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LAMBERTO CESARI (%)

Fine-Cyclic Elements of Surfaces of the Type ». (*%)

In my book Surface Area [3 (A)] T have discussed surfaces 8 = (T, Ay
defined as single-valued continuous (not necessarily. one-one) mappings.from -

any admissible plane set 4 c F, into By, or E,. By an admissble set 4 is
meant either (1) any closed finitely connected JORDAN region J, or any finite
sum of disjoint such regions; or (2) any plane open set ; or (3) any set
A c 4, open in 4,, where 4, is any set as in (1): The main theorems for area,
as discussed in [3 (A)], all hold for such mappings (7, 4).

Two tools have been used in the book [3 (A)] which have been developed
there only for surfaces § = (I, A) defined as continuous mappings from a
simple closed JORDAN region 4, namely the concept of contour and the one of
retraction. Indeed this was sufficient for the proof of the main theorems on
area for all continuous mappings from any admissible set. i

In the present paper we shall define a new the concept of retraction (§6)
for continuous mappings § = (T, A) from a finitely connected JorRDAN region
4 =J, or mappings, or surfaces of the v-type, where » is the connectivity
of J, 0<p»<+ co.

New features will be observed for » =1 which have no analogue in the case
where J is a simple JorRDAN region (v = 0). It may for instance occur that a
surface of type » >1 presents a system of «leaves» linked together to form
a unique cyclic element of a rather complex structure while each leaf may be
of an extremely simple type, namely of the type of the disc (see numerous
examples in § 9). :

(*) Address: Department of Mathematics, Purdue University, Lafayette, Indiana,
U. S. A..

(*#) Received September 20, 1956.
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To account for these simple elements of a surface, the new concept of fine-
cyclic element ¢ of a surface § = (7, J) of the type » will be introduced (§ 9)
as a retraction of § according to the new concept of retraction.

The concept and the properties of fine-cyclic elements will be discussed in
great details. The fine-cyclic elements may be actually « finer » than the usual
cyclic elements of the same surface when » > 1, while they ¢ neide with the
usual eyclic elements when » =0, i.e.,, when J is a simple closed JORDAN
region. The theory is developed here independently of the usual cyclic element
theory, and is self-contained, in the sense that it is based on known properties
of Elementary Topology of the Euclidean plane: A fine-cyclic additivity
theorem for LEBESGUE area is given (§ 18), which is analogous to the well
known Morrry’s and Rap0’s eyelic additivity theorem, and states that the LE.
BESGUE area of a surface is equal to the countable sum of the LEBESGUE areas
of its fine-cyclic elements. Finally, the fine-cyclic elements are characterized
as retractions having particular maximal-minimal properties (§ 9, § 17).

The technique used in the present paper can be traced back in my book
[3(&)] and inmy previous papers [3(a)]; [3 (b)], where T discussed only questions”
of retraction of mappings from simple JorpAN regions.

In papers in course of publications, C. J. NEUGEBAUER has extended the
“present theory of fine-cyclic elements to general continuous mappings from
a PBANO space, by combining the present approach with methods of Analytic
Topology.

1. — Generalities.

Let J=dJo—(J, + ... + )0, J,cdy, J,J;=0, (i 5=§; 4,7 =1,...,v), be
any closed JORDAN region of order of connectivity » (0 < v < <+ o0), of the
oriented Fuclidean w-plane 7z, w = (u, »), let B be the Euclidean p-space,
P = (@, ..oy @), and | w—w'|, | p—p’| the Buclidean distances of two points
w,w' ex, p,p’ €H. As usnal we denote by I, I*, I°o the closure, the boun-
dary, and the set of the interior points of any given set Ic=x=, or [cH.
Finally we shall use the usual notations diam A4, { p, A }, {A, B} for the
‘diameter of a set A, the distance of a point p from a set A, and for the distance
of two sets 4, B, respectively.

Let (T, J): p = pw), wedJ, be any single-valued continuous mapping
(not necessarily one-one) from J into E, i.e., a surface S = (7, J) in E. If
no identifications are made on the boundary J*=JF 4 ... 4 J* of J we say
that S, or (T, J), are of the »-type. We shall denote by § also the FrEucHET
surface defined by (7, J); i.e., the class of all mappings (77, J’) which are
Fritcugr equivalent to (7', J) [3 (A)].
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Let us assume as positive the counterclockwise orientation on J;* and the
clockwise orientations on JJ, ..., J*. Then (7, J) defines on J* certain
oriented closed curves C, ..., ¢, which may be not simple and even reduced
to single points. The ordered system ¢ = 08 = [C,, ..., C,] is said to be the
boundary of the surfaces S.

Given any two ordered systems C = [Cy, ..., €], €' =[C,, ..., €] of orien-
ted closed continuous curves in %, we denote by | €, ¢/ |, or FrREcHET distance
of ¢ and (', the number

Lo, ¢l =21¢, 6,

i=0

where || €, () | denote the usual FrEcHET distance [3 (A), p. 15] of any
two curves C;, C,. '

We shall denote as usual by [S] the graph of S, that is, the set S =7(J)c B
--of-the-points-covered by-S; by [(] the graph-of 08 = 0, -that is, the set-[ ] =
= T(J*) covered by the curves Cy, Cy, ..., C,, by L(S) = L(T, J) the LEBESGUE
area of the surface S. We shall denote by I' = I'(T, J) the decomposition
of J into disjoint maximal econtinua ¢ of constancy for 7' in J.

2. — Properties of the components y of the complement of a conti-
noum K in J.

Let K cJ be a (nonvacuous) continuum. From the elements of topology
we know that J — K is a set open in J, and that the collection {y } == { Y } zr Of
the. components y of J— K is at most countable.

(2. 1) For every y €{ y }, the set yy* is either empty, or a subset of J*. In
this second case we have

yy¥= 2y,

i=0

and each yy*J* which is not empty, either coincides with J7, or is an open arc
1; of J¥ whose end points (not necessarily distinct) are both in K.

Proof. For every w e yy* there is a neighborhood U of w with UJ ¢y,
yU 50, (m—9y)U 0. By second relation and ycJ we deduce JU = 0;
by first and third relation we deduce (z— J)U £ 0. Thus weJ* and finally
yy* cJ* Then yy* is a subset of J* open in J*%, and hence each yy™J,, if not
empty, is a collection of open disjoints ares of J*. Suppose that such a collec-
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tion contain two of these arcs say («f), («'f’) (2, f, oy p" ordered on J¥). Let
w, w'any two ponts interior to («f), («'f’) respectively. Then w, w’ey and hence
there is an arc I ¢y joning w, w'. Also, w, w’ € J, and hence there is an are I’
in JY 4+ (w) + (w') [or m—J, + (w) + (') if 1 = 0] joining w, w'.. Now the
closed curve ! + I’ separates z into two parts with g, o/ in one, and «, §’ in
the other, with (I + U)K =0, «, 8, o/, f' € K, a contradiction. Thus yy*J ¥
is either empty, or a simple open arc of JF (with end points not necessarily
distinet).

For every y e{y }K we shall denote by F(y) the set Fy) == p% — py* =
== y~—1v, or boundary of y in J.

(2. ii) For every v e{y }K the set F(y) is a non-empty compact subset
of K.

We have only to prove that F(y) s« 0. Indeed, if F(y) == 0, the sets J — 1y,
y would constitute a separation of J which is impossible.

~We-ghall--dividethe collection““{y} < intotwo
subclasses { y } ., {y })x by putting y in {3 } ; if either -
yy® =0, or yy*s£ 0, and yy*J; £ 0 for one and only
one ¢ =0, 1, ..., »; by putting y in {y}} if yy*=0
and yy*J [ 5= 0 for at least two ¢ =0, 1, ..., ». We say
all ye{y}, are of the first class, and all e{y}x
are of the second class.

For instance in the illustration J is a region of
order v =2, and KcJ is a continuum whose col-
lection {y}K has two elements y,, », of the first class, and one element
v of the second class.

(2. iil) For every ve {y},'( the set F(y) is a continuum. More precisely
we shall prove:

(2. iv) For every y with yy*=0 we have y*= F(y) c K and P(y) is a con-
tinuum. For every y with py*s£ 0, yp*J,5 0, and py*s= J¥ for one i =0,
1, ..., », the set F(y) is a continuum containing both end points a, B of the
open arc I =l;=yy*J7 of Jf, and y*==yy*+ F(y) =1 + F(y). There may
be countably many components y e{y };, of one or the other of these two
types.

Proof. Case 1. yp¥*=0. Then F(y) =y —y = y*—ypy¥=1%* and now
we shall suppose that y* is not a continuum. Then y is not simply connected
and there is at least a simple polygonal region ¢ with g¢*c v, such that both
in ¢° and & — ¢ there arve points of y* Now y*c K - J* and K cannot have
points both inside and outside ¢*. Thus in one of the two parts the points of
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v* are all in J%, and also in y. Thus yy*J* 3 0, a contradiction. This assures
that F(y) is a continunum if py*= 0.

Case 2. yy* 520, pp*JF 520 for only one i and ypy* £ J,. Then I =
= yy*J is an arc of J} of end points a, f (not necessarily distinet). Obviously -
o, e, «, feF(y). Suppose F(y) is not a continuum. Then F(y) is compact,
its components are continua, and thus «, § belong to the same or different
components of F(y).

If o, f € k where %k is a component of #(y), then there should be another
component k' of F(y) and [(x) + () +1 + k]k'==0. Let ¢* be any simple
closed polygonal line, ¢*ca— F(y) separating %k and %' in 7. We can suppose
all points of ¢* so close to &', that I is completely outside ¢*. If we take any
two points w, w’ of y close enough to % and k' respectively then they are se-
parated by ¢* and thus a line Icy joining w, w' in y must encounter ¢* in some
point w,, w, € ¢, wy €. If we move along ¢* from w, in any direction, we
cannot encounter points not in y since then there should be also points of

F(y) on g%, what has been excluded. Thus ¢* c'y, K =0. Nowea,feK;
on the other hand k'J* ==0, and thus &'c K. Therefore, there are points
of K both inside and outside ¢*, a contradiction.

Finally suppose that «, 8 belong to different components, say k, k' of F(y),
a« €k, fek’. This implies that « 5= f and that «, § divide J} into two parts
l=(ef)cy, U =JF—( +a - f) non containing points of y. Now let ¢ be
a simple poligonal region with ¢*ca-—F(y) separating k and %' in 7. Suppose for
instance that K'cg. Then f#c¢°, and there are points of ¢ both inside and
outside J. Now ¢* must have at least one point w in I and at least one point w’
in I'. TFinally w ey as well as any other point w €lg*. There must be also a
subarce A of ¢* joining w to w’ and having no other point on I but w. Now if
w" is the first point of 4 on J*, then w" is not on I. If " is on I' then "
is on y, a contradiction; if w” is on some J, u 5414, then w”" ey, w'ey*, w'e JE,
thus w" € yy*JF, u 514, a contradiction. All this proves (iv).

Let us consider now any ye{y},. For the sake of simplicity leb
J*, I, ., J,F denote all those boundary curves J7* of J completely contained
in py* (if any), let J,*, ..., J,* denote all those boundary curves J¥ of J with
yyiIF # 0, JF—yy* 50, and L, ..., I, the b aves yy*JF, that is I, = py*J;*
(i =1, 2, .., b). Finally let us denote by &, k., ..., %, the components of B(y).

(2. v) For every y e{y }';‘ the components £k, ..., &, of F(y) are finite in
number and
(vy) Fly) =k +k +... +k, 1<e<y+1,
(Vo) oy =d I L L, 2<a+b<y 1,
(V) p¥ e I e T el L Ry e R
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where J.%, . JF (I b £l Ry A + k) are the a- -+ 1 components
of y*, and y has order of connectivity a. The collection {y}'; has at most »
elements.

More precisely we prove

(2. vi) If a, b are the numbers a, b above for each of the components y e{ ¥ }l*
then 1 <<a +b—1<9 and Sl +b—1)<p.

Proof. The second formula of (v)is obvious and y* = J,* + .. L J)E
th+ e+l + F(y). Let p' be the set p' =J° + ... 4+ J° 4+ 5 where
we substitute z—J, for J? if J, =J, for some 4. Since {J;, K}> 0,
{J;*, l; }> 0, we have y'y"# = yp* — ST =14 4. +1, Y= pF— S TF =
=l + ..+l + F(y). Let us prove that y" is simply connected. I.et q be
any simple polygonal region with ¢* c9’. Assume there is a point w € ¢° such
that w ¢y'. Since K is connected we have w ¢ K. Moreover, w ¢ J,;. Since

! . . ’ . .
wed,, wed, for somei. Since J; Cy’ we have a contradiction. W e conclude

~that »" is simply connected and that p'* = L is a continuum, and hence P =
= J;* 4 - J;* -+ L, where L is the continuum I = yE =l L R+
+ F(y).

The proof that F(y) is a sum of finitely many continua will be given below.

We shall now prove (vi).. For each Y e{ v }';‘ we may join any one of the
arcs J;*, ey J;*, liy ...y Iy, say I, for instance, to each one of the remaining
ones by means of exactly a -+ b-—1 simple ares (cuts) A Cy. We prove now
that this operation, which involves > (@ + b—1) cuts, does not destroy the
connection of J. Let us observe first that every point wey with ye{y}’, yy¥E=0
can be joined to F(y), and thus to K, by means of the segment s joining  to
the closest point w, of F(y), and s Cy - (w,), w, € K. Lvery point w ey with
ye{v}, yy*#0, yy*J¥ = 0 for only one i, can be joined to the first end point
€I of the arc I = (af) = yy*J§ by means of the arc s = s’ - ' defined
as follows: s’ is an arc joining w to a point w, interior to I, s'Cy; s" is the sub-
arc (wy, ) of I. Every point wey with y €{y}" can be joined to K as follows:
First let s" be any are, s cy, joining w to a joint 2o, of, say, the arc 1, let s” be
the subare (wy, o) of the are I, = (o, p). Thus s =s'-+¢" joins w to o, € K.
Now s may intersect the system > ofa-+b—1 ares 1 of y. Then let w', w”
be the first and last points of ¢ from w which are in >. First let us replace the
are (w' w") of s by means of an arc s” sum of ares of Ay I 1 Then, by a
slight modification of the are (w ') + s" + (", oy) we can obtain, as usual, a
line s, joining w to o, free of points of >. We conclude that each point w e J —
— >, either belongs to the continuum I{, or can be joined to K by means of
a line s free of points of 31, scJ— YA Thus J — 31 is connected and has
order of connection

y—d(a +b-—1) > 0.
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This proves (vi) and since ¢ -+ b —1 >1 for every Y€ { ¥ \”, we conclude that
there are at most » elements ye 4,1"

We shall now prove (v,) (this proof is due to C. J. NEUGEBAUER). We
shall prove in § 3 the more stringent inequality ¢ << max [1, ]. The proof is
by induction on ». If » =0 all components of J — K are of the first kind,
and hence F(y) is connected.

Assume now that (v,) is true for every JorpAN region of connectivity
y—1 >0 and for every continuum K c.J. We shall now prove (v,) in case J
has connectivity ». Let K be a continuum in J.

~Case 1. K>JFfor some 4, 1<{i<». Then consider J =.J + J,,
K'= K +J,. Then every component y' of J'— K’ is a component y of J — K
and conversely. Hence F (y) = F:,(y'), and since J' has connectivity » —1,
the formula (v;) follows in this case.

Case 2. KJ7==0 for some i, 1<i<w» Consider J' ==J +J,. Then
i b3

every component y of J— K is contained in a component y’ of J' — K and
F'(y') == F(y). Sinee J’ has connectivity »—1, (v,) follows.

Case 3. Foreach i, 1 <i<vw, KJ] 50, J— K s 0. Lety be a compo-
nent of J — K such that, say, yy*J; % 0. We may also assume that the number
of components of F(y) is greater than ».

Let l,=ypy*J;". Then [ is an open arc with end points o, f in K. Let ky,
k, be the components of F(y) containing ¢, § respectively. Consider J' = J - Jy,
K' = K -+ J;. Then there is a component y' of J’ — K’ such that ¢’ + I} = y.
If we denote by F’'(y') the boundary of o' in J', we have F'(y') =k, - k; 4
b oy, 1<e<w. Now,say, k, =k + I, 4 ky, and F(y) =k, + k, + ke, -
4 o:. ;

Thus formula (v,) is proved and (v) is completely proved.

(2. vii) If » =0 then all ye{y }K are of the first class and F(y) is a conti-

nuum.
A corollary of (iv). For a direct proof see [3 (A), p. 505].

(2. viii) If [y] is any subcollection of{y}ﬁ ;-then the set K' =K + Yy
where > is extended over all y €[y] is also a continuum K’ c J, and the col-
lection {y } o i3 made up p by the elements y e{y },, which are not in vl ie.,

{V}K 'y _'IVJAJ—[V]
The prout is the same as the one given for » =0 in [3 (A), 36.2, (ii), ». 507].

Remark. The previous conmderatlons concerning the structure of the
boundary of the components y of sets J — K where X is o continuum K c J,
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are immediately extended to the components y of sets J — &, where § — SK
is the finite sum of disjoint continua K c J. We leave the corresponding formu-
lations to the reader.

3. — Application of Carathéodory prime-end theory.

We can now apply CARATHEODORY’s theory of ends and prime ends to each
component of the boundary y* of y, ye{y}, [see 1, or 4, or 3(A)].

For every y €{y }' with yy*= 0, the families {  },, { @ }, of all ends and prime-
ends of y [that is, of y*= F(y) in y] are cyclically ordered. Let us mention also
that here and in the following cases we have always {77 }c{ » }, as usunal.

For every » e{ y } with py*J %20, pp*J¥=£0 for only one i, (2. iv), we have
y¥=k 1, where | = l,= py*J¥, k a continuum, k& = F(y) cK. The families
{ 7 }r, { w }y of all ends and prime ends of y [that is of y* in y] are cyclically or-

dered and can be. divided into two consecutive intervals; say [y 3]s [7s57:] by
means of the two ends 7,, 1, corresponding to the endings of the open arc [ =
= (aff), w, =« w, = f. Then one of the intervals say [#,, 5,] corresponds
to the single points of I; the other one to the ends and prime ends of K in .

For every y €{y }" the collections, say {7 byer { @ },; of ends and prime ends
relative to the components J, of y coincide with the single points of J¥ and
thus are trivial, ¢ =1, 2, ..., a. Let us consider now the component L of y*
L =b+.. + .0+ F(y). The collections, say {7}, {0, of all endsand
prime ends of L in y are also cyclically ordered and can be divided into 2b
consecutive intervals

[77(1: 771]7 [771: 772]; ) [772b—27 7721»-1]: [7721:—19 7720]

by means of the 2b ordered ends 7,<<#; < ... Mooy << Map==1)p, Where each pair
Mai-2y N2i-1 18 defined, as above, by the two endings of the ares I, (i =1, 2, ..., b).
Eeach odd interval [7,,-4, %,:-] corresponds to the single points of the open arc
Li=yy*J;* (i =1, 2, .., b). The remaining b intervals [5,y, 7,,] correspond
to ends » and prime ends w of F(y) in y, and we shall consider here the b sets

m=1FE, +3B,+HE, (i=1,2, ..,10),

where the sum is extended over all prime ends € (%a5-1, 72:)y, Where Ez):i-;
[E;,Zi] is the right [left] wing of the prime end .., [m,] corresponding to the
end 77,;1 [72;] . Let us observe that if we denote by (e, ;) the arc I, (i ==1, 2, ...,
b), then ' ‘

Wy, =0, W, =P, w =0y W =y L, W

7o 712b~=: &y w’}:b—x - ﬁb '
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By [3 (d)] we know that each set m, (i =1, 2, ..., b), is a continuum and
b Al 4 R -y Ry ol A my = L My + My .+ my = Fly).

Let us mention that L is also the boundary of the simply connected open set '
<defined in the proof of (2. vi) and thus the application above of the results
proved in [3 (d)] for simply connected open sets [either bounded, or
unbounded with bounded boundary] is correct.

The continua m,, ..., m, are not necessarily disjoint, and thus >m; = F(y)
is the sum of a number ¢ of components, say %y, ks, ..., k., with 1<<e¢<b.
For the sake of simplicity we have supposed above implicitely that b > 1.
Suppose now b = 0. Then L = F(y) = p'* is the (bounded) boundary of the
simply connected open set p’. Thus {7}, , {®}, are cyclically ordered and
the unique set

mo= 3B, = F(y)c K,

where > is extended to all o e{w }yo, coincides with F(y), and is a
contintum [3 (d)]. Thus ¢ =1 if b == 0. We may conclude that
I<e<max[1, ] and since b<<» +1, »>0, we have 1<e<y 1.
Thus the proof of (v) is

JoJ 7, % completed.
< * The simple illustra-
' tions below show that
- ¥ the case ¢<b, 2 <b
Vs, wzo, bed, ezt v=2,azx1,baz, coq v:3,as4, b:3, 23 may actually occur.

4. — Properties P, and P, of a continuum K in J.

Let (7', J) be any continuous mapping from any closed JoRDAN region J of
orderv, 0 <y <+ oo, JCum, into F. Let KcJ bea continuum, and {y j o
be the collection of all components of J — K.

We say that K has property P, with respect to
(T, J) it for every ye{y},, the mapping 7T is
constant on each component k of F(y).

We say that K has property P, with respect to
(I, J) if every ye{y},, is of the first class.

Property P, concerns only the region J and not the mapping 7. Obviously
the two properfies P;, P, are independent as the illustrations show. In the
first one the property P, holds since the only element y belongs to the first class,
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and the property P, may hold if 7' is constant on F (y). - In the second example
the only element y belongs to the second class and F(y) has two components.
The property P, does not hold, and the property P, may hold if 7' is constant
on each of the two components of F(y).

Let us observe that, if v = 0, then by (2. vii) every y is of the first class
and property P, is necessarily satisfied.

We say that a continuum IC cJ has property P’ with respect to (7, J)
if it occurs that for every ge I" with ¢K ¢ 0 we have ¢ ¢ K. In other words
K has property P’ if and only if I is the sum of continua ge I', K =Yy¢.
Properties Py, P, and P’ are independent as it can be seen by examples. All
continua ¢ € I' have both properties P, and P,

(4. 1) If KcJ has property P, and y is any component of J — K,
then F(y) is covered by s continua ge [, 1 <s<{» -+ 1.

A _consequence of (v) of § 2 and the definition. Indeed each component. ... ..

kE=1Fk of F(y) (j =1, ..., ¢), is contained in a continuum ge I, and ¢<
<wv -+ 1. Thus 1 <s<<egy -+ 1.

Let J be any closed JORDAN region of order », 0 < »<C-+ oo, let (T, J) be
any continuous mapping from J into E, let K cJ be any continuum satisfying
cordition P, and {y } :{y }K , the countable collection of all components of
J —~ K. The following statement holds:

(4. ii) Given &>0, the relation diam 7(y) > ¢ is satisfied by at most
finitely many elements y e{y } '

Proof. By virtue of (v) we may prove (ii) only for the components y e{ ¥ }’.
The proof is now the same as the one given for » = 0 in [3 (A), 36.2, i, p. 506].

5. — Further properties of the collection {y},,.

(5. i) If K has property P, with respect to (7, J), then there is a JORDAN
region J, of connectivity g, 0 <p <y, with K cJ,cJ, such that K has both
properties P, and P, with respect to (7', J,).

Proof. If all elements ye{y } xs @re of the first class, we can take
Jo=dJ. Otherwise we shall consider the elements ¢ e{ y}".  TFor these
we have 1<e<<b<y +1, 2<b and F(y) =1l 4+ m +l-+my + ... +
l,+ m,, where the continua m; are not necessarily distinet. Let us consider on
each 7,, a pair of ordered points w;, w;ell, Wy, fw;elg, iy Wy w,',elb. Then there
are b disjoint cross-cuts A, = (wiaw,), Ay=(10,205), ..., Ay==(w,w,). Let us denote
by 1, the subarc wav, of I,. We can take A, made up of points all so close to
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m; that the part y,; separated by A, in y (and containing ares defining all ends
of m,) does not contain any of the region J, (with J cy),j =1, 2, ..., @ (i
any). We can for instance require that all points of v, are at a distance < ¢
from m, where 2¢ is the minimum distance { Fly), Jf +.. +JF }, orany even
smaller given number. Let us observe that the sets y,, are simply connected,
open, and y;; is the sum of the continuum m, and of the are (3, w;) - 1,4+
A4 (Wi %) In addition F(y,;) = m, is a continunum. Now the continuous
line A% == Z; + Ay = Z; e Ay o l,: -+ 2, is simple and closed and defines
a JORDAN region A containing all the regions J,, ..., J.. Thus A= 1-—
— (J i ST | ,'1)0 is a JORDAXN region contained in J.

The previous process can be applied to every element
ye {y}” (at most v elements » have this property).
We obtain a finite collection of region A'cJ. Now we
shall remove the lines !' separating the regions A
from regions J; corresponding to elements y. We
shall obtain new regions Jg, (¥ =1, 2, ..., x) and we
put Jo=J — EJ ou-. This procedure reduces the order » of connectivity
of J of at most Y (¢ + b—-1) units, but does not destroy the connection of J
ag it can be proved by a reasoning analogous to the one in § 2. Obviously
Kcd,cd.

If we consider now the collection {V}mu of all components y of J— K,
then {y }K s, contains: all elements y e{ ¥ }; ;5 all new elements y,, for which
F(yy:) = m,. Thus K satisfies property P, with respect to (7, J,). Finally
since no continuuwm m, [4] may be made of more than one continuum
Iy, kay ooy kg, and T is constant on each k;, we conclude that 7' is constant on
each m;. Thus I satisfies condition P, with rvespect to (T, J,).

(5. ii) If K has property P; with respect to (7, J) and £>0 is a given number
then there is a JORDAN region J, of some connectivity x> 0, with K c J,c J,
such that K has properties P,, P, with respect to (7, J,), and, for each compo-
nenty e{y },“0, T'(y) belongs to the e-neighborhood of the point I[F(y)]in E.

Proof. By (4.1i) only a finite collection [y], of elements yp E{y}may
verify the relation diamT(y) > e. TFor each element y € [y], we can now define
some region J, Cy such that T has an oscillation < ¢ in each component of
y—dJ,, by proceeding as in the proof of (i). Then Jy=dJ—3 J , where 3 is
extended over all y €[y], has the required properties.

Remark 1. In (ii) we may require as well that for every y e{ Y } x5, and
every point w €y we have {w, F(y) }< £.

‘Remark 2. As in § 2 we may observe that the previous considerations
hold even if we are concerned with finite sums § = YK of disjoint continua
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K cdJ. Properties P;, P, remain unchanged. Theorems (i), (ii) hold provided
we replace J, by a finite sum >J, of disjoint subregions J, of J.

regions J ¢ 7 will be used in the sequel and give a few more details. They can
be proved, as usual in elementary topology, by considering convenient finite.
subdivisions of J into triangles of diameter sufficiently small.

(5. iii) Let J be a polygonal region, (7, J) a continuous mapping, K =
= [fy, ..., K,] a finite collection of disjoint continua K, c J, each satisfying
condition P, with respect to (7, J), & a positive number, then there
are disjoint polygonal regions J,, K,cJ,cJ (i =1, ..., N) such that K ; has
both properties P; and P, with respect to (7, J,) (i =1, ..., N) and for every
component y of J,— K, and point wey we have {w, F(y)}< .

(5. iv) Let J be a polygonal region, (7, J) a continuous mapping, K =

“=[Ky; ..., K] a finite collection of continua K, c J, each satisfying conditions P’

and P, with respect to (I, J); § ==[g,, ..., g,,] a finite collection of distinct
continua g,€1'; e a positive number. Suppose that for each i #£§ (4, § = 1.,
we have (a) s, = K, K, is either empty, or a finite sum s,,, = >'gn of continua.
g2€8; (b) there is a finite sum s,; =3 "g, of continua g,€8 such that s, separates
K;—s;;and K,—s;;in J. Then there are N polygonal regions J;, K,cJ,cJ
(it =1, ..., N) such that (1) K, has properties P, P, and P, with respect to-
(T, J.); (2) for every @ % j (i, j =1, ..., N), we have s;;, CJ,;J;, where J, J;
is either empty or a figure according as s,; is empty or not; (3) for every com-
ponent vy of J,— K, and point w €y we have {fw, F(y) }< E.

(5. v) In (iv) and for every &> 0, there are disjoint polygonal regions.
fo with g, cfycJ and diamZ7(f,) <e (b =1, ..., M) such that (4) for every
1] (4 j=1,2, ..., N) with ;0 =>'g, ¥ 0 we have J,J; = >'fu-

6. — Retraction.

Let J be any closed JORDAN region of order », 0 <» << + oo, let (T, J)
be any continuous mapping from J into E, and let K c J be any continuum.
Let J, be any closed JORDAN region of some order My 0 < u <<+ oo, with
K cdJd,cd, where we do not exclude J, = J, or K =J,. Let {y }KJO be the
countable collection of all components y of J,— K. Suppose that K satisfics.
both conditions P, and P, with respect to (T, J,). Then for each element.
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Y e{ Y } xs, F(y)is a continuum and 7 is constant on P(y). Let (T,, J,) be the
new mapping defined by Zo== T on K, T, (w) = T[F(y)]forallw ey, y e{ ¥ }M.
The mapping (T, J,) is said to be the retraction of (T, J) with respect to K in J, .

(6. i) The mapping (T,, J,) is continuous.
The proof is the same as the one given for » =0, J ==J, in [3 (A), p. 508].

Remark. The process of vetraction itself could be defined even under’
somewhat weaker conditions, namely: P, and Py: ¢ =1 for every ye {y Yard
e 3 - .
or P":T constant on F(y) for each ye {y}mo.

7. — Some metrie lemmas.
(7. 1) Lemma. Given N distinct points P,e & (i =1, ...; ) and a number

¢ >0, there is a 0> 0, 0 <o < ¢ and a quasi-linear single-valued continuous.
transformation 7 from E onto itself (not necessarily one-one) such that

(a) [2(p) —=(p") | <|p-—p'| for all p,p’ € B;
(b) [z(p)—p|<e {for all peH;
(c) 7 is constant on each sphere F, of center P, and radius o

(¢ =1, 2, ..., N);

(d) each triangle 4 of F is mapped into a polyhedral surface A"
with a(4) < a(d).

A proof is given in [3 (A), 6.5.d, p. 67]. Here a(4), a(4') denote elementary
areas.

(7. i) Lemma. Let J be any polygonal region of order v, 0 <y <<+ oo,
of the w-plane =, (7, J) a continuous mapping, K cJ any continuum satis-
fying conditions P’ and P, with respect to (T, J); J, a polygonal region of
order u, 0 <<u <<+ oo, such that K cJ,cJ and K satisfy conditions P, and
P, with respect to (I', Jo); (T, J,) the retraction of (7, J) with respect to K
in J,. Then, for every n =1, 2, ..., there is a quasi linear mapping (P,, J)
and a polygonal region R;, K c R,CJ,CJ, satisfying conditions P, and P,
with respect to (P,, J,) and such that if (P,y, J,) is the retraction of (P,, J)
‘with respect to R, in Jy, then P,(w) = T(w) in J; Pw) Z To(w) in Jg,
(P, J)— L (T, J), W Prgy Jo) — L(Ty, Jy) as n—co and (P, Jo) < a(P,, J).

The proof is the same as the one given in [3 (A), 36.3, i, p. 511] for » =0,
Jo=d.



162 L. CESAR1

The statement (iii) below is only slightly more general than (ii), and the proof
is analogous. By figure we mean the finite sum of disjoint polygonal
regions. Use is made of § 2, (iv) an (v).

(7. ii) Lemma. LetJ be any polygonal region of order », 0 < » <+ oo,
(T, J) be any continuous mapping; K = [K,, ..., K,] any finite collection of
continua K, each satistying conditions P’ and P, with respect to (7, J); 8 =
=[Gy, eoey g_,,]’ any finite collection of distinct continua ¢, € I'; J, any polygonal
region, K,cJ;cdJ, such that I, has both properties P, and P, with respect
to (T, J,) (¢ ==1, ..., N). Suppose that, for each i =4 (i, = 1, ..., N)
(a) IL0; == 85 I8 either empty, or the sum s, = Y'g, of continua ¢, € S;
(b) there isa sum s,;=>"g, of continua g,eS such that s,;,Cs;;and s,; separates
K, —s;;and K,;—-s;;in J; (¢) s;;,0CJ; J; where J, J; is either empty, or a figure
according as s, is empty or not. Let (I';, J,) denote the retraction of (7, J)
with respect to I{, in J,; (¢ =1, ..., N). Then, for each n =1, 2, ..., there is a
quasi linear mapping (P,, J) and certain figures R,; such that (1) K,c R,;C

Cdiy RyidRusy s Rurd K. as m— oo; (2) R, satisfies both conditions P,

and P, with respect to (P,, J,); (3) Pu(w) =T T(w)in J; P, (w) —Z Ty(w) in J,
{t =1, ..., N), where (P;;, J,) denotes the retraction of (P,, J) with respect
to R,; in J;; {4) for every h ==1, ..., M there exists a polygonal region f,,
such that g,cf.,, and P, is constant on f,.; (5) if s,5, is empty then
Ry R,y is empty; if s,5=2"g, then R,; R,;=>"fum, 1 %4 (4, § =1, 2, ..., N);
(6) for every » =1, ..., M and i =1, ..., ¥, with ¢, c K, we have f,, c R,
and Py(w) = P,(w) == constant on f, (n =1, 2, ...); (7) a(P,, J) = LT, J),
Py J;) LTy J) (=1, 2, ..., N) as n = oo.

8. — Rigid equivalence.

We say that two mappings (1, J1), (1, J,) are rigidly equivalent if we can
pass from 1 to T, by means of finitly many operations R of the following
type, or of their inverse:

(R) For some finitely connected eclosed JorDAN region J' we have
Ji+J" =dJ,, T, is constant on J', and 7, =1, on J,.

A particular case of this operation has been considered in [3 (e), p. 26]. We

proved there the invariance of LEBESGUE area. This is true in general:

(8. i) It (T4, Jy), (T, J,) arve rigidly equivalent then L(J,, T)) = I(J,, Ts).

The proof is the same as in [3 (e)], or as in [3 (A), 6.5. ii, p. 69] and based on
Lemma (i) of § 7. Also it is an immediate consequence of [3 (A), 21.4, i, p. 337].

The following examples show cases of rigid equivalence where J,, J, need
not have the same order of conneetivity.
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Example 1. Let (T, Jy), Jy = Jyp—J},, be a given mapping, which is
constant on Jj. Let J' =J,; and 7, =T, on

% hJy, and constant and equal to Ty(J7) on J'=J,, .
3, Q Then (T4, J.) is rigidly equivalent to (7}, J4),
J; Jy=Jy.

10

(T3), v=1 (T,3,), ve0

Example 2. Let (T, J,), J,= (12345678),
be a given mapping, which is constant on (364 5)
and (18) with two different values p,s« P, there.
Let J' = (3654) and «suppress » J' from J;, that
is let J, = (1236781) (operation R-1), and let
To=T,in J,. Then let J'= (1458), J,= J,+ J,
and let T;=17, in J, and T,= P, In (1458).
Then (75, J,) is rigidly equivalent to (79, J,).

9. — Fine-eyclic elements.

Let us consider the collection ['= I'(T, J) of the maximal continua of
constancy for 7' in J. Then each continuum g € I" has obviously property P,
with respect to (7', J), but not necessarily property P,.

A (non vacuous) continuum K cJ is said to be a fine-cyclic element (set)
of (T, J), if

(1) K has both properties P, and P’;
- (2) T is not constant on K, i.e., K is not an element ge I7;

(3) K is minimal with respect to properties (1) and (2); that is,
every proper subcontinuum of K having property (1) is a continuum ¢e I

We shall denote by { K } the collection of all distinct fine-cyeclic elements
of (T, J).

Let K be a fine-cyclic element of (7, J). Then K has both properties P,
and P’ with respect to (I, J). Let {JO} be the class of all regions J, with
K cJycJ such that K has all properties P,, P,, P’ with respect to (Lo, Jo)-
By (5. ii) we know that the class { Jo} is not empty.

For every J, e{Jo } let (T,, Jy) be the retraction of (7, J) with respect
to K in J,.

(9. i) For every two regions J,, J, e{ J(,} the retractions (T4, J,), (T, J)

of (T, J) with respect to K in J,, J, respectively are rigidly equivalent.
The proof does not offer difficulties.

11, — Rivista di Matematica.
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As a congequence any two continuous mappings (T4, Ji), (Th, Ja),
R J.ZE{JO}, obtained by retractions of (7, J) with respect to K in J,, J, are
rigidly equivalent, and thus the class

] s,
& o tmy et

V=1
7 52
<L is a single entity up to a rigid equivalence. We
denote this element as a fine-cyclic element (surface)
N of (T, J). By LEBESGUE area L(T,, J,) of a fine-cyclic

element we denote the LEBESGUE area of any element
(Ty, J,) of the class (1).

The following illustrations show various types of

Y 0 S, fine-cyclic elements for surfaces of the »-type.
gw The surface 8, presents two fine-cyclic elements
each of the type of the disc. The surface §, presents

NI 35 five fine-cyelic._elements each of the type of the dise, ..
W joined in chain and by a thread. The surface S,

. presents four fine-cyclic elements each of the type of
a dise, joined at two distinet points. The surface S,
presents three fine-cyclic elements each of the type
of the sphere, joined at a single point. The surface

S; presents two fine-cyclic elements. The surface S
also presents two fine-cyclic elements, one of which is of the type of the sphere.

10. — Properties of separations of fine-cyclic elements.

(10. i) If K, K’ are any two distinct fine-cyclic elements of (7, J) then
(a) KK' = S where S is a finite sum of continua ¢ € I', which may be empty;
(b) there is a component y € {y}w such that K'cy + 8; (c) there is a.
component »’ €{y },,, such that K cy’ + 8.

Proof. If KK’ = 0 then necessarily K’ is completely contained in one and.
only one component y e{y} o and K is in one and only one component.
y' ey }K,J. Thus (i) is proved if XK' == 0.

Suppose KK’ = 0. Since K, K’ are distinet there must be a point w which
is in one of them and not in the other one; say, weK', wedJ—HK. Then wey
for some y e{y } s and certainly K’ eannot be confained in y, otherwise we
would have KK’ = 0. Thus K’ goes beyond y and hence must have at least:
one point in common with F(y) and thus with some of the components %,
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Eyy ooy kb, of F(y). Since K has property Py, T is constant on each %, and
thus k;cyg, for some g,el’, and since K has property P’ and k, CK, g, K £0,we
condudc g:CH (i =1,2,...,¢). As a consequence, if we denote by ky, ko oy By,
< d<e, those components of F(y) with K'k; 540 (i=1, 2, ..., d), we
hfwe I'g;54 0, g,c K, and, since also K’ has property P’ we have g, c K'.
Thus, if § = ¢+ ... + g4, we have ScK, ScK’ while K (gary+ oo +g0) = 0.
Let us consider now the set K" = K'-(y -+ §), which is obviously a conti-
nnum K" cJ. Since each set XK', v, § is a sum of continua g e I, also K" has
the same property, i.e., K" has property P'. Now let us consider any component
" of ] K" and obselve that F(y") is the finite sum of its components,
say L ey 7»,, and that F(y)cK'cy +8. If w e Fly"), say we 7"1 for
mstfmee, and wey, then weK’, (md there is a neighborhood U of w
such that UK" = UK', Uy" = Uy. Therefore every componenb yo of
Uy" is contained in a component 3’ of J— K’ and Uyy = Uy’. Thus w
is on some component &' of T(y") for somey'e{y }.,. All tlns proves
that 7 has on each L at most the values taken by 7 on the component L of
_the sets y’ El v } s plus the values taken by T on the continua geS. Smce L
has property P, with respect to (T, J), T' has constant values on each k, abov e,
and thus T takes at most countably many values on each k). This implies that
T is constant on each k', and thus K” has property P, with respect to (T, J).
Finally 7' cannot be constant on the whole of K” since we would have then
8 =g =K", ge I, and thisis impossibile since K" has some points in y, and
thus is larger than S. We conclude that K is a fine-cyclic element for (7, J),
with K’ c K'.. This implies that K’ = K’ and (a), (b) of (i) are proved.
By exchanging K and K’ we may deduce (c). Thus (i) is completely proved.

(10. 1) Ifge I'and K e{ K} then K —gcy for some cofnponent v of
J—g.

Proof. Suppose if possible, that (K — gy #= 0, (K-—g)y" £ 0 for two
distinet components y’, »” of J —y. Then it is immediate that both sets

E' =g+ (K—g)y, K" =g A (K —g)y”

are uncountable sums of continua g g € I, are proper subcontinua of I, and have
properties P, and P', a contradiction.

11. ~ Further properties of separation.
(AL i) If ge I, if y, y' are two distinet components of J — ¢, and g c KK,

K—gcy, K'—gcy', where K, K’ are distinct fine- cyclic elements, then
KK' =g¢. :
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Proof. By gc KK', K-—gcy, K —gcy, and yy' =0, it follows
that K — g + (K—g¢)y, K =g+ (K —g)y, KK =g.

(1. ii) It ge I', it v is any component of J —g and gc KI', K-—gcCy,
K'-— gc y where K, K' are distinet fine-cyclic elements, then gJ* =0, and, if ¢ is
the component of J — K containing K'-— K&, then F(GF) == my -+ ... -+ my,
GG* =J 4+ . FTE L e+, GE=GEF+F(G), 2<b<y+1
(§2,§3) and for at least one of the continua m, of F((), say m,, we have
myCcgc KK

Proof. By (§ 10) we have KK' =8, K cG + 8, where § is a
finite sum of continua ¢ =¢, gsy .-, 9, €. By (§ 2, § 3) we have either
(@) F(G) ==yt o + g =My e gy, GEF=T ¥4+ I L+ o+ 1y
b>1, 6% = GG* + F(@), or (b) F(G) =my, GG* =J, + ... + J,,
G* = G@% + F(G). Suppose, if possible, that the case (b) is true.
We have K-—ygcy, K=gcy, gcKE" and, sinee-I(y—-If'are distinet, ,
there must be either a point we (K — K')y, or a point w' e (K — K)y,
or both. Since neither K is a proper part of K', nov XK' is a proper part
of K (§ 9, (3)), both points we (K—K')y, w' e (K — K)y exist. Thus
every point w' €@, and, therefore, w’ e @Gy and Gy s 0. Since g C I and
y is a component of J-—g we have ¢gG =0 and, finally, Gcy. On
the other hand, by (b), F(G) = m, c K, and since K has properties P’ and Py,
also my c g’ c K for some ¢'€ I. TIf g’ ¢ =¢,, then G is a component of
J —g', say 3, and 3’ contains w' € K'. Thus, by the reasoning of (10, ii),
K'cy' + ¢, where y'g =0, ¢'g =0, and hence K'y = 0, a contradiction. If
g =g =g, then F(G) =m, Cyg, and G is a component of J —g, say ¢/, and
since w' € Gy, we have 9" =y, and G =y. By gc K, K—gcCy, KG =0,
we have also Ky=-=g, Ky =KG=0, K(J—g—y)=K—g—y =0,
and gc K = Kg + Ky + K-(J —g-—y) =g, that is, K =g, a contradiction.
Thus (b) is contradictory, and (a) holds. Now suppose, if possible, that
(a) holds with b =1. The same reasoning abowe shows that also this
assumption leads to a contradiction. Thus (a) holds with 2 <b<» + 1.
Here [, — GG*J'* (i =1, 2, ..., b), where Ji*, ..., J,* are b distinct of the
y + 1 boundary curves Jg, ..., J¥, and the end points o, p: of the arcs
1; = (o; B:) s, B: mot necessarily distinet] belong to two consecutive continua
m,, with m;cg.c K (i =1, ..., b). The b continua ¢, € I" are not necessarily
distinet, and the continua ¢, =g, ..., ¢,, Whose sum is S, are u of these b con-
tinua ¢; (thus 1 < x < b). Since the second end point B, of I, and the first end
point o, of I, certainly belong to m, and hence to g, =g, we conclude that

‘

g Ji* 50 for some i =1, 2, ..., b, and thus gJ* 5= 0.
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Note. In the considerations above we have G cy. Indeed, since ¢ is a
component of J — K, gc K, and y is a component of J — y, we conclude that
Gcoy.

If we denote by m; = my, ..., m; those continua m, contained in ¢, =y,
and by m;, ..., m; the remaining ones, we have » -+ v = b, and the same
reasoning above proves that 4 >1, v >1. Thusl<<u<b—1, 1 <o <b—1.

(11. iii) If g € I" belongs to the non-zero intersection of x distinet fine-cyelic
elements K, (i=1,2, ., ), gc KK ... K, n>2 i K, —gcy
(i=1,2,.., ), where y is a given component of J-—g, then F(y) =my, +... - m,

pyr=dy b e RIS b Ly =y S F() (§2,§3), and
2<b<y +1, pu<b

Proof. Let us apply (i) to K = K, and K'= K, (i =2, 3, ..., ). Then
for every 2<i<pu have KK, =28, K,cG;+ S8, where ycS;, ,Cy,
and ¢, is e éomponent of J -~ K, " For every i =2, i, We have

i 1
B(E) = my ... 4 My, + Mgy e My u; -+ v; = by, w0 > 1,
ES Tl [E3 E3 ES
GOF =J,F + ... BRI T R Liv,s G = @.6GF + F(G)),

where m, -+ ... +m, g, (Mgt ... + v;)zi,,i) g = 0. Actually y is larger than
each &, (i =2, 3, ..., ILZ) but the continua m,, ..., M, belong to I(y) as well as to
F(G,) (3 =2, ..., u). Thus also for y the case (a) occurs with b [proof of (ii)]
and we have F(y) = m,+ ... +my, pp¥=dJ 5+ T 5+l 4ot 1, pE=
== yy* -+ I(y), where each collection [m, ..., m,.,,i] is a proper part of
[#y, ..., my), each collection [J.F, ..., J,¥] is a part of [J,*, ..., J.*], each arc
l;, is a part of (proper or not) of an  are l; of a curve J;'*, where
Myt oo =My Cg, and 2Ly +1, 0<a<<y +1, a +b0<<y +1, ¢;<a.

Let us observe that 7' cannot be constant on the ares I,=: (o; ;) nor on any
subare 1= («, f), li= (o B.) of I,. Indeed suppose T constant on an are [},
then 7 should be constant on the closed are (a) + I, =+ (8,) = I, and then,
by fiel, fiem, l.cg’, m,cg, g4 T, itfollowsg' =g, l;cg, Ly =0,
a contradiction, since I, C yy¥ cy.

It may occur that for a subarc as above, say l; = ((x; p1) we have [, K,=0
for some ¢ =1, 2, ..., u. Then the whole arc I, belongs to &, and since 8, c m, C g,
the point f, cannot be in &;. Thus m, is a continuum m,, and (=) there are two
subares I, = (o f1) of L= (e, f1), and I, = (e, f;) of I, with [,K,;=0, [LK,=0.
The same result holds for 7 =1, by exchanging K, and K, .

Suppose that for a subarc l; — (oc;ﬁl) of I, we have l; c K, for some ¢ =
=2, ..., . Then we can show that for a subarc I, sufficiently small we have also
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ll' If; =0 for every j 54 (j =1, 2, ..., u). Suppose this is not true. Then
there would be points w, = liK AL (n =1, 2, ..) as close as we want to f3,
and thus we can suppose w, — f; as n — co. By an extraction we can suppose
*wneZ;K AL (v =1, 2, ...) for the same j independently of #. These points
cannot belong to the same continuum g’ € I, since then we would have g, € ¢/,
9'9 0, g =¢, gl, #0, a contradiction, since L cy, ypg=0. Analogously
the points w, cannot belong to finitely many continua ¢’ € I.  Thus the points
w, (n =1, 2, ...) belong to a denumerable family [¢] of distinct continua ge I,
and we have g'c I, K, forall g €[g], a contradiction, since, by (10. i), K, K, —
= 8;; is a finite collection of continua ¢’ € I Thus we have proved that if
Z; = (a,f;) ¢ K, then we have also lin: 0, for all j 24, j =1, 2, ..., u, and
a subarc I, sufficiently small.

Suppose that for every subarc I = (o, f,) of ; we haveboth LK,540, I.—K ;5 0
(I; open) for some ¢ =1, 2, ..., u. Then these relations occur also for a well
determined ¢ =1, 2, ..., , and every subarc l; . Since the set I, — K, is open

and thus the countable sum of disjoint open arcs of 1., weé deduce that there

certainly exists a sequence w, = (#,v,) of open arves, with wu, — Prs U — P,
Uny Uy CIy 0, =0, (n =1, 2, ...). Bach w, must belong to a component
'n;,, of J — I, ;,,# G, ?,EG .= 0 (at least for all » large enough), and }7,1 must
be of the first class, at least for all # large enough (§ 2). For » large we have
then F(y,) = Muy, Yupl = wny 5= @n-- My. Since K, has both properties
P, and P’ we have m, C g, for some g, € I" and now we can prove that 7,K ;=0
for all j =1, 2,...;, . This relation for j = ¢ is trivial. For j ¢ { we must
consider the set K'= K, 7, + n. This set K' is obviously a proper subconti-
nuum of K;, not reduced to a single ¢’ e I', and having both properties P,
and P, a contradiction (§ 9, (3)). Thus ;n H;=0 (j=1,2,...,u). Nowwe can
show that LK, 50, I;— K, 0 for every subarc I, = (. f,), implies that
LE; =0( =1,2,..., u; §5£1) for some subare I;. Indeed suppose that the
contrary is true. Then we have I'K,K; 5= 0 for every subarc I, and some § 5= 7,
j=1,2,..., u. Then the same relation occur for a fixed j and thus there exists
2 sequence w, (n =1, 2, ...) of points w, eliK JAC; for some l;, with w,— f,.
As before these points must belong to a denumerable collection [¢'] of continua
g'el, and ¢’ c K,K; for all ¢’ €[¢g'], a contradiction.

The last three paragraphs show that if 1., = 0 for some i and for every
subare I, == (o f) of 1, sufficiently small, then there exists some subarc L
with LK, 50 for all j=¢i, j=1,2, .., u

Let observe that the following situation cannot occur: (a) K ; ;=0 for
all ares I; = (o, f.), for every i =1, ..., b, and some j =1, ..., . Indeed (a)
would imply I(, I;= 0 for all arcs ;== (o f3), and m, would be one of the con-
tinua my, ..., m;, for i ==1, ..., b, a contradiction, since the last collection

Jug

is a proper part of [m,, ..., m,].
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By combining this statement with the previous one we conclude as follows:
For each ¢ =1, 2, ..., b, there is a pair of aves I;= («;8:), U;== (¢ts+s firy) With
the following property: either (m) I,K, =0, K, =0, for all s =1, 2, ..., 5
or (m') K, 5 0 for every two subares I, I, as above and some ¢ =1, 2, ..., u,
and LK, =0, UK, =0 (s 5215 § =1, 2, ..., p). Forevery s ==1, ..., u, case
(m’) occurs for at least ome 7 =1, ..., b.

Since we have exactly b arcs I, and u continua K,, we must have u <b.
Thus (iii) is proved.

12. — Examples concerning § 11.

We may consider now a finite collection [K] of given distinet fine-cyclic
elements K with non-zero intersection, S, = IIK 5 0. Then, bv § 10)

8, is the finite sum of, say =, distinet continua ge I, Sy=¢,+ ... +¢.,

1<n <4 oo. Let m be the number of the clements K €[K]. Finally let
{7}, be the collection of all com-

ponents y of J — 8.

Ifn=1 and thus S =g =y,
and if either gJ* =0, or gJ* %0
for (at most) one value i =0, 1, ..., »,

15 mghoo, maq mg+o meq then by (11.i), the sets K-—y,
K e[K], belong to distinct com-

ponents v e{y }g, we have g = IIK, and the family [K] is finite or countable.
The situation we have described here occurs necessarily if » = 0. The illus-
‘ trations show that the

various cases are all possibile.
If n=1, and ¢JF50
Q1O for exactly N values of i =

me2 et VE men it v =0,1,..,7, 2<N<y +1,

’ then we may consider first
all the components y e{«/},, of the first class, or of the second class with
b<1. Then there is at most an element K with K—gcy for each y
of these types. We shall then consider the components y of the second
class with b >2, a>0. Then Y (¢ + b—1)<», and thus there are at
most » of these components. Since for each y of this second type there
are exactly b pairs of arcs like I;, Ij, we may have at most b elements K e [K]
with K —g cy, and thus a total number > b < 2» of elements K of this type.
Let us observe we whave in any case b < N for every y. The illustrations
below give examples of the situation just now discussed.
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If »>2 then by § 10 there is exactly one component y, of J— ¢, with

g + ... -+ ¢, Cy. For every component y’ £y, of J—y¢, we cannot have
S 3
K-—8,cy’y Sy=yg; + . + gu. Let F(y) = my-+ ... + my, Yoy == J 4
1. ate L. »
I L L, Yo =v¥e + Flyy), and my-+ ... +mycg,. Now it

may occur that ¢, ;540 for some ¢ ==1,2,...,b, and then there will be at
most as many components
ye{y tay So= it i + gy
with F(y) 150, F(y) g5 0,
as ares L= (o, ), Ui=(ct; B})
with o;€ ¢, pi€g, or
ey, Mg, V=2 Mg, ma3, Vel m:u"rn.’&,\):}‘g; %€, Pi€g.. Since there
\ ‘ are at most 2b of these
arcs we have m <2b<2(v 41). The illustrations below show examples
of this situation.
We shall not discuss whether m may be > 2 with » > 3.

13. — Denumerability. of fine-cyclic elements.

(13. i) Given &> 0 the collection of all distinet fine-cyclic elements K of
(T, J) with diam7(K) > ¢ is finite.

(13. i) The -collection {K} of all distinet fine-cyclic elements K of
(', J) is either empty, or finite, or denumerable.

Proof. Since (ii) is a corollary of (i) we have only to prove (i). Suppose
that (i) is not true. Then there exists a sequence [K,] of distinet elements
K, E{K } with diamT(K,) > . Let K,, = K, and let us prove that we have
Ky K,=0 for all but finitely many n. Suppose, if possibile that K, K, 0
for infinitely many n. Since K,, K, is the finite sum of continuna geland K, —
— Ky K,= K, — K, is completely contained in one of the components G of
J — K, we have ¢<diam T(K,) = diam 7(K,— K,) < diam 7(q) for
infinitely many #. Since only finitely many components G of J — K,, satisfy
the relation diamT(G) > e, we conclude that infinitely many sets K,— K,
should be in the same component ¢ and satisty the relation K, K,,5= 0. But
F(G) is contained in finitely many continua g €l', g c K,,; thus infinitely many
K, should have in common with K, a well determined continuum g,er, Go C Hyy,
a contradiction, because of (11. iii). We have proved that there is an index
ny > 2 with K, K,,=0 for all » >n,. Let K= K, , hence Ko Ky=0 for
all »>n,, and let us repeat the reasoning above on the new sequence K,
n>mn, . We will obtain an index n, and an element K, = K, , such that
Ko Kog== Ko Kyo== Koy Kyo= 0, (K04 Ky)K,=0 forall » > n,. By indefinite
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repetition of this procedure we will obtain a sequence [K,,] of elements K with
K,y Ky =0, diamT(K,,) >e (r=ts; 7, s=1,2, ..). Weshall denote this
sequence by [K,] for the sake of simplicity. Thus diam 7(K,) > ¢, K, K,= 0,
(m = n; my n =1, 2, ...}

For every n there are two points w,,, w,, € K, with } T(w,y) — T(10,,) | > e
Then, by two successive extractions, we can pick a subsequence, say [K.],
such that w,;— w,, w.,— w, a8 # — oo for some w,, w, €J. Then we have
| T(w,) — T(w,) | > &, and therefore 4d =|w,— w,|> 0.

Let d,, 0 <d,<d, be a number such that w, w'edJ, |w—w' | < dy,
implies | T'(w) — T(w') | < &/4.

Let 6, 0 <d<d,, be anumber such that any two points w,,w' e J with
|0 — 10" | <6 belong to some arc AcJ of diameter < d, (uniform local connectiv-
ity of J). Sinece |w, —w,| >0, |w,u—w,| =0, we may discard finitely
many K, in such a way that for the new sequence, say [K,], we have | w0,,— w, |,
| Wa— 0, | < 8.

~Then-the-two-closed-cireles ¢;;-¢,-of-centers-1eyy 1w;,-and-radii-dy-ave-disjoinb:
In addition, for every n, there are two paths A, = (w0, 0,), Ap= (10, w,),
of diameters <d, and thus [A,]ce¢, [As]cCe.

Since K, IC 4, == 0, by (§ 10. i) there is a component y, of J— K, with K ,.,C y,,.
We  have Fly,) =My + .. + My puyd =dJ% 0+ TF 41 F o -,
v¥ = y¥ 4 Fly,), where m,, L, J,%, a, b may depend on n. Certainly Fy,)
separates both w0, -+ w,, from w,y, ;, Wy, in J. Thus we have (4, - Antr1) "
B(yn) %0, (Aug+ Aua, o) Flyn) # 0, since A,,-+ Antrs JOINS 20, 0 10,4
(s =1,2)ind. Letuw,, w, be the last points on Au -+ Zwrrs Ame + Auire
which are on F(y,). We may say that w;l € Mypy, 70,’,2 € M, Where m,;, Mm,, are
two of the continua m, relative to F(y,). Let us prove that m, m,, = 0, for
every n. Indeed we have |T(w,)— T(o,,)|> | T(w,)— T(w,)|—2e/4 >
> ¢/2, and thus T(w,,) # T(w,,). Since K, has property P’ we have m., C ¢,

Mina C oy Guyy G2 € Ly and T is  constant on

by Jne g [gne] Where it has the value T(w)) [T(w,'m)],
C})ﬁ;@@ W and T(w') = T(w,,). Thus gu g = 0, and Va 18
4 2 2

ni
5 " certainly of the second eclass (§ 2).

O/\O/\O By (§ 3) we know that m,; joins two points

I, 1= 1, 5 By om of two ares, say L, [, of two curves
e JFE (s =0,1,..., »), say LcJF, Lcd* J=dJ,.
Analogously m.,, joins two points o, S.. of two

A T TS A ares, say l, I, of two curves J¥, say l,cJ¥,

Ledy, J,#dJ,. We cannot exclude that .J,,

or J ; coincide with J,, or J;, as the illustrations show.
Since the curves J¥ (s = 0, 1, ..., ») are disjoint and compact, we can estract
a new subsequence, say [K,], such that .= B, ou—> oy, G—> sy Pra—> Pay
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w,’u - Ay, w,'22 — s, A8 N ~>o00. A$ a consequence we can also suppose that
. ’ 1]

the points S, ¢m, O, fne belong to the same curves Jy, J,, Js, _J , for all =,

and then the same occurs for f,, oy, ., fa:

! 1
ﬂ7z1;ﬁ1EJ1y 0571170515Jn Ongy Oo € J 2y /gnmﬂze']g-

We can even suppose that the sequences [f,], [euls [¢nely [fne] are ordered on
Juy Iy Iy J, respectively. Finally let us observe that o, firs € Mug, My C sy
Bus—> Psy  Ons—> tt;, (s =1, 2), and then, by the upper semicontinuity of the
collection I, there are two continua ¢,, ¢. with w;, S, ey €¢;, s, fo, € ¢s .
Since | 1(g,) — L(g,)
=| T(w) — T(w,)| > ¢
we have {gl, {/2} >0
and thus |o,—f,] >4,
o lal—‘ﬂt‘ >0 (s £t
o2 s, t =1, 2). From here

Pra

‘it follows that we may
suppose that the points
, [ﬂnl], [“n1]7 [fxn‘z]’ [ﬂnz]
belong to four ares I = (Bu i)y I, = (o @)y, o= (Bufa)y Lo = (0t tno)
-completely disjoint. .

The consequence of all this is that the two couples

L

My =g, + Ynt2,19 My = g + Inte,2s

separate J. In particular M-+ M, separates b = ¢, and b= g,.,, in J,
a contradietion, since h,h' C K1y, K4, is a continuum, and (M, 4+ M, K, = 0.

Thus we have proved that diamZ'(I(,) > ¢ for infinitely many distinet
K,e{ K} is impossible, and (i) is proved.

(13. iii) If w, is any point w,eJ and [K] any collection of ﬁne-cyclic
elements K of (T, J) with w, e K, then the sumw = Y K of all elements
Ke[K]is a continuum of J having both properties P, and P’.

Proof. Property P’ is trivial. Denote by g, the continuum ¢, € I" with
1w, € gy . Let us prove that w is closed. Thisis trivial if [K] is finite. Let us
suppose [K] denumerable. Let w be a point of accumulation of w, and [w,]
any sequence of points w, € w, w,—w. If infinitely many w, belong to the
same I €[K], then also we K, and wew. Otherwise we can extract from
[w,] & subsequence, say still [w,], such that each w, belongs to the element
K, e[K], and the elements K,, K,, ..., are all distinct. Since w, € K,, and
w, —w, w,eK,, we conclude that both points 1w, and w belong to the set

lim inf K, which, therefore, is not empty. Thus s = lim sup K, is a continuum



FINE-CYCLIC BELEMENTS OF SURFACES OF THE TYPE ¥ 173

containing both w, and . On the other hand, by (i) above, diam T(K,) — 0
as n — oo and, hence diam 7(s) = 0. Thus s c g for some g € I'. Since w, €s C g,
Wy € ¢y, we deduce g, g 5= 0, and, finally, g = ¢,, weg, where ¢,c w. Thus
wew, and o is closed.

Let us prove property P,. Let y be any component of J —ow =J — > K.
Then F(y) is characterized by (v)of § 2. If w, is any point of one of the continua
k;, say w, € by, then w, belongs to some element K € [K], say w, €K,. On the
other hand y must be completely contained in one of the components, say @,
of J — K, and hence w, € F(,). Therefore w, belongs to one of the continua
¢ € I', finite in number, covering F(G,) [(i) of § 4]. Thus %, should be covered
by countable many continua gel’; hence K, should also be covered by countably
many distinet (and thus disjoint) continua g€ I. This is possible only if %,
is covered by just one of these continua, say %k, cg;, ¢.€ . Thisimplies that
T is constant on k.. Thus 7 is constant on each component of F'(y) and w has
Ijl'operty P, .

14. - A topological lemma.

(14. i) Given any two points w,, w, € J and a finite system § =g, - ... + gn
of distinet continua g, e I’ (i =1, 2, ..., n), such that § separates w, and w,
in J, then there is a subsystem S'c S, say 8 =g, + ... +yg,, separating w,
and w, in J, with p<<v + 1, 1< u<n.

Proof. The points w;, w, are in two distinct components &, G, of J — 8,
S =g+.. +g, say w,el,, w,el,. Let K =G, + F(G). Then K is a
continuum of J. Let G, be the component of J — K containing G,. Then by
virtue of (2. v) F(G;) reduces to a finite number of components k, + ... + k.,
1<<e<v+ 1 and each k, is contained in a g, I'. TLet then ¢y, ..., ¢o, d <o,
be the continua in I” contained in § for which % + ... +k.cgy + ... + g4 -
We asgert that 8" = g, -+ ... + ¢, separates w,, w, in J. If this were not the
case we would have a simple arc o in J — §' connecting w,, w,. But then
the intersection o - F(G) would be not empty and hence o8’ 540, a contradiction.
Since 1 <d<» -+ 1 the proof is complete.

15. — A covering thecorem.

As usual we shall denote by Praxo space M the continuous image of a
closed interval.

(15. i) Given any Prano space M and for every point p € M a neighborhood
U = U(p) of p in M then there are two finite chains of points of I, not neces-
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sarily distinet p,, p, (i =1, 2, ..., N; p, =p,), such that, if Us = U(py)
(=1, 2, ..., N), we have

N
S UM, Piy pen€lU; (=1,.., N—1), p,eU,.
1

q==

Proof. Let p=p(t), 0<t<1, be any continuous mapping from 0 <¢ <1
onto M. For every t [0, 1] let us denote by u(f) a subinterval of [0, 1], open
in [0, 1], containg ¢ and such that

(1) plu®]c Ulp@)] .

The existence of such a subinterval u(?) of [0, 1] follows from the continuity of
p(t) at t. Now, by BoreL covering theorem, there is a finite chain of points
0<{; <ty <..<{t, <1 such that 3 u(f;) is a covering of [0, 1]. Let #, denote

that point ¢, for which wu(t,) = u(f,) = [0, B,) covers { =0 and has maximum
p.. Let t; denote that point ', for which u(t;) == u(t';) = (oty, f,) covers t = fi;
and has maximum f,. Let t, denote that point ¢, for which wu(t,) = u(t,) =
= (cty, P,) covers ¢t = f, and has maximum f,. By finitely many repetitions of
this procedure we will determine a finite chain ¢, tyy .-y t, Of points t &[0, 1]
such that Zu(t;) is a covering of [0, 1] and u(t,) =1[0, B, w(ty) == (ctay Po)y «-v
u(tj\’—l) = (0ty_1s Py_1)s '”‘(tz/v) = [og, 1], 0<f < .. < By = 1, o <Py,
oy <oy ey wy> Py

A consequence of method above for the choice of the intervals w(t)) is that
wewillhave also 0 == o <C o <ffy <oty < o Loty < fyg<Tove <oty fy_<<Py=1.
Now take arbitrary points ¢, as follows 1, = t;, oy <l <y, Otz <ty <<fay vy
oy <ty<Py_1, and put p, = p(ts), p; =pl;), (=1, 2, ..., N). Wehave
py = ph, and, since by, t, € u(ty), ty by € Ully), vy ty_qy by €Uty ), ty € Ulty),
we conclude that py, po€ Uy, Doy D€ Usy vy Py_1s Py € Un_yy Py € Uyy
where U, = U(p)) (4 =1, 2, ..., N). Statement (i) is completely proved.

16. — Properties of separation in J.

(16. 1) Given any point w,eJ and any simple arc IcJ such that each point
w €1 is separated from w, in' J by some finite system § of continua ge I'(T, J),
then there is a finite system S, = ¢, + ... +g,, 1<p<» +1, of continua gel’
separating 1 from w, in J.

Proof. Let us consider ! as the continuous image 1: w = w(t), 0 <t <1,
of [0, 1]. Then for every te[0, 1] there is a subinterval u = w(t) of [0, 1],
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containing ¢ and open in [0, 1] such that the correponding arc « of I, containing
the point w = w(t), is completely contained in the component y = y(w) of
J— 8, where 8 =g¢; + ... + ¢, = Sw), in the finite system of continua
g € I'" separating 1w (¢) from w, in J. We can now apply (15. i) and we have
a pair of chains

0 =1, <t <..<t,<1, 0 =1, <ty <..<t,=1,
such that
bits €L, oy Ly ply€ully_y), ty€ulty), w(ty) 4+ ulty_y) + ulty) == [0, 1].

. ’ .
As a consequence, if we pub w,; = w(t;), w, = wity), (=1, 2, ..., N), we
have

1 . 7 7
Wiy €YW), ey Wy W0y EP(W,_y), Wy, €YW),

and the whole are (10, 1,) of 1 is in y(w,), the whole are (w,ws) of 1 is in p(w,), ...,
(wy,_,w,) of Lisin 'y(w;,_l). We may observe that each set y; :y(w:.) is a compo-
nent of J —8;, Si=¢gq+ ..+ Goppr where S, is a system of 1 <pu, <y +1
(14, i) continua g, e I' (s =1, ..., &), and thus, in general (§ 2, § 3)

Fly) =My + oo 4+ My peyF =I5 FIF Ly
yi=yoyi + Fy
where ¢ and b may depend upon %, and
My e = My C G + oo T+ G, -

Let 8 = 8; = §,. Then let us denote by S, the sum of all distinet continua
ge 8, =8, and all distinet continua g € §, which are not contained in yy =y .
Then y'l = v, is still a component of J — S, and, by (14. i), there is a subsys-
tem S, C 8, of <» -1 continua g€ S,, g€ I', separating w, from w, in J.
Thus w, belongs to & component of v, of J — 8, with Yo D Vi 'y; D y., and we have

(10, %0,) C ¥, C yoy (g Ws) C vy -
Now let S; be the sum of all distinet continua g € S; and of all distinct con-

tinua g € 8; which are not contained in y,. Then y, is still a component of
J— &, and, by (14. i), there is a subsystem S,c S, of <» 1 continua
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' + .
ge 8, ge I, separating w, from w, in J. Thus w, belongs to a component
1 i . ! ! 1
vy of J — 8, with y, 29,295, ¥:2¥s, and we have

! 1 I r
(0, Ws) C Yy C 7y C Yy (ws3) C Yy C ¥y (105 W) C Vg

and so on. After N repeated applications of this process, we obtain a finite
system S = S'; = + .. + g, 0f p<v -1 continua g, separating w, from w,
in J, and such that, if y* = y,, is the component of J — § = J — &', containing
w,, we have ‘

! ’ ! 7 i
(W; Wa) CY,C e Ty (02 103) C Y5 C .o C Yy cery (Wy_1 2,) C Vs

and thus ¢ y;,, and the entire arc [ is separated from w, in J by the system S
of <» -1 continua ge I Statement (i) is proved.

Remark. In the reasoning above we have not used explicitely the
hypothesis that 7 is a simple are. Thus (iii) holds even if I is any continuous
Tenrve, since we can always consideér any répresentation 7w =w(t), 0TI,
of ! on the unit interval [0, 1].

(16. ii) Given any point w, € J and any PEA~O space M cJ such that each
point w € M is separated from w, in J by some finite system S of continua
ge I', then there is a finite system S, =g, + ... +¢,, 1 <p<» +1, of
continua ¢ € I" separating M from w, in J.

This statement is a consequence of (i) and of the remark above, since M
can always be considered as the set of points covered by a continuous curve
(not necessarily simple) [ w = w(t), 0 <t <1, [1] = M c J.

(16. iii) If R c J is a JORDAN region, if R cJ is open in J, and
RR* =Jy 4o = J, 1l s+ 1y, U =J;F R,
Ry = Zl T S PN R* = RR* + P(R),
and thus
Rt =dJ* b 2Tl A 0 A e 1+ A,
where the last line gives the boundary curves of R*, if for each line A, there is
a finite system S; = ga + ... + g5, O O<p, <v +1 continua ¢, € I sepa-

rating A; from a point w, € J — R, then there is also a finite system § =g, +
+.o g, 1<p<v-+1, of ucontinua ge I, gefS;+ ...+ 8,, separating

the whole region R from w, in J.
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Proof. We consider the system 8§ =8, +... + 8, and the component
vo of J — 8 containing w,. Then Plyg) =my + .. +myCgy + .. - Gus where

¢+ o+ ¢, 1<u<v-+1,is asubsystem § of S. It is easy to prove that.
S separates the whole region R from w, in J.

17. — A characterization of fine-cyclic elements.

Given any point w, e J let g'(, be the continuum ¢, € I" containing w,, and
let 2 = Q(w,) be the set of all points w € J which have the following property:
there is no finite system S of continua ge Iy 8 = ¢,+ ... + ¢,, separating’
wy from aw, in J. Thus g, ¢ £2(1,). Tn addition, if w, € Q(w,), then w, e Q(w,).
Also, if w,, w,, w, are distinct points of J, and w, € Q(w,), w, € Q(w,), then
w,y € L2(w,). Indeed, in the contrary case, there would be a system S separating
w, and w, in J, then w, €y, w, ey’, where v, o' are distinet components of
J—08, and pp’ = 0. On the other hand, w, € Q(w,), w, € R(w,), and hence
bey, bey!, beyy yyl.z£0, a contradiction. .. Thereby we have proved-that.-
w, € 2(1w,).

(17. i) For every w,eJ and 0 = Q(w, we have  either Q = > K, or
0 = g¢,, according as w, belongs, or does not belong to some fine-cyclic element
K of (7,dJ), and then, in the first case Y is extended over all fine-cyclic
elements K with w, € K. '

Proof. By definition we have w,€¢,, ¢, 2, and thus £ is not empty.
Suppose if possibile that a point of accumulation w of 2 does not belong to 2.
Then w is separated from w, by some finite system § = ¢ + ... + g, of continua
g € I', and thus w, w, belong to different components, say ¥s Yo, 0f J — 8. Then
Fly) =my + ... + vm,; C o+ ... +9.=8, y8=0, and {i?;, S} =J>0. No
point w of the neighborhood of w of radius § may belong to 2. Thus w is not.
a point of accumulation of 2, a contradiction. This proves that all points of
accumulation of Q belong to 2 and thus 2 is closed. ,

Let us now prove that Q is a continuum. Indeed, in the contrary case,.
there would be a component 2, of 2, distinct from the component 2, of 2 con-
taining w,, and there would be also a JORDAN region R cJ with R cJ, open.
in J, and '

Q.cRcd, FR) =272 + ..+ Mk, R* = RR*4 F(R),
RR* =J% 4+ I £ L+ 1, 1 =) R,

R¥ =% b 1 d* (ot Ayt 1o+ )y F(R)-Q = 0.
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Thus each point w e 1, is separated from w, in J by some finite system
8 == S(w) of continua ge I. Then, by (16. i) there is a system 8§, = §,, -
F e F Gay, oF T<u; <v + 1, continua g € I' separating 2, from w, in R, and
also, by (16. iii), there is a finite system § =g, +... + g, T<pu<y 41,
of u continua ¢ € I" separating the whole of R from wu, in J. Thus it is contra-
dictory to suppose that R contains points we£. This proves that Q is a
continuum,
If w, does not belong to any fine-cyclic element K, then we should prove
that 2 =g¢,. We shall prove first that £ has properties P, and P'.
The property P’ is trivial. In order to prove property P, let us
consider any component y of J — £, let w be any point w €, and
let @y, Q,, ..., Qny ... be 3 sequence of JORDAN regions we @, cQ, C
C..Cc@,cC.. invading y. Then for each ¢, there is, by (16: iii),
a finite system S, =g¢n + ... +¢,, of 1< pu, <v -+ 1, of
continna ge I' separating @, from '{éo in J and thus @,cCy,
where y, is & component of J— §,.
By proceeding as in (16. i) we can now define a modified sequence [S;]

of systems S, each made up of at most » -~ 1 continua g€ I'y such that, if y,:

is the component of J— S8, containing ,, we have yi C ﬂ/; C y; Coy Q@ C
CQCQsCuny QuCys(n=1,2 ..). Thus y, 19 where y is a connected
subset of J. Since @, Ty, we have y c9’. On the other hand, since each point
of v belongs to some y, and hence to J — Q, we have y" Cy, and finally o' = y.

According to § 2 and § 3 we have now F(y) =k -+ ... 4 &, == m; + ... -+ m,,
e L . e > X
yy* = A A J L L R, for some @, b, ¢, and m; = 0. Then

] I Iy
for n large enough we have F(y,) = My -+ oo 4 Mupy  Yo¥n =J1 + oo +
4+ J 1y 4+ .. + 1, for the same a, b, and 1,; c 1", 1,; 1 I, lim inf m,, ==

1

== lim sup m,; =m;, =1, .., b, a8 n — co. Bince Mm,; -+ ... + My C oy -+
+ oo+ Gy, each continuum m,; is contained in some g,; “(j.=1, ..., u,).
Since I is an upper semicontinuous collection, each m,; must be contained in
some g € I', hence k; + ... +- Kk =m; + ... +m,Cgy + ... + o1 <p<v 41
Thus each continuum %, is contained in some g, (j =1, ..., u), and 7' is constant
on k; (i =1, ..., ¢). This proves that Q satisfies condition P, .

Let us prove now that Q == g,. We know that w, is contained in no element
K. Thus £ itself is no such element. Suppose, if possible that £ contains an
element K 25 a proper subset. Then w,&dJ — K and hence w, € G, where @
is some component of J — K. By (v) of § 2 and (i) of § 4, F(G) is contained in
a finite system S ==¢, 4 ... - ¢, of continua ge I' and S separates w, from
some point ' € K, with K c {2 and hence w’ € 2, a contradiction. Thus Q has
both properties (1) and (3) of § 9 but Q is no element K. Therefore 2 does not
satisfy property (2) of § 95i.e., Q =g, I

If w, € K for some K, let w = Y K, where 3 ranges over all elements K
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with w, € K. Then w, € w. By (iii) of § I3 we know that w is a continum of J
satisfying both properties P; and P’. For every K with w, € K, no point w € K,
W 5= Wy, can be separated from w, in J by some finite system S of continua
g €I'. Indeed, if this were the case, then the points w,, w would belong to distinet
components vy, y of J — § and then K' = K — » would be a proper subconti-
nuum K’ of K satisfying both conditions P; and P’, a contradiction. Thus
K cQ for every element K with w, € K, and hence w = YK c Q. Let us prove .
that Q = w. Suppose 2 —w = 0 and let w be any point w € 2 —w. Then w
belongs to one component, say v, of J —w. Suppose first that w belongs to an
element K, say K = K. Because of what we have just proved we have K ¢ Q(w)
where we Q = Q(w,), hence K c Q. If g, K 50, then g,c K, w,e K, and KcC o,
ie., w € w, a contradiction. If g, K =0, then ¢, is in one of the components, say
Gy, of J — K, and hence there is, also, a finite system S separating K — S from
oy 1. €., K — S from w, in J. If we K — S, then S separates w from w, in J,
a contradiction, since weQ. If we S then all points w e J with {ﬁ, W}, <6
[3 (A), 10. 7, p. 189] for § sufficiently small belong to y, and, on the
other hand, not all such points w can belong to § (since § is a finite sum of
continua ¢ € I'), and thus some must belong to K. Thus there is at least one
point w €y, w € K — S, which is separated by S from w, in J, a contradiction
since w Q. All this proves that w belongs to no element K. Then the seb
0 = Qw) of all points w e J which are not separated from w by systems S
is the single continuum ge I', with we g, and gcy. Let R denote any finitely
connected JORDAN region with gc R, R Cy,so that F(R) separates g from
F(y) in J. Thus F(R) separates g from w, in J. Now each point w’ € F(R) is
separated from g in J by some finite system & of continua g €l By (16. iii) we
conclude that there is a finite system S’ of continua ¢’ € I” separating g from the
whole of F(R) in J. Thus § separates w0 from F(R) and F(R) separates w from
w,in J. We deduce that S separates w from 1w, in J, a contradiction since w & 2.
All this shows that the hypothesis 2 — w = 0 leads to a contradiction. Since
25w, we conclude that @ = w = 3 K, and statement (i) is thereby com-
pletely proved.

18. — Fine-cyclic additivity theorem.
By (13. i) we know that the collection {K ¢ of all distinet fine-cyclic

elements K of (7, J) is countable. TLet us denote, therefore, such a
collection by

A{EY={EK,), K., ..., K.},

where we do not exclude that this collection is finite, or empty.

12, — Rivista di Matematica.
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According to § 9 we may now associate to each element K, a class
{(T,-, J ) } of all the continuous mappings which can be obtained from (7, J)
by retraction with respect to K, relative to any subregion J,, K,cJ,cd,
such that K, has property P, in J,;. TFor each 4, all the continuous mappings
(T, J,;) are rigidly equivalent and thus define, a unique element which we
have denoted as a fine-cyclic element (7, J;) = 8, (surface) of (7, J).
We shall consider the sequence

{8} ={8, S0y 8y}

of these surfaces and by L(8, (i =1, 2, ...) their LEBESGUE area. The
following statement holds

(18. i) (Fine-cyclie additivity Theorem.) For every continuous
mapping S = (I, J) we have:

L8) = S L(S).

i=1

Proof. We can suppose J a polygonal region. The proof we give is only
a modification of the one given in [3 (A), 36.3, 1, p. 5111].

(a) Let us prove first that L(S) > Y L(S,). Let K,, K,,..., K, be any
finite system of disjoint fine-cyclic elements. Then § = K, + ... + K,
is a finite sum S of 1 < m < w distinet continua having properties P, and P'.
For each 7 there evists a region J,, {; cJ, CJ, such that K, has properties
P, P,, P, with respect to (I, J,), and we shall denote by S8, == (TI';, J,) the
retraction of (7, J) with vespect to X, in J,;, 4 ==1,..., u. By (7. iii) there
exists a sequence of quasi linear mappings (P,, J) and certain figures F,,
such that, if F, = F, -+ ..+ ,FM, we have

(1) ScF,cd, K,cF,,cd,, FoiD P i

(¢2) F,; satisfies conditions P;, P, with respect to (P,, J,);

(3)  (Pn J,) denote the retraction of (P,, J) with respect to F,; in J;;

o) Po(w) == P, (1) == constant on each component of the inter-
I
section F,,F,; (i 5243 4, j =1, 2, ..., p); thus the u mappings
(Poiy Fup) @ =1, ..., p), define univocally a quasi linear mapping
(Puoy Fa) on Fyj
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{ab) (P, J) = (T, J), a(P,, J) - LT, J) = L(8);
(a6)  a(Pyy, I) <alP,, J), (P, Fo) = alP,:y, J);
@7) (Purs I3 = (Tsy J,) (=1, 2,..., n.

Now we have

H I3
z L(S,) < z lim (P, z lim g (Pros Fn, oA Z woy Fng) =

{e=l f==1 f=1

= l_lpl (P, I,) <lim (L(Pn7 J) == L(S)

for every u, and thus > L(S,) < L(S).
i=1
_(b)_Let us prove now that L({S) <> L(S,). ; e

Let >0 be any positive number and let [K] =[K,, (i =1,..., N)] be
the finite collection of all fine-eyclic elements with diamZT(K,)) >¢ (i =1,
oy N). Then the set H = K, + ... + K, is a compact subset of J having
properties P’ and P, with respect to (I, J). The set G = J — H is open in J
and the family of its components y is countable. The subfamily of all components
v of G with diam T(y) > ¢ is finite, say [y; (j =1, ..., w)]. Since each y; has
a boundary F(y ;) which is contained in a finite sum b; of continnage I, ¢gc H,
there is a finite collection, say [g,, ..., g, 1, of continua ge I, gc H, separa-
ting each y; (§ ==1, ..., u) from the remaining part of 4 in J. We shall enlarge
this collection into a collection B ==[g, (h =1, ..., M)], M > M,, with con-
tinua ge Iy gc H, such that for any i 5= § and 4, j =1, ..., N,t here exists a
finite sum s;; = z” g, of continua g, € B such that K,—s;; and K;—s;; are
separated by s,; in J. Obviously, if s, = K, K, then either s,;, is empty,
Or $;50 == 20, C 8y for all @ 5§ and 4, j =1, 2,..., N.

Now ¥, =y, +b; (j=1,..., p) is a continuum of J. TFor each point
Wy € ‘;7,- we shall consider the set U(w,) of all points w eJ such that { 0, Wy }T <e
i. e., whose distance with respect to T from w, is < e [3 (A), 10.7, p. 159].
The set Ufw,) is a continuum having 1w, as an interior point in J, and the set
; ;- Ulw,) is a compact subset of y,, also having w0, as an interior point (interior
with respect to ;;j). We shall denote by U ;(w,) the component of ;7,» U(a,)
containing w,; hence w, is an interior point of U ,(w,), U ;(tw,) C:‘; 5, and
U ,(w,) is a subcontinuum of y,.

Finally let V = V ,(w,) denote the set

Vo=V w) = U + K,
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where Y ranges over all fine-cyclic elements K € {K }~~ [K] with K- U;(w,) 5= 0,
K cy,;. The set V is a subcontinuum of y; having both properties P’ and
P, with respect to (7, J). The property P’ is trivial; the proofs that ¥ is a
continuum and has property P, are analogous to the ones given in (13. iii).

Let us observe that diamT(V) <4e. Indeed, if w', w" €V and it occurs
that w', w'’ € U = U ;{w,) then | T(w') — T(e") | < | T(w') — T(wo) | + | T(awo) —
—Tw'")|<e+e=2 It wek, w'eK’" K,K'cC > K, then there
ave points w,e K'U, w,eK"U, and thus

| T(w') — T(w'") | < | Tw')— Tw,) | -+ | Tlwy) — Tw)) | +
| Twy) — Tw") | < e+ & + 2 =4de.

Analogously if w' € K' c > K, w"e U, or viceversa. Hence we have | T(w') —
— T(w") | < 4e for all w', w" e V; i. e., diam T(V) < 4e.

_ Bach point w, of the compact set 7, belongs to a set V() and w, is an
interior point of V ;(w,) (interior with respect to ;j). By BorEL covering theorem
there exists a finite collection V4, ..., ¥V, of sets V covering 7~/ ;- Finally we
can say that the whole finite collection ;1, J, ; . 18 covered by a finite collection
[V] of sets V. :

Each continuum V;, has property P, with respect to (', J); hence the col-
lection {1: } ;¢ of all components v of J — V. is countable, for each v the boun-
“dary F(r) is contained in a finite sum &’ of continua g e I, g c 4, and the sub-
collection [t];, of all ve{ 7}, with diamT(r) > ¢ is finite. Denote by B, =
=[gy, - §yu] the sum of all collections b’ relative to the components
7 e{t];s, and all s and §, and put B, = B 4 B,. We shall denote by B, By, B,
also the sets covered by the continua g € B, By, B,, and by ( theset ¢ = H + B,.
All sets B, B,, B,, C are closed and Bc B,, B;cB,, BcHcC(C. Finally,
if B,—B =][g, (s =1,..., M")], the continua ¢ (s =1,..., M") are distinct
and H-:(B,— B) =0. ‘
The set ¢ has both properties P’ and P, with respect to (7, J). In addition,
if y is any component of J — ¢ we have diamZ7(y) < 4e. Indeed, either y is
a component of J— H distinet from p,, ..., y, and then dia‘mT(yl< g; Or y
has at least one point in common with some y; and then yCy,cCy,; and also
yV s 5 0 for some s. Then yr =0 for every re[z];, and hence yc ¥V, +
-+ >'t where >’ ranges over all Te {r }js—«[r]js, and diam 7'(7) < ¢,
diam T(V ;) < 4e. Thus, by the same reasoning above, we have diam 7'(y) < 6.
We now apply (7. iii) to the systems 8§ = B, and K = H + (B, — B).
If J, (i =1,.., N) are polygonal regions with K ,cJ;cJ such that K,
satisfies properties P; and P, with respect to (7, J ;), such that conditions (a), (b),
'(c) of (7. iii) are satisfied [see 5. (iv) and (v)], we shall denote by (7', J,) the
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retraction of (7, J) with respect to K, in J,, (i =1,..., N). Also, since . e I’
for every g.e B,— B, and H-(B,— B) =0, there are certain disjoint regions
P, with ¢’ c F,c J such that ¢, satisfies conditions P, and P, with respect to
(T, F,) and the retraction (7", F,) of (T, J) with respect to ¢’ in ¥, is the constant
mapping (T, F,) with T'(w) = T(g.) for all we F,.

By (7. iii), for all » =1, 2, ..., there exists a quasi linear mapping (P,, J)
and certain polygonal regions R,,, 7, such that I{,c R,;cJ,, R,;> R,
R, VK, as n—>oo0, (i=1, ..., N); ¢.CcrunCF, 7ui¥g, a8 0 — oo,
PasDTurssy (=1, .y M"); (2) R, [ra,] satisfies both conditions P; and P,
with respect to (P, J,), 4t=1,.., N, [(P., Fy, (=1, .., M)];

(3) Pu(w) 72 T(w) in J; P, (w) X Tyw)in J;, (i =1, ..., N); Pyw) = Tw) =
= T(¢)in P, (s =1, ..., M'), where (P,,, J,), (P.,, F,) denote the retractions of
(P,;, J) with respect to R,; in J,, and with respect to »,,in F,; (4) for every
h =1, ..., M, there exists a polygonal region f,, such that ¢, cf, and P, is
costant on f,,; P, is constant on each v,, (s =1, ..., H"); (B)ifs,,,= K, K; =0
then R, R,; =0; if s, =>"g %0 then R, R,; = >'f, (i++j; 4,j=1,
LNy oy every heo==1y Uy My =10 N with g, K owe have f R,
and P,(w) = P, (w) = constant on f,, for every s = 1, .., M’ we
have P,(w) = P, (w) = constant on 7,,; (6) a(P,, J) — L, dJy, aP,, J;) —
= LT, J;) as n —oo, (1 =1,..., N).

Thus, for a convenient n, we have |P,(w)— T(w)|<<e for all wed,
| Pplw) — Ty(w) | <eforall wed, (i =1,.., N), and a(P,;, J,) <IL(T, J,) +
+ &/N (i =1,..., N). Now let us define a quasi linear mapping (P, J) as follows.
First of all let P(w) = P,(w) for all we kR, (¢ =1,..., N). This definition
implies that P(w) = P, (w) for all we R, (i =1,..., N). Indeed (P,, J,)
is a retraction of (P,, J) with respect to R, in J, and hence P, (w) = P, (w)
for all w € R_,. Also, let us observe that, for each ¢ ¢4, 4,j=1,.., N,
either s;,) =0 and R, R,; =0, or s;,= > ¢, %0 and then R, Rys= > fun
and P,,(w) = P,;(w) = P,(w) = constant in each f,,,bcz’ fan- Now let us
consider the set J — >, R,; and its closure ,. Each component ¢ of @, is a
polygonal region whose boundary F/(g) is the finite sum of disjoint aves I, each !
being part of the boundary of aregion R,; orr,;, and P,(w) = P, (w) = constant
on 1, or P,(w) = P, (w) = constant on I; i.e., 1 = P,(w), wel, is a point.
We may define P(w) on each ¢ in such a way that a(P, q) =0, P(w) = P,(w) = 1
on each are l, and P,(q) is contained in the minimum convex body (polyhedron)
containing the points 42 which are the images of ares I of ¢*. This can be done
quite elementarily as, for instance, in [3 (A), 23.15, p. 387]. Let us observe
that the arcs ! of ¢* not covering a component of ¢* leave uncovered on the
same component an equal number of arcs, say ', which all belong to J*.

In such a way P(w) is defined for every w € J; i. e., the quasi linear mapping
(P, J) is completely defined.
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For every weR,; we have P(w) = P,(w) and hence |P(w)-— T(w)]| =
== |P,(w)— T(w) | <e For every weq where ¢ is a component of ) we
certainly have | P,(w)— T'(w) | <e. Onthe other hand ¢ is completely contained
in some component y of J — € and hence diam7(y) < 6¢, and : (')
— T(w') | <& for all points w’el. Thus the points 1 = P,(w), w el, belong
to the e-neighborhood of T(y) and hence diamP(w) < 8e. Finally, for every
wegq, we have P(w) — T'(w) | <| P(w)— P(w')| + | P(w') — T(w') | +
-+ |T(w') — T(w) | for any w’ €1, and also, | P(w)—- T(w) | < diam P(q) + & --
+ diam T(y) <8e -+ ¢ + 6e = 15e. This proves that |P(w)— T'(w) | <15e
for all wedJ. On the other hand, by combining the triangles ¢ of linearity of
(P,, J) in each R, and of (P, q) in each ¢, we obtain a unique subdivision S,
of J into triangles ¢ such that a(4) == «[P()] > 0 implies that ¢ is in one and
only one of the regions R, (i == 1, <y N) and then (P, t) == (P,, 1) == (P,,;, ©).
This implies that

a(P, J) = Z“(A) == 7.‘ 1“(131:17 R, = ?:1 (P “niy J ) S

<YL, T,) + N(g/N).

Thus | P(w)— T(w) | < 15¢ for all wed, and
a(P, J <3 LT, J,) + ¢
i=1

By taking e =1/m (m =1, 2,...) we obtain a sequence of quasi linear
mappings (P, J) (m =1, 2,...), such that (P,,, J) = (T, J} as m — oo and

APy J) < X I(T;, J}) —{—1/m_z D+ 1/m.
i=1

=1

Finally

L(T, J) < lm a(P,, J) <3 L(S,) .

M>c0 =1

Thus (b) is proved.

(¢) By combining (a) and (b) we have
L, J)y = EL(S

and thereby (i) is completely proved.
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