$$\begin{split} V_{i,kj} &= \frac{\partial^2 V_i}{w^k w^j} - \frac{\partial V_i}{w^l} \left\{ \begin{array}{c} l \\ k \end{array} \right\} - \frac{\partial V_i}{w^k} \left\{ \begin{array}{c} l \\ i \end{array} \right\} - V_l \frac{\partial}{w^j} \left\{ \begin{array}{c} l \\ i \end{array} \right\} + \\ &+ V_l \left\{ \begin{array}{c} l \\ b \end{array} \right\} \left\{ \begin{array}{c} b \\ i \end{array} \right\} + V_a \left\{ \begin{array}{c} a \\ i \end{array} \right\} \left\{ \begin{array}{c} b \\ k \end{array} \right\}, \end{split}$$

we obtain

$$(1\cdot 1) V_{i,jk} - V_{i,kj} = V_a R_{ijk}^a,$$

where

$$(1 \cdot 2) R_{ijk}^a = \frac{\partial}{w^j} \left\{ \begin{array}{c} a \\ i \end{array} \right\} - \frac{\partial}{w^k} \left\{ \begin{array}{c} a \\ i \end{array} \right\} + \left\{ \begin{array}{c} a \\ b \end{array} \right\} \left\{ \begin{array}{c} b \\ i \end{array} \right\} - \left\{ \begin{array}{c} a \\ b \end{array} \right\} \left\{ \begin{array}{c} b \\ i \end{array} \right\},$$

or

$$R^a_{ijk} = \left| egin{array}{ccc} rac{\partial}{w^j} & rac{\partial}{w^k} \ \left\{egin{array}{ccc} a \ i \ j \end{array}
ight\} & \left\{egin{array}{ccc} a \ b \ i \end{array}
ight\} & \left\{egin{array}{ccc} b \ i \ k \end{array}
ight\} \ \left\{egin{array}{ccc} b \ j \end{array}
ight\} & \left\{egin{array}{ccc} b \ k \end{array}
ight\} \ \left\{egin{array}{ccc} b \ i \ k \end{array}
ight\} \end{array}
ight].$$

Since V_i is an arbitrary NH-covariant vector and the first member of $(1\cdot 1)$ is a NH-covariant tensor of the third order, it follows that R^a_{ijk} is a mixed NH-tensor of the fourth order. It is called the NH-curvature tensor for the NH-metric g_{ij} . From the definition $(1\cdot 2)$ it is clear that the tensor is skew symmetric in j and k, so that

$$(1\cdot3) R_{ijk}^a = -R_{iki}^a$$

and from $(1 \cdot 2)$ it follows that

$$(1 \cdot 4) R_{ijk}^a + R_{iki}^a + R_{ki}^a = 0.$$

By successive NH-covariant Pf-derivative of V^i we obtain

$$(1 \cdot 5) V_{,jk}^{i} - V_{,kj}^{i} = - V^{a} R_{ajk}^{i} .$$

The NH-curvature tensor may be contracted in two different ways. One of these leads to a zero NH-tensor

$$R^{i}_{ijk} = \frac{\partial}{w^{j}} \left(\frac{\partial}{w^{k}} \log \sqrt{g} \right) - \frac{\partial}{w^{k}} \left(\frac{\partial}{w^{j}} \log \sqrt{g} \right) + \left\{ \begin{smallmatrix} i \\ b \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} b \\ i \end{smallmatrix} \right\} - \left\{ \begin{smallmatrix} i \\ b \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} b \\ i \end{smallmatrix} \right\} = 0$$

by interchanging the dummy indices i and b. The other method of contraction leads to NH-Ricci tensor

$$(1 \cdot 6) R_{ij} = R_{ija}^a = \frac{\partial}{w^i} \begin{Bmatrix} a \\ i \ a \end{Bmatrix} - \frac{\partial}{w^a} \begin{Bmatrix} a \\ i \ j \end{Bmatrix} + \begin{Bmatrix} a \\ b \ j \end{Bmatrix} \begin{Bmatrix} b \\ i \ a \end{Bmatrix} - \begin{Bmatrix} a \\ b \ a \end{Bmatrix} \begin{Bmatrix} b \\ i \ j \end{Bmatrix}.$$

It is clear that R_{ii} is symmetric in the subscripts.

2. - Notation. Unit normal.

Let L_m (m=n+1) be a NH-manifold of dimensions m (=n+1) and class not less than 4. The subspace L_n is called the NH-hypersurface of NH-enveloping space L_{n+1} . Let y^a $(\alpha=1, ..., n+1)$ be the coordinates of a point in L_{n+1} and x^i those of the same point in L_n . Let the fundamental form for L_n be denoted by g_{ij} w^i w^j and that for L_m by $G_{\alpha\beta}$ W^{α} W^{β} . We have

$$(2\cdot 1) G_{\alpha\beta} \frac{W^{\alpha}}{w^{i}} \frac{W^{\beta}}{w^{j}} = g_{ij}.$$

As the functions y^a are invariants for transformations of the coordinates x^i in L_n , their first NH-covariant Pf-derivative with respect to L_n are the same as their NH-derivative with respect to the variables x^i . That is

$$y^a_{,i} = \frac{W^a}{w^i} \,.$$

Thus $(2 \cdot 1)$ becomes

$$(2\cdot 1)'$$
 $G_{\alpha\beta} y^{\alpha}_{,i} y^{\beta}_{,j} = g_{ij}$.

For a fixed value of i, the vector of L_{n+1} whose NH-contravariant components are y_{i}^{a} , is tangential to the curve of parameter x^{i} in L_{n} . Consequently if

 N^{α} are the NH-contravariant components of the unit vector normal to L_n , these must satisfy the relations

$$(2\cdot 2) G_{\alpha\beta} N^{\beta} y_{.i}^{\alpha} = 0,$$

$$(2\cdot 3) G_{\alpha\beta} N^{\alpha} N^{\beta} = 1.$$

3. - Generalised NH-covariant Pf-differentiation [2].

Let u_{α} , v^{β} be the components in L_m of two unit NH-vector fields which are Pf-parallel along C (a curve in L_n) with respect to L_m and similarly p^i the components in L_n of a unit NH-vector field which is Pf-parallel along C with respect to L_n . Then

$$egin{aligned} & rac{\mathrm{d} u_a}{\mathrm{d} s} - \left\{ egin{array}{c} eta \\ lpha & \delta \end{array}
ight\}_a^u u_eta \, rac{W^\delta}{\mathrm{d} s} = 0 \,, \ & rac{\mathrm{d} v^eta}{\mathrm{d} s} + \left\{ egin{array}{c} eta \\ lpha & \delta \end{array}
ight\}_a^v v^a \, rac{W^\delta}{\mathrm{d} s} = 0 \,, \ & rac{\mathrm{d} p^i}{\mathrm{d} s} + \left\{ egin{array}{c} i \\ k & j \end{array}
ight\}_a^v p^k rac{w^j}{\mathrm{d} s} = 0 \,. \end{aligned}$$

Let $T^a_{\beta i}$ be a NH-tensor field, defined along C which is a mixed NH-tensor of the second order in L_n and a NH-covariant vector in L_n . Then the product $u_a w^\beta p^i T^a_{\beta i}$ is a scalar invariant and along C it is a function of s. Its NH-intrinsic Pf-derivative with respect to s is also a scalar invariant. Obtaining the Pf-derivative of the product with respect to s and using the above equations of Pf-parallelism of the vectors, the NH-intrinsic Pf-derivative can be written as

$$u_{a}\,v^{\beta}\,p^{i}\left[\frac{\mathrm{d}\,T^{\alpha}_{\beta\,i}}{\mathrm{d}s}+\left\{\begin{array}{c}\alpha\\\gamma\quad\delta\end{array}\right\}_{g}\,T^{\gamma}_{\beta\,i}\,\frac{W^{\delta}}{\mathrm{d}s}-\left\{\begin{array}{c}\gamma\\\beta\quad\delta\end{array}\right\}_{g}\,T^{\alpha}_{\gamma\,i}\,\frac{W^{\delta}}{\mathrm{d}s}-\left\{\begin{array}{c}k\\i\ j\end{array}\right\}_{g}\,T^{\alpha}_{\beta k}\,\frac{w^{j}}{\mathrm{d}s}\right]\,.$$

It follows from the quotient law that the expression in square brackets is a NH-tensor of the type $T^a_{\beta i}$. Let us call it the Pf-intrinsic derivative of this NH-tensor with respect to s.

If C is any curve in L_n and the functions $T^{\alpha}_{\beta i}$ are defined through out the hypersurface. The above Pf-intrinsic derivative can be written as

$$(3\cdot 1) \qquad \left[\frac{\partial T^{\alpha}_{\beta i}}{w^{j}} + \left\{ \begin{array}{c} \alpha \\ \gamma \quad \delta \end{array} \right\}_{q} T^{\gamma}_{\beta i} \ y^{\delta}_{,j} - \left\{ \begin{array}{c} \gamma \\ \beta \quad \delta \end{array} \right\}_{q} T^{\alpha}_{\gamma i} \ y^{\delta}_{,j} - \left\{ \begin{array}{c} k \\ i \quad j \end{array} \right\} T^{\alpha}_{\beta k} \right] \ \frac{w^{j}}{\mathrm{d}s} \ .$$

Now w^j/ds is an arbitrary, unit NH-vector in L_n . Since the direction of C is arbitrary, its coefficient in square brackets is a NH-tensor. We denote it by $T'_{\beta i;j}$. Thus

$$(3\cdot 2) T^{\alpha}_{\beta i;j} = \frac{\partial T^{\alpha}_{\beta i}}{w^{j}} + \begin{Bmatrix} \alpha \\ \gamma \delta \end{Bmatrix}_{q} T^{\gamma}_{\beta i} y^{\delta}_{,i} - \begin{Bmatrix} \gamma \\ \beta \delta \end{Bmatrix}_{q} T^{\alpha}_{\gamma i} y^{\delta}_{,j} - \begin{Bmatrix} k \\ i \ j \end{Bmatrix}_{\sigma} T^{\alpha}_{\beta k}.$$

Let us call it the generalised covariant Pf-derivative of $T^{\alpha}_{\beta i}$ with respect to L_n or precisely as the Pf-tensor derivative of $T^{\alpha}_{\beta i}$ with respect to L_n .

The Pf-tensor derivative of the fundamental tensors $G_{\alpha\beta}$ and g_{ij} are both zero as is easily verified. These may therefore be treated as constants in Pf-tensor differention.

4. - Second Fundamental Form.

Since y^a is an invariant for the transformation of x's, its Pf-tensor derivative is the same as its NH-covariant Pf-derivative with respect to x's so that

$$y_{;i}^{a} = y_{,i}^{a} = \frac{\partial y^{a}}{w^{i}} = \frac{W^{a}}{w^{i}}.$$

The Pf-tensor derivative of this is

$$(4\cdot2) y_{;ij}^{\alpha} = \frac{\partial^2 y^{\alpha}}{w^i w^j} - \left\{ \frac{h}{i \ j} \right\}_{\sigma} y_{,h}^{\alpha} + \left\{ \frac{\alpha}{\beta \ \gamma} \right\}_{\sigma} y_{,i}^{\beta} y_{,i}^{\gamma} .$$

Taking the Pf-tensor derivative of $(2\cdot 1)'$ with respect to L_n we have

$$G_{\alpha\beta} y^{\alpha}_{;ik} y^{\beta}_{,i} + G_{\alpha\beta} y^{\alpha}_{,i} y^{\beta}_{;ik} = 0$$
.

Let this be subtracted from the sum of two others obtained by interchanging i, j, k cyclically. Then, since y_{iij}^a is symmetric in the subscripts we find

$$(4\cdot 3) G_{\alpha\beta} y^{\alpha}_{,ii} y^{\beta}_{,k} = 0.$$

We see that $y_{;ij}^a$ regarded as a NH-tensor of L_{n+1} is normal to L_n . It may therefore be expressed as

$$(4\cdot 4) y_{;ij}^a = \Omega_{ij} N^a.$$

That the coefficients Ω_{ij} are the components of a symmetric NH-covariant tensor of the second order in L_n , is obvious, for the functions y^a_{ii} are of this nature. It follows

$$(4\cdot 5) \Omega_{ij} = y^{\alpha}_{;ij} G_{\alpha\beta} N^{\beta}.$$

5. - Pf-tensor derivative of the unit normal.

The unit normal N^{α} is a NH-contravariant vector in L_m whose Pf-tensor derivative with respect to L_n is given by

$$(5\cdot1) N^a_{;i} = \frac{\partial N^a}{w^i} + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} N^\beta y^\delta_{,i}.$$

Taking Pf-tensor derivative of each side of (2.3) we have

$$(5\cdot 2) G_{\alpha\beta} N^{\beta} N^{\alpha}_{:i} = 0,$$

which shows that $N_{;i}^a$ regarded as a NH-vector in the y's is orthogonal to the normal and therefore tangential to the hypersurface. It can be expressed as

$$(5\cdot3) N_{:i}^{\alpha} = A_i^k y_{.k}^{\alpha}.$$

Taking the Pf-tensor derivative of $(2\cdot 2)$ with respect to L_n we find

$$G_{\alpha\beta} \; y^{\alpha}_{;ij} \; N^{\beta} \, + G_{\alpha\beta} \; y^{\alpha}_{,i} \; N^{\beta}_{;j} \, = 0$$

substituting from $(4\cdot4)$ and $(5\cdot3)$ we obtain, by virtue of $(2\cdot3)$ and $(2\cdot1)'$,

$$\Omega_{ij} = -G_{a\beta} y_{.i}^{a} y_{.k}^{\beta} A_{i}^{k} = -g_{ik} A_{i}^{k}$$

Multiplying by g^{ih} and summing for i we deduce

$$\Omega_{ij} g^{ih} = -A^h_i.$$

Thus $(5 \cdot 3)$ becomes

$$N^a_{\;;i} = -\,\Omega_{ij}\,g^{jk}\,y^a_{,k}\,.$$

This is the Pf-tensor derivative of N^{α} .

Since $y_{,i}^{\alpha}$ are components of a NH-covariant vector in L_n , it follows

$$y_{,ijk}^{\alpha} - y_{,ikj}^{\alpha} = y_{,p}^{\alpha} R_{ijk}^{p} = y_{,p}^{\alpha} g^{ph} R_{hijk}.$$

Now

$$y^{\alpha}_{:ij} = \Omega_{ij} N^{\alpha}$$

by $(4 \cdot 4)$, hence

$$y_{:ijk}^{\alpha} = \Omega_{ij,k} N^{\alpha} + \Omega_{ij} N_{:k}^{\alpha}.$$

Also

$$y^{\alpha}_{;ij} = y^{\alpha}_{,ij} + \begin{Bmatrix} \alpha \\ \beta \end{pmatrix} y^{\beta}_{,i}, y^{\gamma}_{,j}.$$

Therefore

$$\begin{split} y^{a}_{;ijk} &= \left[y^{a}_{,ij} + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} y^{\beta}_{,i} \ y^{\gamma}_{,i} \right]_{,k} + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} y^{\gamma}_{,k} \ y^{\beta}_{;ij} = \\ \\ &= y^{\alpha}_{,ijk} + \frac{\partial}{\partial x^{k}} \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} y^{\beta}_{,i} \ y^{\gamma}_{,j} + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} \left[y^{\beta}_{,ik} \ y^{\gamma}_{,i} + y^{\beta}_{,i} \ y^{\gamma}_{,jk} \right] + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} y^{\gamma}_{,k} \ y^{\beta}_{,ij} \,. \end{split}$$

Equating the two values of $y_{:ijk}^a$ we get

$$\begin{split} \varOmega_{ij,k} \, N^a - \varOmega_{ij} \, \varOmega_{kh} \, g^{h\, p} \, y^\alpha_{,p} &= y^\alpha_{,ijk} \, + \left\{ \begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right\} (y^\beta_{,ik} \, y^\gamma_{,i} \, + y^\beta_{,i} \, y^\gamma_{,ik}) \, + \\ &\quad + \left\{ \begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right\} y^\gamma_{,k} \left(y^\beta_{,ij} \, + \left\{ \begin{smallmatrix} \beta \\ \delta \end{smallmatrix} \right\} y^\delta_{,i} \, y^\varepsilon_{,i} \right) + y^\beta_{,i} \, y^\gamma_{,i} \, y^\varepsilon_{,k} \, \frac{\partial}{\partial y^\varepsilon} \left\{ \begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right\} \, . \end{split}$$

Interchanging j and k we obtain

$$\begin{split} \varOmega_{ik,i}\,N^a - \varOmega_{ik}\,\varOmega_{jh}\,y^{\alpha}_{,p} &= y^{\alpha}_{,ikj} + \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} \left[y^{\gamma}_{,k}\,y^{\beta}_{,ij} \,+\, y^{\beta}_{,i}\,y^{\gamma}_{,kj} \,+\, y^{\gamma}_{,j}\,y^{\beta}_{,ik} \,+\, \right. \\ \\ & \left. + \left\{ \begin{array}{c} \beta \\ \delta \end{array} \right\} y^{\delta}_{,i}\,y^{\varepsilon}_{,k}\,y^{\gamma}_{,i} \right] \,+\, y^{\beta}_{,i}\,y^{\gamma}_{,k}\,y^{\varepsilon}_{,j}\,\frac{\partial}{\partial y^{\varepsilon}} \left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} \,. \end{split}$$

24. - Rivista di Matematica.

Subtracting we get

$$\begin{split} y_{,ijk}^{\alpha} - y_{,ikj}^{\alpha} &= N^{\alpha}(\Omega_{ij,k} - \Omega_{ik,j}) + y_{,p}^{\alpha} \, g^{ph}(\Omega_{ik} \, \Omega_{hj} - \Omega_{ij} \, \Omega_{kh}) \, + \\ &\quad + \left\{ \frac{\alpha}{\beta \, \gamma} \right\} \left[y_{,ij}^{\beta} \, y_{,k}^{\gamma} + y_{,i}^{\beta} \, y_{,kj}^{\gamma} + y_{,j}^{\gamma} \, y_{,ik}^{\beta} + \left\{ \frac{\beta}{\delta \, \epsilon} \right\} \, y_{,i}^{\gamma} \, y_{,k}^{\delta} \, y_{,k}^{\epsilon} \right] - \\ &\quad - \left\{ \frac{\alpha}{\beta \, \gamma} \right\} \left[y_{,ik}^{\beta} \, y_{,j}^{\gamma} + y_{,i}^{\beta} \, y_{,jk}^{\gamma} + y_{,k}^{\gamma} \, y_{,ij}^{\beta} + \left\{ \frac{\beta}{\delta \, \epsilon} \right\} \, y_{,i}^{\delta} \, y_{,i}^{\epsilon} \, y_{,k}^{\gamma} \right] + \\ &\quad + y_{,i}^{\beta} \, y_{,j}^{\gamma} \, y_{,k}^{\epsilon} \, \frac{\partial}{\partial y^{\epsilon}} \left\{ \frac{\alpha}{\beta \, \gamma} \right\} - y_{,i}^{\beta} \, y_{,k}^{\gamma} \, y_{,k}^{\epsilon} \, \frac{\partial}{\partial y^{\epsilon}} \left\{ \frac{\alpha}{\beta \, \gamma} \right\} = \\ &\quad = N^{\alpha}(\Omega_{ij,k} - \Omega_{ik,i}) + y_{,p}^{\alpha} \, g^{ph}(\Omega_{ik} \, \Omega_{hj} - \Omega_{ij} \, \Omega_{kh}) + \end{split}$$

$$+ y_{,i}^{\gamma} y_{,i}^{\delta} y_{,k}^{\varepsilon} \left[\left\{ \begin{array}{c} \alpha \\ \beta \ \delta \end{array} \right\} \left\{ \begin{array}{c} \beta \\ \gamma \ \varepsilon \end{array} \right\} - \left\{ \begin{array}{c} \alpha \\ \beta \ \varepsilon \end{array} \right\} \left\{ \begin{array}{c} \beta \\ \gamma \ \delta \end{array} \right\} + \frac{\partial}{\partial y^{\delta}} \left\{ \begin{array}{c} \alpha \\ \gamma \ \varepsilon \end{array} \right\} - \frac{\partial}{\partial y^{\varepsilon}} \left\{ \begin{array}{c} \alpha \\ \gamma \ \delta \end{array} \right\} \right]$$

by suitably changing the dummy indices. Or

$$y^a_{,ijk} - y^a_{,ikj} = N^a(\Omega_{ij,k} - \Omega_{ik,j}) + y^a_{,p} g^{ph}(\Omega_{ik} \Omega_{hj} - \Omega_{ij} \Omega_{kh}) + \overline{R}^a_{\gamma\delta\varepsilon} y^{\gamma}_{,i} y^{\delta}_{,j} y^{\varepsilon}_{,k},$$

where $\overline{R}^{\alpha}_{\gamma\delta\epsilon}$ are NH-RIEMANN symbols for the NH-tensor $G_{\alpha\beta}$ evaluated at points of the NH-hypersurface.

We can write $(5 \cdot 6)$ as

$$(5 \cdot 7) y^{\alpha}_{,p} g^{ph} [R_{hijk} - (\Omega_{hj} \Omega_{ik} - \Omega_{hk} \Omega_{ij})] -$$

$$- N^{\alpha} (\Omega_{ij,k} - \Omega_{ik,j}) - \overline{R}^{\alpha}_{\gamma\delta\epsilon} y^{\gamma}_{,i} y^{\delta}_{,i} y^{\epsilon}_{,k} = 0.$$

Multiplying (5·7) by $G_{\alpha\beta}$ N^{β} and summing with respect to α we obtain, by virtue of (2·2) and (2·3),

$$\varOmega_{ii,k} - \varOmega_{ik,i} + \overline{R}_{\beta\gamma\delta\varepsilon} \ N^{\beta} \, \frac{W^{r}}{w^{i}} \, \frac{W^{\delta}}{w^{j}} \, \frac{W^{\varepsilon}}{w^{k}} = 0 \; .$$

Similarly multiplying (5.7) by $G_{\alpha\beta} y_{il}^{\beta}$ and summing with respect to α , we have

$$R_{iijk} = \varOmega_{ii}\, \varOmega_{ik} - \varOmega_{ik}\, \varOmega_{ij} + \overline{R}_{\beta\gamma\delta\epsilon}\, \frac{W^\beta}{w^i}\, \frac{W^\gamma}{w^i}\, \frac{W^\delta}{w^i}\, \frac{W^\epsilon}{w^k}\,.$$

These are the generalised Mainardi-Codazzi relations in the NH-system.

References.

- 1. T. Takasu: Connection spaces in the large.
 - Non-holonomic spaces with general linear connections, Yokohama Math. J. 1 (1953), 1-28.
 - II. Non-holonomic affine geometry, Yokohama Math. J. 1 (1953), 29-38.
 - III. Non-holonomic Euclidean geometry, Yokohama Math. J. 1 (1953), 39-74.
 - IV. Non-holonomic Laguerre geometry, Yokohama Math. J. 1 (1953), 75-77.
 - v. Non-holonomic conformal geometry, Yokohama Math. J. 1 (1953), 79-82.
 - vi. Non-holonomic Lie geometry and non-holonomic parabolic Lie geometry, Yokohama Math. J. 1 (1953), 83-87.
- C. E. Weatherburn: An introduction to Riemannian geometry and the tensor calculus. Univ. Press, Cambridge 1938.

