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AUrEL WININER (¥)

On the Expansion
of Solutions of Ordinary Differential Equations
According to Powers of the Initial Constants

or of Parameters. (*%)

1. - In asystem of » differential equations with s parameters which is
of "the form

1) dz/dt = f(x, p; 1),

where o = (2%, ..., #7), f={(f ., )y =@, .., p9 and ' = de/dt,
suppose that

0

il

@ f(0, 65 1)
and that the initial condition assigned for » = a(f, u) at t =0 is
(3) @0, u) =0.

Here p is a set of parameters which can be, for instance, integration
constants of a system

(1 bis) da/dt = f(x; 1)

if, after a change of notation, the latter system and the initial conditions
belonging to it are written as (1) and (3) respectively.

(*) Address: Department of Mathematics, The Jouxs Hopxixs University,
Baltimore 18, Maryland, U.S.A..
(**) Received April 17, 1956.
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Tor the sake of simplicity, it will be assumed that » =1 and s = 3. But

it will be clear from the proofs that nothing is changed when @, f and u are
vectors.

2. — Let f(m, u; t) be a (complex-valued) function on a five-dimensional
region which is the product set of an interval
(4) : 0=tz a (a > 0)

on the real ¢-axis and of a dicylinder about the origin of the complex (s, u)-
space, say of the -dicylinder

(5) || <1, lu]<1.

Suppose that f is continuous in (x, w; ¢) on

(6) |o| <1, | <1, 0=1< q,
is regular in (@, u) on (3) when ¢ is fixed, is bounded in (#, pu; t), say
(7 - | fle, o5 1) | <1 on (6),

and satisfies (2) on (4). Accordingly, f has on (6) an absolutely convergent
expansion of the form

(8) fla, us 1) = > > fu{t)-xf w,

i+i>0

where the functions f,;(f) are continuous on (4) and, in view of (7) and of
CAucHY’s coefficient estimate, satisfy the inequalities

9) [0 | =1 on (4).

Under these assumptions, a fundamental result of the Méthodes Nouvelles
(or, rather, what is between the lines of POINCARE’s proof; cf. [7], pp. 270-272)
can be formulated as follows: No matter how large ¢ > 0 may be, there exists
a sufficiently small o = «,>> 0 in such a way that the (unique) solution z =
= a(t, ) of (1) and (3) can be expanded into a power series

(10) wlty w) = 3 ult) et

k=1



ON THE EXPANSION OF SOLUTIONS OF ORDINARY DIFFERENTIAL BQUATIONS ... 273

which, in terms of a unique sequence of functions ¢(f), @.(f), ... which are
continuous on (4), is valid for

(11) 4 0= t< a, bl <<o.

3. — PoINcaRrE's proof consists in three steps: with the aid of (8) and (7),
first he majorizes (1) by

(12) Aw/dt = 3 > 1wy,

i+i>0

then he majorizes (12) [where, in view of (5), the double series has the sum
(A—a)* 1—p)t —1] by

(13) do/dt = (x + w)/(1 —a— u),

“and finally he solves (13) (which is possible by a separation of variables). The

result is that the solution of (13) and (3) [hence the solution of (1) and (3)]
possesses an expansion (10) which is valid on (11) if the o == e, in (11) is chosen
as follows:

(14) o =2e{1—(1—e)2}—1 = (e=/4) -+ (e72/8) + ....

Since (13) is just a majorant of the differential equation (12) (which, in
contrast to (13), cannot be solved by separating variables only), PERrRON [6]
investigated the analogue of PoiNCARE’s bound (14) for the ease in which (12)
is not worsened to (13). The result of PErRrON’s discussions (which depénd,
among other things, on the VIvANTI-PrINGSHEIM theorem concerning positive
power series) is as follows: if o = «, is defined by

<«
(15) o= (nlet/nr) (@ 4 1)t e = eje 4 ...,
Ne= 1

then the expansion (10) of the solution of (12) and (2) is valid on (11) but
becomes divergent at the boundary point (f, ®) == (&, @) of (11).

4. — Since (12) is the best majorant of (1) by virtue of (8) and (9), this
seems to settle the problem of the « best constant » « = «,. Actually, it does
not. The trouble is that (9), though necessary, is not sufficient in order that
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(8) satisfies (7). Suffice it to say that if F* denotes the sum of the double
series oceuring in (12), then (7) becomes violated when ¥ is replaced by I,
since F'* becomes infinite (in fact, as strongly as a pole) when either # — 1
or u ~> 1.

In what follows, an o« = o, > 0 allowable in (11) for (10) will be obtained
$0 as to use the full force of (7), rather than just the corollary (9) of (7). Corres-
pondingly, the proof will have to involve function-theoretical arguments.
[In this regard, it should be nofed that although Pmrron’s treatment of (12)
depends on a function-theoretical fact, the theorem of VIvANTI-PRINGSHEIM,
the latter is not used in order to show that (15) is an allowable o = oy bub
merely to show that the value (15) of « cannot be improved in the case (12).]
The function-theoretical elements, to be used in obtaining an allowable ¢ ==
== o, > 0 in (7), will be, on the one hand, ScHwArz’s lemma and, on the
other hand, the following fact (which is a well-known consequence of the
inequalities of JAcoBI-JENSEN): If a function of 2 is regular, and in absolute
value less than a constant C, on a circle |z| <R, then the absolute value

of the derivative of the funection at any point 2z of the circle is less than

CRi(R*—| 2

?) (and this bound is sharp). Cf. [1], pp. 506-507.

5. — Let f(&, u; t) be any function satisfying the conditions specified in
the first two sentences of Section 2. :
Choose any pair of numbers b, « satisfying

(16) o<b<1, 0<a<l,
put
an N == N(ot) == Lwb.|f0, u; )| for l ] <oy 0<t< q,

where a > 0 is the number fixed in (6), and let

(18) L = L(b, o) =Llub.|fulw, u; 1) for |az|<b, |pl<e, 0Zt<a
[in (18), the subscript of f denotes partial differentiation]. Then, for reasons
to be explained in Section 10, the solution @ == x(¢; x) of (1) and (3) exists, and

is a continuous function, on the three-dimensional (¢, u)-region

(19) 0<t=<min{a, Ltlogd +0L/N)}, |p|<o
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at least, and, when ¢ has any fixed value on the interval 6 <¢=< min [speci-
fied in (19)], the function @(f, u) of 1 is regular on the circle specified by the last
of the inequalities (19). Hence, there exists an expansion (10) which is valid
on the region (19). Consequently, (10) will be valid on the region (11) if

(20) - L tlog (1 -+ bL/N) = a.

If L =0, then (19) and (20) are meaningless. But it can be assumed that
L>0. In fact, if L =0, then (18) shows that f(x, p; t) does not contain =
at all, and so (1) becomes trivial. If L > 0 but ¥ = 0, then the log in (19) must
be interpreted to be oo, hence (19) reduces to (106), and so there is no problem
(for any positive =< 1). )

6. — There will now be discussed the conditions (on b and «) under which
the pair of numbers (17), (18) will satisfy (20).
First, if ¢ is fixed on the interval (4), then, since f(z, «; ¢) is regularon (5) and

“satisfies (7), the function (0, ; ¢) of w is regular on the circle || <1, is
less than 1 in absolute value and, in view of (2), vanishes at u == 0. Xence,
by ScEwArz's lemma, |f(0, p; ) |<|pn| In view of (17), this means that

(21) N<a 0 <o <1).

Next, if the estimate which was referred to at the end of Section 4 is applied
to the derivative of the function f(x, u; t) of ®# =, it follows from (6) that,
for every t contained in the interval (4),

| fulaey pe5 8)] (1 — 21 if le ] <b and ] <o
cf. (16).  In view of (18), this means that
(22) L<(1—b) (0 <<b<1).

Finally, it is readily seen that the producet L—*log occurring in (20) is a
decreasing function not only of N(> 0) but also of L (> 0). It follows therefore
from (21) and (22) that condition (20) will be satisfled if the expression

(23) Bulb) = (1L—b%)-Tog {1 +b-(1—b*)+far}

satisfies the inequality f£_(b) =a for some pair of numbers b = b(a), o = o(a)
which are subject only to (16). '

19, — Rivista di Matematica.
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7. = Since f8,(b) == « is sufficient for 5, (b) = a, it now follows (cf. Section 5)
that the expansion (10) of the solution of (1) and (3) is valid on the region (11)
whenever o = «,, where

(24) 0<a<l,

is so chosen (with reference to the given ¢ > 0) that the following condition is
satisfied: if B,(b) is defined by (23), then the transcendental equation B.(b) =a
has some 10 t b = b(«; @) on the interval 0 <C b < 1. But it is clear from (23)
and (24) that £,(b) is positive for 0 <<b <1 and tends to 0 when b -0 or
b —1. Hence the desired root & of §,(b) =a will exist if and only if the
maximuom of f,(b) on 0 <<b <1 is not less than e.

In view of (23), this requires that y(x) = a, where

(25) (o) = max [(1—0%)-log{1 + b-(1 —b*)~Yjor }].

0<<b<<1

- Since p(a) == a is sufficient for y(a) = «, and since (25) defines y as a decreasing
and continuous function of «, the condition just obtained can be formulated
as follows: the transcendental equation

(26) y(e) = a
possesses a 100t « = «, on the interval (24). Accordingly, en o == a, satisfying

(26) and (24) will have the property that the expansion (10) of the solution of (1)
and (3) is valid on the range (11).

8. — Since yp(«) is a positive, increasing and continuous function on the
interval (24), and sinee it is also clear from (25) that

(27) (o) — oo as o —> 0,

‘_bhe equation (26) has on the interval (24) a unique root « = a«,, provided that
o is large enough, say

(28) S . @.>> const.,

where the const. is a universal positive constant. But the proﬁso (28) on @
can be omitted, since, if (28) is not satisfied, then, by the very nature of the
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problem, the expansion (10) will be valid on the region (11) if the « occurring
in (11) is chosen to be

(29) o = 1.

Actually, the problem of PoINCARE concerns the «large», rather than the
« small », values of «.

In any case, POINCARE’s theorem, according to which there exists some
o. = o, > 0 for which (10) is valid on (11), now follows for every ¢ > 0. In fact,
such an o = «, is given by (29) or by the (unique) root o = «, on (24) of the
equation (26), defined by (25), according as « is not or is large enough to
satisfy (28). '

The mere fact that (29) holds for sufficiently small values of ¢ > 0 implies
that PErrRON’s result (15) cannot be the « best» in the present problem, that
of (6). In fact, (15) represents the a-value belonging to (12), whether « > 0
be small or large. But (15) is a value which is within the range (24) for every

a>0. That (29) must hold for sufficiently small « > ¢ (in other words, that

the const. >0 of (28) actually exists), is obvious. In fact, when (29) does.
not hold, then (25) and (24) imply that

(30) y(a) < const. 0<a< 1)
where
(31) const. = max [(1 -+ b?)-log{1 + b-(1—b2)—2}].

0<h<l

But the constant (31) is positive, and (30) implies that (26) holds when «
violates (28).

9. — There remains to be ascertained the assertion of Section 5 concerning
the region (19).

Consider first the case in which f is free of a parameter u, so that (1) and (3)
simplify to
(32) da/dt = f(wz; 1), #(0) = 0.

It will be supposed that on the three-dimensional region

(33) 0st=a, | @] <b,
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where 2 is complex, the function f(z; ¢) is continuous [so that, in particular,
(34) [f0; ) |= N on (4),

where N is a constant], that the function f(x; t) of # is rvegular on the circle

2| <b (for every fixed ¢ contained in the interval 0 =1?= @), finally that
the partial derivative f(; ?) is bounded in » and ¢ together, say

(35) | fde; 0| < L on (33),

where I is a constant. Although f and @ are complex, it is readily seen that
(35) is equivalent to the LipscHITz condition

(35 Dbis) |f@'s O —f's ) | < L |o—a],

~where (¢'; #), (z"; t) is any pair of points contained in the (w; t)-region (33).

Replace the interval (4) by the (possibly) shorter interval
(36) 0<t<min{a, L' log (1l +bL/N)},
if neither of the (non-negative) bounds L, N is 0. If N =0, interpret (36) '
to be (4). If N >0 but L ==0, let (36) be interpreted as the interval 0 =¢=
< min (@, b/N), the limit of (36) as L — 0,

According to B. LINDELOF [4], p. 123, the sequence

(37) @y(t)y, oy (1),

of the successive approximations
i

(38) 2,(t) = f f(@ama(s), s) ds, where 2o(t) = 0,
[}

exists on (36), satisfies
(39) | 2a(0) | S0 on (36)

and converges, uniformly on (36), to the solution # = () of (32), whenever

the function f(z; t) is continuous on (33) and satisfies (34) and (35 bis).
The circumstance that @ and f are real-valued in LINDELOF’s paper, does not

matter, since his proof holds, without any modification, in the complex field
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also (in fact, even ¢ could be complex, with (4) replaced by a ¢-circle). The
same remark applies to a result of Lipscmirz himself [5], pp. 509-514, which
is of an earlier date than that of LinDELOF and leads precisely to the interval
(36) when the process (38) in replaced (cf. also a paper of O. H6pER [3]) by
process of the «polygonal » method. Correspondingly, the latter method could
(but will not be made to) replace the method of the successive approximations
in Section 10.

Remark. Since the sequence (37) tends to the solution x(t) of (32) if
¢t is in (32), it follows from (39) that

(40) | 2(t) | < b

holds on (36). But. the fact that precisely (36) is the interval on which (40)
can be concluded from (34), (35) and (32),'” expresses precisely the estimate

which result if TIAAR’s inequality in the theory of partial differential equations
(ef. [2]) is applied to LINDELOF’s particular case of an ordinary differential
equation.

10. — Consider now the case in which f contains a parameter, u, which
varies on a complex domain, say on the circle |u| <<« Then (1) and (3)
take the place of (32). Suppose that f(z, u; t) is continuous on the product
set of the region (33) and the circle | u| <<, that f(z, u; t) is regular in (», w)
on the dicylinder (| x| <<b, |px| <o) when t is fixed on the interval (4), and
that there exist two bounds, N and L, which are independent of y, and satisfy
(34) and (35) for every fixed yu, if |u|<a.

Clearly, the assertion of Section 5, concerning the region (19), will be
proved if it is ascertained that, under the assumptions just mentioned, the
solution a(f, u) of (1) and (3) exists on the product set of the interval (36) and
the circle | u|<<a, and that the function a(t, ) of w is regular on the circle
|| <o for every fixed ¢ contained in the interval (36). But this can be
concluded as follows (cf. [8]):

For a fiwed p in | u| <o, consider on (36) the sequence

(37 Dis) oy (t, @), ceny oty u),

which results in the present case of (38). Then it is clear from the integral
defining the function #,(f, x) that the latter is a regular function of u on the



280 A. WINTNER

circle || <<o when ¢ is fixed on the interval (36). It follows therefore from
(39) and from the maximum principle that

(39 bis)

oty )| <b on (36) if |pu]<a.

But the sequence (37 bis) tends on (36) to the solution (1, w) of (1) and (3)
if pvis fixed in |u| <<o. On the other hand, the functions (37 bis) of [ are
regular and, in view of (39 bis), uniformly bounded on |u| <« if ¢ is in (36).
Consequently, the convergence of the sequence (37 bis) is uniform on every
circle | u| <a—e (<) if tis in (36). Since this implies that the limit func-
tion, w(f, u), is regular on | u| <« when ¢ is in (36), the proof is complete.

11. — At the end of Section 7, the final result was formulated in terms of

a root of the Lmnseendental equation (26), defined by (25), rather than in terms

of an explicit expression for ¢ — «,. An explicit expression could be
obtained by using LAGRANGE's series for the (inverses of the) logarithmic-
algebraic functions involved.

Instead of proceeding in this manner, a comparatively favorable estimate
of o = a, (cf. Section 12) will be obtained, without. much formal work, by
relaxing the strict result of Section 7. This relaxation vesults if the factor b
of (1 — 52~ in (25) is not exploited. The resulting situation is as follows:

Since (25) implies that

(41) ylo) <max [(1 —b2)-log{1 +(1 —b2) “Yor }],

0sb<1
it is clear that the transcendental equation (26) will possess a root o = g
satisfying (24) when (29) is not allowed, and that

42) 0 <o <o, <<l or af =0, =1

will hold, if a* = o* can be so chosen that, on the one hand, 0 << «* =1 and,
on the other hand, the value of @ is equal to what results when « is replaced
© by o* on the right of (41). Since 1< v < oo is equivalent to 0 < b <1 if
v == (1—¥%)~%, the latter condition can be written as

max { v=1-log (1 + v/or*) } = a
1<

or, if u = «*/v, as

(43)  max {wu-log (1 + ut } == qor¥,

0Su<a*
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It will now be shown that the (unique) root o*= «* of the transcendental
equation (43) on the range 0 <a*<1 is '

(44) o = (e*— 1)1 if log2=a<co
and that, by virtue of the disjunctive alternative (42),
(45) ot =1 if 0<aZlog?

[note that the inequality imposed on « in (44) is equivalent to (e* — 1)1 < 1]
First, a differentiation shows that the derivative of the funection

(46) u-log (1 4 u~1)

vanishes at a 4 = w4, >0 if and only if ‘
(47) log (1 4+ uyh) = (1 + u)~L
But if u, increases from %, = 0 to %, =1, then the value of the functions oc-
curring on the left and on the right on (47) decrease from oo to log 2 and from
1 to 1/2, respectively. Since log2 = 0,6...>1/2, and since both curves are
convex (toward the wg-axis), this implies that the equation (47) has no root
4, on the interval 0 <, < 1. It follows that the function (46), which vanishes
at u = 0 and is positive for « > 0, is increasing at every positive v < 1. Con-
sequently, if 0 < a*=<1, then (43) can be written as

a¥-log (1 + 1/a*) = aa™.

This means that 1 - 1/a* = e, hence o* = (¢¢ — 1), if 0 <oa*=<1. In view
of the parenthetical remark made after (45), this proves both (44) and (45).

12. - It follows that tlie expansion (10) is surely valid on the region (11)'
{determined by any given « >0 and a corresponding « > 0) whenever

(48) o = (e¢—1)"1 = 3 ¢, where log 2 < a < oo,
. n=1

or

{48) @ =1, where 0<azslog?2
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{(and it is not claimed that « = 1 cannot hold for 0 <a < 4, where 4 > log 2).
In fact, it is seen from (42) that (48) and (49) follow from (44) and (45).

It is now seen that log 2 is a lower bound for the const. defined in connection
with (28). But it also follows that '

(50) L= 670 where 0 <a<oo

is allowed in (11). In fact, the o of (50) is less than the « of (48) or of (49).
But even (50) improves on PERRON’S ¢, since the first term, e/, of the positive
series (15) is less than e%1 = ¢
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