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CHRISTOPH J. NEUGEBAUER (%)

III. - A Further Extension of a Cyclic Additivity Theorem

of a Surface Integral. (**)

Introduction.

This is the third and last paper in a series of three papers and deals with
an application of the theory developed in [7] to a surface integral. The
papers [7], [8] will be referred to with Roman numerals I, I, respectively,
followed, if necessary, by Arabic numerals indicating the specifie section in
¥ or IL ;

Let A be an admissible set of E, (see [2; 5.1]), and let (7', 4) be a continuous
mapping from 4 into #;, where I,, F, are the Buclidean plane and the Eueli-
dean three space, respectively. If L(7, A) denotes the LEBESGUE area of
(T, A) (see [2]), then for L(T, 4)< oo, L. CusARI [4, 2] has introduced a sur-
face integral J(I', 4) = [F do as a WEIERSTRASS integral. In this paper a
cyclic additivity theorem for J(7', A) will be established similar to the corres-
ponding theorem for the LEBESGUE area L(T, A) (see IL12).

The question of cyclic additivity of J(T', 4) was first studied by J. Crccon1[1],
who has proved the following theorem. Tf A = @ is the unit square, and if
(T, Q) =1Im, m:Q=>No, 1: Mo —» F, is a monotone-light factorization of
(T, @), then J(T, Q) is weakly cyclicly additive, i. e.,

(1) J(T, Q) =S I rgm, Q), ¢ c Do,

where r; is the monotone retraction from Ko onto a proper cyclic element
C o
¢ of . '
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(T, Q) =sf, f:Q =9, s:9M — E, is an unrestricted factorization
£ (T, Q) (see [6]), then J(T, Q) is also strongly cyclicly additive, i. e.,

(2) ST, Q) =2 I(srpf, Q)

where 3 extends over all proper cyclie elements ¢ of Ol for which ¢ n (Q) 5= 0.
The formula (2) has been proved in [9].

Both formulas (1) and (2) are concerned with the unit square . In this
paper ¢ is replaced by a'n admissible set, and the following further extension
of (2) is proved. If (T =¢f, 14 =>OF 5! T, Jo*cC Do,
is an unrestricted fdctonmtlon of (T, A) in the sense of 1.9, then

3) J(Ty 4) = z J(s Ye fy Gé)y Ce J{a

‘where ¥ is the class bfﬂpiopel eyclié'éléments associ\ated with ( , A) _s;f, -

and where G is the set associated with ¢ e H. 1‘01 the above texmmolooy the
reader is veferred to 1.12.

‘The treatment of cyclic additivity of the surface integral J(T', A) and the
LEBESGUE area L(7T, 4) are somewhat different. The difference stems from
the fact that J(T, A) need not be non-negative. From this point of view, the
present paper is not a direct application of I. As will be seen, however, many
proofs given in I can readily be modified to apply to J(T, 4).

A Cyclic Additivity Theorem.

IIL.1. — In this paragraph we shall give the definition of an admissible
set and those properties of the LEBESGUE area which are needed in the sequel.

Definition. A subset A of the Euclidean plane E, will be termed admis-
sible provided one of the following. cases holds. (a) 4 is a simply connected
JORDAN region; (b) 4 is a finitely connected JOrRDAN region; (¢) 4 is a finite
union of disjoint regions of the type (a) or (b); (d) 4 is any open set in #,;
(e) A-is-any set open in a set of the type (a), (b), or (¢). ~In particular A may
be a figure I, i. e., & finite union of disjoint finitely connected polygonal
regions. The reader is referred to [2; 5.1].

For (7, A) a continuous mapping from an admissible set into L'3 one can
define the LEBESGUE arvea L( T, A) as in L. Cesart {2; 5.8].
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(i) If (T, A) is a continuous mapping from an admissible set: .4 into H,,
and i 4, (=1, 2, ...)-is any sequence of admissible . gets such that
d,cd,pcd, 421 A° then I(T, A,) — L(T, A) as n —oco (L. CBSARI
[2: 5.14 (in)]). '

(i) If an admissible set 4 can be written as the union 4, (i =1, 2,...)
of disjoint admissible sets w ith the plOpeltY that each interior point of A is
interior to one 4., then L(T, 4) ZL (T, 4, (L. CEs: ART [2; 5.14 (ii)]).

1.2, — Let A be an admissible set in F, and let (I, 4) be a continuous
mapping from 4 into E; such that IL(7, A)<<oco. Then I': 2 = z(u,v),
y = yu, v), # = s(u, v), (v, v)€ 4. Let us introduce the plane mappings T,:
y o=yl ), & ==2u, v)r Ty | 2 = 2(u, v), v = z(u, v); Ty: @ = z(u, v),
y == y(u, v), (4, v)e A. The image of 4 under T, lies in a Euclidean plane
which we deswnate by I),r (r =1, 2, 3). For & a polygonal region in 4, let
us, deno‘re by z* the (ounteulodu\lsc oriented boundary curve of z. Let

O(p 7., = ) bc the topological index of a point p, € B,, with respect to T'.(z*)
if p, f;’é T (7). We set O(p,; T,y 7)) =0 if p, e T (7*). We define according
to L. Omsari [2] the following quantities: '

oT,, ” L Otp now ), Wy, ) :J' Oy T'ry ), (r=1, 2, 3),
W, 7) = [Ty, 0)* - w(Tsy 2)* = w(Ty, 7)2]%,

where the integration in the above expressions is performed over the plane
By . Let V(T, A), V(T,., 4) (r =1, 2, 3) be the GEOczE area of the mappings
(T, A), (T, A) (r ==1,2,3) (see[2; 9.1]). By[2;24.1 (I)] we have the equality
LT, A) = V(T, 4).

IIL.3. — Let X be a compact subset of F;, and let F(ax, y, 2, u, v, w) be
a function defined for each (z, y, 2) € X and for each triple (%, v, w) # (0, 0, 0)
satisfying, moreover, the following conditions:

(1) Pz, y, 2z, u, v, &) is continuous for each (, ¥, 2) € X and for each
“triple (w, v,.w) % (0, 0, 0).

(2) Bz, vy, 2, w, v, w) is positively homogeneous of degree one with
respect to u, v, w, 1. e, '

Fla, vy, 2y ku, kv, kw) = k- Fla, y, 2, u, v, w)

for each k& >0.
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If we put F(r, ¥, 2, 0, 0, 0) = 0 for each (z, ¥, z) € X we ]mv a8 u conse-
quence of (2) that F is also conlinuous at each point (x, y, 2, 0, 0, 0) where
(v, ¥, 2) € X.

Let (T, 4) be a continuous mapping from an admissible set A c K, into £,
and assume that T(4)c X and L(T, 4) < oo. Let T, (r =1, 2, 3) be the
plane mappings introduced in IIL2. For [=, (k =1, .., »)] a finite system
of non-overlapping polygonal regions in A4 let us consider the following non-
negative indices with respect to (7, 4):

m = max | ¥ Ty(x;)], 0= max diam[7(n)],
r=1,2,3 k=1 k=1, ..,n
po=max [V, A)— 3w, =), V(T,, 4)— 3w, @) ¢ =1, 2, 3)]
k=1 Jo==] .

In view of the hypothesis L(7, 4) < oo, it is possible to determine for = >0

- giveny-a-system ol -non-overlapping - polygonal -regions{m (k==L vrvyn)]
in 4 with indices less than & with respect to (7', 4) (L. CEsARI [2, 22, 4 &
Belect a point (u,, ».) from each s, and consider the sum

2 Fla(u, vy), ylue, v, 20w, vy w(Tyy )y w(Te, ), w(Tsy m)] -

k=1

L. Cmsarr {4, 2] has shown that

im YA .. ],

m 8, u—>0 Tee=1

exists and is finite, and we shall denote this limit by J(7, 4) or f Fdo.
(7, 4)

IIL4. ~ Tn the following three paragraphs we will discuss three lemmas
for J(T, A), in nature similar to those for the LERESGUE area mentioned in
HIL.1.

Lemma. Let (7, 4) be a continuous mapping from an admissible set
A.c B, into B such that L(T, 4) < oo and T(4) c X. Assume there is a finite
number of disjoint admissible sets A, G =1,., ) with 4,cd. I LT, 4) =

~~§L T, A,y and I(T,, A) }‘L oA (r==1, 2, )Wh‘ereT (r=1,2,3)

are the plane mappings mmoduocd in .2, then J(T, A) Z J(T, 4))
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Proof. For each i, let {S,‘;} be a sequence defined as follows. Ror each 4,
Sfis a system of a finite number of non-overlapping polygonal regions wcC A4,
with indices m,, ), u, with respect to (7', A,) such that mi, o}, ui -0 as

1

n? n?

n-+co. IFor each n, let 8,=- U 8. Then §, isafinite system of n()n—oveﬂappin0'
f==1
polygonal 1'eo'ions in 4. In view of the hypothesis L(7, 4) == Z LT, A.),
f==]

T, A EL (v Ay) (r =1, 2, 3), and the fact that L(T, 4) = V(71, 4),
we (’f()ndude thayt the indices m,, d,, w, of 8, with respect to (T, A) satisfy
the following velation:

t ) . .
(1) m, < Yy om,, Op==max [0, (i=:1,.., t)], Un Ky -

e =]

Hence:

(2) ‘ L o=

Select now a point in each polygonal region = € 8, and form

t
(3) SF[ .. 1= SF .. 7,
&8, i=1 aEgl

where the argument within the brackets is given by HL3. Letting n — co
we finally infer

S > F[ .. ]—=JT, 4),

:rESn
(4) ¢ _ ,
( S P[] JI, 4 (G=1,.., 1),
TE 8 .

and hence, in view of (3),

G) (T, A) = zJ,A

i=1

HL5. — Lemma. Let (£, 4) be a continuous mapping from an admis-
sible set 4 c F, into K, such that T(A) c X and I(T, A) < oco. Assume there
is a sequence of admissible sets 4, (j =1,2,...) with the property that -
Ajcdyc A, A7t 40 Then J(T, 4;) — J(T, A) as j —
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Proof. From IIL1 (i):

LT, 4) — LT, 4) asj oo,

: LT, A) —~IL(T,, 4) asj—oo (r=1, 2, 3),
1) ; ,
LT, 4,) <L, 4) (G=1,2,.),

T AN <IT,, 4) (r=1,2,3;]=1,2,..).
For each j, choose a finite system S; of non-overlapping simple polygonal
regions ww C A; with indices m;, 0,, u; with respect to (T, 4,) subject to the

following conditions:

1 I 7 .
(2) My, O; ;>0 as j—co.

(3)-If.ave.select-a-point-in.each. g-€.8; -~ (f =152y )and-form - the —SUme e

Yi=>F .. ] as in HIL3, then |J(T, 4,)—>;| =0 as j — oo.
.’[ESj

Now, for each j, 8, is also a finite system of non-overlapping polygonal
regions in 4. Hence there is associated with each §; a set of indices m;, §;, u;
with respeet to (I, 4). We assert that

(4) - My O;, 1y >0 as j-—»oo.

. ! 3 .
Since m; == m;., d; = 06;, we have m;, 0; >0 as j - oco. To prove that
s =0, let € >0 be given. From (1) we have an integer I’ >0 such that

S 0 <IT, A)—IL(T, A;) = V(T, 4)—V(T, 4,) <¢/2,
(5)

[0 < LT, A)— LT, A)=V(L, A)—TV(T, 4)<e2 (=1, 2, 3)

for all § >1'. In view of (2) there is an integer I’ >0 with the property that
(6) wy,<ef2  for all  j>I".

Let I =max [I', I"]. Let j be any integer greater than I. By definition
(see- IIL.3) we have:

w; =max [C;, C; (r=1, 2, 3)], : u; =max[C, Cx (r=1, 2, 3)],
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where ;= V(T, A;) — 3 w(T, =n), and similar identifications for C,,
aE8;
r=1,2,3), ¢, and 0, (r=1,2,3).
Since ¢ > C;, ¢, >0; (r=1,2,3)wehaveyu;> ,u;. Suppose now that

(7) ,u.j—*,u,;. > &2,

The cases wheve u; =C, u,=0C;; u; =0C, u, =0C;, (¢ =1,2, 3) are
excluded, since in each case by (5) u, —u, < ¢/2. Let us define 7, as follows.
If py == C, let v; = C;; i p; = 0C,, let 7, = C;, (r=1, 2, 3). Then from (5)

(&) O0<p,—r,<¢l2.

Hence subtracting (8) from (7), ,u,,-—~,u; —u; -1; >0 or T; >,u;, a con-
tradiction. Hence p; — ‘u; < g/2, and since ,u,;. < ¢/2 from (6), we have u; << e
for all § > 1. Since & >0 was arbitrary, (4) follows.

From the definition (see IIL.3), we have 3, — J(T, 4) as j§ - co. From (3)

we finally infer J(T, 4,) —J(T, A) as § — co. This completes the proof of
the lemma.

II1.6. - Lemma: There is a constant M >0 such that |J(T, 4)|<
< M-I(T, A), where T is any continuous mapping from an admissible set
A c E, into B, for which I{(T, A) << oo and T(4)c X.

Proof. Since F(w, v, 2, u, v, w) is continuous on X and since X is compact,
we have a constant M >0 such that

1) | F(@, y, 2, u, v, w) | < M for (@, y, 2) € X and for all (%, v, w) for which
w2 - p? - w? —=1. Let S, be a finite system of non-overlapping simple poly-
gonal regions 7z ¢ A with indices m,, 0., p, With respect to (7', A). In view of
L. CESARI [2; 21.3 (i), 22.4 (i)] there is a sequence {S,,} such that

{2) Mpy Ony tn -0 as 0 — oo,

(3) | lim Y (T, @) = L(T, A).

>0 xES,

Let us select a point (w,v) from each z €5, and consider the sam (see II1.3)

(4) 2.1”[«’0(%, ), Y(u, v)y 2w, V), Uy, Usy Us] = T,
. eS8,

23, — Rivista di Matematica.
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where u, = w(T,, %) (r==1,2,3). We may assume that (u,, u,, u5) 7 (0,0, 0).
In view of the homogeneity of #, (4) becomes

(5) T, = zu(T, 7)) Flo(u, v), ylu, v), 2(u, v), a1, @, as],
ZE S,

where a, = u,/u (r =1, 2, 3). Since &} -+ ¢ -+ ¢} =1, we infer from (1)

(6) T, | <M ST, 7).
€S,

From (3) and the definition of J(T, 4), |J(T, 4)| <M -IL(T, A).

HI.7. ~ Liet (T, A) be a continuous mapping from an admissible set
A c B, into B, such that L(T, 4) << oo and T(4)c X. The approach followed
to show that J(T, 4) is cyclicly additive is similar to the approach used in IL.
However, as.already. noted.in.the.introduction,.the functional .J(Z, A) need
not be non-negative and hence one cannot directly apply the result in I.15.
The cyclic additivity of L(T, 4) (see IL.12) in conjunction with the lemmas,
II1.4, 5, 6 will lead to a cyeclic additivity formula of J(ZT', A).

IIL.8. — Let T be a continuous mapping from a PEANO space P into a
metric space P¥, written 7. P — P*.
Definition: An unrestricted factorization of T consists of a PEANO

space Dl and two continuous mappings s, f such that f: P-> Olp, s: 9 — P,

T == sf.

II1.9. - In accordance with the observation made in IIL7, we proceed
to establish the following theorem.

Theorem. Let (T, R) be a continuous mapping from a finitely connected
Jordan region RcC B, into By such that L(T, R)<< ocoand T(R) ¢ X. Let
(I, R) =sf, fiR—>Mo, s.:90 —E; be an wunrestricted factorization of
(T, R). If for C & proper cyclic element of Do, we denote by 1y the monotone
retraction from o onto C, then

1) J(T, R) = 3'J(srgf, R),

where S denotes the summation extended over all ¢ c Ol for which C n f(R) # 0..
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Proof. From II.8, we have
(2) LT, R) =Y L{srqf, R), Ccoke.

With this additional formula, the proof of (1) can be carried out by an entirely
analogous procedure as in [9].

HI.10. — The definition of an unrestricted factorization of a mapping
given in IIL.8 does not apply to continuous mappings (7, 4) from an admissible
set 4 ¢ B, into H,, since 4 need not be a PrANO space. Fence we use the defi-
nition already stated in 1.9 and I1.10.

Definition: An unrestricted factorization of a mapping (7, 4) as above
consists of a PEANO space O, a subset Ofo* of Do, and two continuous map-
pings 8, f such that

ER R ; — FA e
(2) $: O™ - Iy,
(3) T =sf.

We ‘shall write (7, A) =sf, f:4 — Oo*, §:w* = H;, DMo*C Mo -

The remarks in 1.9 as well as the Remark in IL.11 should be observed.
In particular, as we have seen in IL1l, there is always a #rivial unrestricted
factorization of a mapping (7, A4).

IIL11. - The following lemma correspbnds to the lemma in I.10 and is
proved by the same method.

Lemma. Let (7, R) be a continuous mapping from a finitely connected
JORDAN region I into F; such that L(7, R) < co and T(R) c X. Let (I, R) ==sf,
[i R — 9% s 9* - H, Ol*cC o, be an unrestricted factorization of
(I, R). Then, if s(DWL*) c X, we have

1) J(T, R) =3*J(srgf, R),

where 3% denotes the summation over all proper cyclic elements ¢ of 9 for
which #4 f(R) C O*.
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Proof. In view of IIL9, the proof is entirely analogous to the proof
in 1.10. However, some care should be taken concerning an interchange in
the order of summation which was justified in 1.10 since the functional @ con-
sidered there is non-negative. Since the surface integral J(T', 4) neced not be
non-negative, the following observation is in order.

Remark. Let (T; 4) @@ =0, 1, 2, ..) be a sequence of continuous
mappings from an admissible set ACK, into ¥, such that for each i, L(T;, 4)<oo
and T, (4)c X. Assume we have the following additivity formulas

J(To, A) = 2 J(T;, A), L(Ty, A) =Y L(T;, A).
i=1 i=1
Then the series ¥ J(7;, A) converges absolutely. This is a simple conse-
i=1 .

quence of IIL.6; namely, by IIL6, there is a constant 27 >0 such that, for
each 4, |J(T;, A)| <M -L(T; A). Hence

S| J(Ts, A)| < M-S (T, A) = M-I(Ty, A)<oco.

fe=1 Tx= 3

IM1.12. — Let A be an admissible set in #,, and let ¢ be a component
of A. Then @ n A° 5= 0. This follows readily from IIL1. If ¢ is a component
of A, then G is open in A4, and hence G is admissible. But then G° # 0, and
since G°c A° the result follows:

Let (T, 4) be a continuous mapping from an admissible set A c I, into By,
and let (T, 4) =sf, f: A — D%, s:O* = H,, ¥ C D, be an unres-
tricted factorization of (7, A) (see IIL.10). From L1l we have that for a
component G of A either r,-f(@) is disjoint with OI* or else lies entirely in
ONo*, where 1 is the monotone retraction from 9j onto a proper cyclie element
C of 9.

According to 1.12, we introduce the following terminology. Let H be the
class of proper cyclic elements C of il for which there exists at least one com-
ponent & of A such that 74 () c Dl*. For each ¢ e H,we denote by G the
union of all components G of A satisfying r, f(G) c Olo*. Since G, is open
in A4, G, is an admissible set.

We shall term K the class of proper cyclic elements associated with (7', A) =sf,
and we shall term G the set associated with ¢ e J.

Tn 1.13 a series of lemmas were proved concerning the class K and the set

Gy. TFor convenient reference we restate the results.
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Lemma 1. Let 4’ be an admissible subset of 4. Then (I, 4’) admits
of an unrestricted factorization of the form (T, A') ==sf, f. A4 — D%
$: Oo* — By, Olo*C ORo. Let I’ be the class of proper cyclic elements
associated with (7', A’) = sf. Then a set G}; is associated with C e e’K'yif and
only if G, is of the form Gon 4'.

Lemma 2. Let 4, (i =1, 2,...) be admissible subsets of 4 such that
U A%=49 Foreachi, (T, A,;) admits of an unrestricted factorization (T, 4,) =sf,
i=1
fr A, - Oo¥ s OMo* - By, ONo*c Mo. Let R, be the class of proper
¢yclic elements associated with (7, A,) ==sf. Then U g{;, = J{. Moreover,
it A;c Ay (E=1, 2,..), then J{;C Iy . =

111.13. — Let (7, 4) be a continuous mapping from an admissible set
Ack, into E; such that T(4)c X and L(T, 4)<<oo. Let (T, A) ==sf,
Fider Oy 8-+ OMo® s Ty Do®C Do be -an-unrestricted - factorization..of
(T, A) (see III.10). Then, if we denote by s' the mapping s restricted to
M’ == f(4), we have (T, A) =¢f, [.: 4>, §.90 — B, D' cie
and s'(ML')c X. We can therefore assume in the sequel that the original
unrestricted factorization satisfies the property s(Olp*)c X. ~

1I1.14. — The following lemma is similar to the lemma proved in LI14.

Lemma. Let 4 be a finite union of disjoint finitely connected JORDAN'
regions R, ..., R,, and let (T, 4) =sf, f: 4 — 9% s:9M* — L,
Oo* ¢ Dl be an unrestricted factorization of (7, A). If for € a proper cyclic
element of O}, r, denotes the monotone retraction from 9% onto ¢, then

(1) J(T, 4) =3 d(s 1], Go) Cedr,

where J is the class of proper cyeclic elements associated with (7, 4) = sf,
and where G is the set associated with C € J{. :

Proof. We first assume that Jf -+ 0. For each 4, the mapping (T, R.)
admits of an unrestricted factorization (7, R, = sf, [f.R;, = Ol%
§: Mo* - By, Do*C M. If we denote by J{, the class of proper cyclic
elements associated with (7, R,) = sf, then by IIL12 (Lemma 2), U &, ==J.

' i=]
For each € e g, let n(C) be the integers among i=1, ..., # for which C e J(,.
If we set for C € &, G4 = R,;nGg then by IL12 (Lemma 1), Gy is the
set associated with Ce g{;. Since R, is connected, Gy = R,;, and since
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Gy = UGy, Ggisafinite union of disjoint finitely connected JorDAN regions.
i En(C)
In view of L. CEsARI [2; 5.14 (ii)] and by IIL4,

J(T, 4) = iJ(T, R,
) i=1 .
J(srof, Go) =X J(sryf, Gp).

i En(C)
From MI.11 we have now for each 4, 1 <i<n,

(3) N J(T’ Ri) - zs‘; J(S TCf’ Ri)?

where Y * denotes the summation over all proper cyclic elements ¢ of ko for
which 75 f(R,) C Olo*. Using the terminology introduced in IIL12, (8),

becomes
(4) J(T, BR) =3 (s rof, G8),  Ced.

From (4) and (2) we obtain now:

Gy ' J(T, A) =3 S J(sref, GL).
i=1 cedf,

‘Since, for a given (e I, COedi if and only if ien(C), we can rewrite (5) ’
in the form (see also the Remark in IIL11):

{6) JI, 4) =3 3 J(sref, Go)-
cedf ienO)

From (2) we infer (1).

The above proof was carried out under the assumption that g =< 0. If
J{ = 0, then it follows from (3) that J(T, R;) =0 (i=1,..., #) and from (2)
that J(I, A) = 0. This completes the proof of the Lemma.

TI1.15. — We are now ready to state and prove our main result.

Theorem. Let (7, 4) be a continuous mapping from an admissible set
A C B, into By such that L(T, A) < oo and T(A)c X (see TIL3). Let (T, A) — sf,
CfrA = OleF, s O > Ii;, D*coOlle be an wunrestricted factorization of
(T, A) for which s(Dlo*) ¢ X (see IL.13). If for C a proper cyclic clement of Do,
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we denote by r o the monotone retraction from ORo onto C, then we havethe following
cyclic additivity formula -

1) J(I, A) =23 I(srcf, Gg)s Cedt,

where J¢ is the class of proper cyclic elements associated with (T, A)': sf, and
where G is the sel associated with C e g (see IL12).

Proof. We first assume that Jf 5 0. Let ¥, (n =1, 2,...) be a sequence
of figures (IIL1) such that F,c F,,c 4, Fo 1 A° (see L. CesArr [2; 5.6]).
The mapping (7, ¥,) admits of an unrestricted factorization (T, F,) = sf,
f:F, = Ol*, §.9* = E;, 9o*cDe. Let g, be the class of proper
cyclic elements associated with (7, F,) =sf. Then by IIL.12 (Lemma 2),
Hn C Harn (=1, 2,...) and U J, = J{. Hence for each C e J{, there. is an

ey S

integer N(C) >0 such that Ce J,, » >N(C). By II.12 (Lemma 1), G% =
= G ,nF, is the set associated with (e Jf,, » >N(G). The sequence Gy,
n > N(0), satisfies the property that Gy c G5 c Gy, G% T G%. Hence from IIL5
we have the following relations: ' ‘

@)  lm (T, F,) =J(T, 4),
(3) m J(sref, Gp) = J(srsf, Go) n > N(C) for each C € Ji.

Let us first assume that there is an infinite number of proper cyclic elements
Cyyoey Cyy oo in K. From 1112,

(4) ‘ LT, 4) =3 Lisrg,f, Gg) < oo.

i=1

Hence, for ¢ >0 given, there is an integer I >0 such that

(5) > L(s re.fy Gg) < e/(4H), for all j >1,

izj

where M is the constant of INL.6. Let us fix j, >1. .
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~There exists now an integer N >0 such that

P |, A)—J(T, P,)| <eld (n >N),

Oieg{::z (i = 1, ceey j(); 1 >_N’)’_

® 1_§"J(s ro.f, G'},{)——iJ(s rofs Go)| <

<3| s e,fy Go) —J(sre b, Go)| < el (n>N).
i=1

For n >N, let j,(n) be the integers ¢ greater than j, for which C,e J,.
Then from (5):

M X L6ref G) <Y Listef, Go)<e/@dM).

i € dym) iz,

Now, from (6), (7), 1I1.6, and from IIL.14, for » >N,

|J(T, A)— 2 I(sro,f, Go) | <|J(L, 4)—J(T, F,)| +

jo LD

’!” I J(T) Fﬂ) - z J(S ’I‘Cf, G'Z}') ‘ + i Z J(S 7'01. f} G%'i) ’-z J(S TCl. f: GCI.) i -
ced, =t =

+ 2| Jsret Go)l -+ 3| Jis 7,1 GC,-)|<£+ 2=,

SN O] i>j,

W~ | oo
1o
oo

Since &>0 was arbitrary, J(T, 4) =3 J(srcf, Gg), CeX.

Now let us assume that the number of proper cyclic elements in J{is finite.
Then, as above, J(T, F,) =2 J(srqf, Gp)y CeE€J,, and for % large we
have g, =gf. From (3), J(T, 4) = Y J(srsf, Gg), Ce . Similarly,
if g =0, J(T, F,) =0 for all %, and hence J(7, A) = 0. This completes
the proof.
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