Riv. Mat. Univ. Parma 7 (1956), 33-49

CHRrIsSTOPH J. NEUGEBAUER (¥)
I. - A Cyclic Additivity Theorem of a Functional. (**)

Introduction.

Let @ = [0 < u,» <1] be the unit square in the Euclidean plane ¥, and
let..;-be.the Euclidean. three space... For.T.a continuous mapping-from..Q-..
into H;, we denote by L(T, @) the LEBESGUE area of the surface represented
by the continuous mapping 7' (T. Rap0 [6], L. CesarI [1]). The LEBESGUE
area L(T, @) satisfies remarkable cyclic additivity properties which led to
generalization to functionals. ILet for 7' a continuous mapping from @ into

1) T =1m, m . Q=> D, l: 9 — I,

be a monotone-light factorization of 7 (G. T. WHYBURN [7]). The symbols
= and - denote that a mapping is onto or into, respectively. If for C a
proper cyclic element of 9o we denote by r, the monotone retraction from it
onto C, then the LEBESGUE area L(T, Q) is weakly cyclicly additi've, ie.,

(2) ’ . L(T’ Q) = ZL(Z?’C’M, Q); ’ OC Ole.

This formula is due to T. Rapo [5].

In a paper by T. Rap6 and E. J. MICKLE [3}, the formula (2) is generalized
in several ways. First of all, the writers consider a PEANO space P, a metric
space P*, and the class ® of all continuous mappings 7 from P into P*.
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Instead of using monotone-light factorizations of 7', the more general concept
of an wunrestricted factorization of 7T is introduced. An unvestricted factori-
zation of T consists of a PEANO space Ol and two continuous mappings s, f
such that

3) =sf, fiP >, + $:Mo P
If &(T) is a functional defined for each 7'e® and satisfying the proper-

ties listed in [3], then in the same paper the following strong w/du‘ additivity
formula has been proved

(4) D(L) = 3 D(sr,f), C C Do,
where », is the monotone retraction from I onto a proper cyclic element

U COlo. The LEBESGUE area L(T, () possesses the properties sufficient for
the validity of (4), and hence

(5) LT, Q) =23 L(sr.f, @),  Cc Mo

All the eyclic additivity theorems mentioned so far dealt with funectionals
defined for continuous mappings from a PEANO space into a metric space.
In this paper a cyclic additivity theorem for functionals is studied, where the
functionals are now defined for continuous mappings from a metric space into
a metric space. This investigation was motivated by a recent book of L. Cr-
SARI [1], in which the writer considers continuous transformations from admis-
sible sets 4 c X, into ;. The class of admissible sets consists of all open sub-
sets of I,, all finite unions of finitely connected disjoint JORDAN regions and
their open subsets [1; 5.1]. If (7, 4) is a continuous mapping from an admis-
gible set 4 c I, into F;, then L. CESARI has defined the LEBESGUE area of
(T, A), denoted by I(T, A) (see [1;5.8]).

In this paper a class & of subsets of a metric space M is considered, which
satisfies properties analogous to those of the class of admissible sets (see L1).
Let P* be a metric space, and let (@, @) be the class of all continuous map-
pings from 4 el into P* Since 4 need not be a PEANO space, a more
general definition of an unrestricted factorization of (7, 4) is necessary. Simi-
lar to (3) above, an unvestricted factorization of (7, 4) consists of a PrANO
space Do, a subset D* of D and two continuous mappings s, f such that

(6) (T, A) = sf, frd — Olke*, 51 o™ — P*.

In general, O* is not a PEANO subspace of 9.
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Instead of dealing with the LEBESGUE area, one considers a funectional
D(T, A) defined for each (7', A)e (S, Q) satistying the properties listed in
1.8, In order to prove a cyclic additivity theorem for DT, A) using factor-
izations of the form (6), the following observations may be helpful. If (¢ is
a proper cyclic element of 9 and », is the monotone retraction from e
onto C, it may occur that r, f(4) is not contained in jp*, and hence s need
not be defined on r, f(4). The proper cyclic elements (' for which », f(4) does
not meet ¥ can be neglected. With the other proper cyclic elements ¢
of O there is associated a non-empty subset ¢, of A (see I.12). For &(T, A4)
a functional satisfying the properties of 1.8, the main result of this paper
states that

(7 ) DT, A) =3 D(sr,f, (),

where the summation is extended over all proper cyelic elements ¢ of dite for
which @, is defined (see L1.15). ‘

-To-avoid-excessive-length-of -this-paper;-it-seemed -advisable-to-deat-with-
the applications to the LEBESGUE area and a surface integral due to L. Ck-
SARI in two subsequent papers. This paper is then the first in a series of three
Jpapers, which we will designate by I, II, and III (see [4, 5]).

A Cyclic Additivity Theorem.

I.1. - A metric space P which is a continuous image of the unit interval
[0, 1] will be termed a Peano space. Let & be a collection of PEANO spaces
P all of which lie in a metric space M. In the applications (see [4])  will be the
collection of all finitely connected polygonal regions in any open subset M
of E,, where I, is the Euclidean plane. The interior of a set 4 c 3 will be
denoted by A°, : r

In the sequel we shall be concerned with a collection & of subsets of I
defined in the following manner. The collection &l contains all PEANO spaces of
¢ and all finite unions of disjoint Praxo spaces of &. Moreover, &l contains
all those subsets A of M which satisfy the following property. There exists
a sequence {Q,, }, where for each =, @, isa finite union of disjoint Praxo
spaces of &, such that : ‘ :

@d) l Q),cAe (n =1, 2, ...),

(ii) for any compact subset K of A° there is an integer n = n(K) with.
- the property that H.c Q%c A° for all n > n. o
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It should be noted that @, & for all n. In the next four pala;(na,phs we
shall prove some lemmas concerning the collection Cl.

I.2. - Lemma. If 4 el cannot be written as a finite union of disjoint
PEANO spaces of &, then there exists a sequence {Qn} satisfying (i), (ii) of
L1 and the additional property that Q.c @, (n =1, 2, ...).

Proof. Let {Q,} be any sequence satisfying (i), (ii) of L1. ‘Since @, is
compact and contained in 4°, there is by (ii) of I.1 a first integer #, > 1 such
that Q,',l C Q,',Zc A% where n;=1. DBy the same argument, there is a first inte-
ger n;>>n, such that Q,’igc Q,,',:c A®, Continuing in this manner, we obtain a
sequence { @, } satisfying (i) and (il) of L1 and Q,',ic (Q,’,‘:_Pl (G =1, 2 ...

L3. - Lemma. Let G be a component of a set 4 e (see I.1). Then
the following statements hold.

(1) I A-is-a-finite union -of “disjoint PEANO spaces of &', then~Ge &

(2) If A connot be written as a finite union of disjoint PEANO spaces of
&, then G el provided G n A4° == 0,

Proof. The statemet (1) is obvious, since in this case G is & PEANO space
in &, and hence @ is in & (see L. 1). To ‘prove (2) let{ Q,,} be a sequence satis-
fying (i), (il) of L1 relative to A.

We first establish the equality

3) ; : . GnAc=Ge

Since ¢ n A°> G° is obvious, let x € G n A°®. Since z is a compact subset of
A®, theve is an integer » for which w € Q,c A°. In view of the fact that @, is
a finite union of disjoint PrANO spaces P, ..., P,, weinfer that Q)= Pl u ...
u P}. Therefore, € P} for a unique <. Since P, is connected and G is
a eoinponent of A which intersects P, there follows that x € P! c P, c @, and
hence € G°. Thus G n 4% G° and (3) is proved.

Let now n,, 7,, ... be all those integers n for which @, n G # 0, and let Q
be the union of all PDANO spaces P in Q,, (P € &) which intersect G. We as-
sert that Q c G°. TFor, let P be a PEANO space, Pe &, PC Q,,i, which inter-
sects G. Then Pc G, and since Pc A°, we infer from (3), Pc G n A°=G°. Next
" let K be any compact subset of G°. Then K is also a compact subset of A°
and hence there is' an integer » for which K c Qic A°, » >n. - Since K c G°,
certainly, K C Q,'l: for all i large enough. Therefore, G € &..
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14. - Lemma. A set 4l (see 1.1) has at most a’ denumerable number
of components G for which G n 4% 0.

Proof. We may exclude the case where 4 is a finite union of disjoint
PrAxNO spaces in &, because then the assertion is obvious. There is now a
sequenee{ Q. } n=1, 2, ...), such that each @, is a finite union of disjoint PEANO _
spaces in &, say PL, ..., Pi» and such that the conditions (i), (ii) of L1 are
satisfied. The collecmon of PEANO spaces {P;} (0 =1, ..., iy; =1, 2, ...),
is denumerable, and therefore the collection {G} of all components G of A
which contain at least one P, is denumerable.

We assert now that every component G of 4 intersecting 4° is contained
in { G} For, if @ is such a component of 4, there is by the same argument as
used in the proof of 1.3 (3) a PrANO space P; contained in . This completes
the proof.

15. - Lemma 1. Let A el a finite union of PEANO spaces of & (see

1.1). Then, if §, denotes any collection of components. G of 4, the set G, = U G,
@ €S, is a finite union of disjoint PEANO spaces of & and hence is in &l

Proof: Obvious.

Lemma 2. Assume that 4 € &l cannot be written as a finite union of
disjoint PEANO spaces of & (see I1). If §, denotes any collection of compo-
nents G of A which intersect A4°, the set Gy=U G, G, is in &.

Proof. From L3 there follows that any such G is in & and from L4 the
collection &, is denumerable. Hence we can write

1) @o:{Gi}iZI .

Let us first assume that {Gi}iz1 is infinite. For each 4, there is a sequence
{Qi} m =1, 2, ...), such that each @} is a finite union of disjoint PEaNoO
spaces in ¢ and )

(2) Q. C Gy (n=1, 2, .. )

(3) for any compact subset K of (9, there is an integer n; = n,(K) such

that K c Q°c @ for n>n,.
Define now

(4) Q= Qn UQau...u@; (=12, ..).

Then for every #», @, is a finite union of disjoint PEANO spaces of & and @, c & .
s ; A 1 [
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We assert now that

(5) ‘ = U@

i1

Since GO U G}, let e GY. Thén e A°, and since  is compact, there is a
iz
finite union of disjoint PEA\() spaces Py, ..., P,of & such that e Q°c Ao,

where @ = P, U...uP,. Since veG’c U (7” we have that # is in a unique
;. Since x e ()" there follows that = € P! for a unique r, 1<y <. In view
of the connectedness of P, and P, n G, 5= G, we infer that we P'c P, c @,
and hence @€ Y. Thus (5) follows.

Ler now K be any compact subset of (). From (5), there is an integer
i, such that

(6) Kcua.

iz

Since. the G, are disjoint, we conclude that I = K 06 $-is compact: Fory—

otherwise, there would exist an open co overing in ¢ of K ; whlch does not admit
of a finite subcovering of X ,. Hence by wd.]onnng the open sets G) (i 5= j:
j =1, ..., 1), to this covering one would obtain an open covering of K which
does not admit of a finite subcovering of K. ‘

From (3) there is now an integer n,= n (K, ;) available with Lh(, property
that

(7) K,cQ®c@, n>n,.

Let n = n(K) =max [n,; i =1, ..., 4,]. Let » be any integer not less than
n. From (4) and (7) we obtain

(8) , Kcq®.

It {G,}is finite, say, { G, 1 . then let Q,= Q' U ... u Q¥ and proceed
as above. ,

L6. — Let P be a Prano space and let P* be a metric space. In the sequel
we shall be concerned with continuous mappings 7' from P into P* (written
T: P — P*). As a reference for the following definition the reader should
consult E. J. MiokLE and T. Rapo [3].

Definition. An wuwrestricied factorization of a continuous mapping
T: P — P* consists of a PEANO space Dlo, called middle space, and two con-
tinuous mappings s, f such that f: P — 0, s: O — P*, T =.sf.
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This definition of an unrestricted factorization will be generalized in par-
agraph L9 )

1.7. - In the subsequent paragraphs we will have occasion to use some
results of the theory of proper cyclic elements of & PEANO space P. The reader
is referred to T. ItADO [6], or a forthcoming paper of I. J. MickrE and C. J.
NEBUGEBAUER [2].

1.8. - Let I and P* be metric spaces, and let S be a collection of sets in M
defined in L1. Denote by (3, @) the class of all continnous mappings (7, 4)
from a set 4 € &l into P*. The symbol (7, 4) is meant to indicate that T
operates from A even though 7' may be defined over a set which contains 4
properly.

Let &(T, A) be a functional defined for each (T, 4) € (&, Q) satisfying the
following properties:

wemeerelor) o P Ay -is Teal=valued -and-nonnegative: Por -certain (A ) e (§;-&)y~
b o H b
we may have P(T, A) = -+ co.

(f) For every (T, 4) € (&, &), where A is a finite union of disjoint PEANO
spaces P,, ..., P, in & (L.1), the functional @(7, 4) is additive; i.e.,

DT, A) =S O(T, P,).

i=1
() For (T, 4)e (W, @) and {(, } a sequence as in L1 (i), (ii),
DL, A) = Um P(T, Q,), as ‘)L’~> o0 .
(8) For 4/, 4" two sets in &l for which AL;’C A" and for .(‘T, 4 e (@, &),
O, Ay <P, A,

() For Peg (1) and T any continuous mapping from P into P¥,
‘DT, P) is strongly cyclicly additive, i.e., if T =sf, f: P - Mo, s: Do — P*
is an unrestricted factorization of 7' (1.6), then
o o1, P~ 300 7, Ccore,

where #, denotes the monotone retraction from 9O onto a proper cyclie
clement € of . :
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Remark 1. Concerning (1), if Ol contains no proper cyclic elements,
ie., if O is a dendrite, then we agree that @(T, P) = 0. Moreover, the sum-
mation in (1) is understood as follows: if @(sr,f, P) = - oo for some C Do,
or if the series in (1) diverges, then (T, P) = + co. Otherwise, @(7, P) is
the sum of the series in (1).

Remark 2. Instead of the condition (&) one can impose upon- @ the fol-
lowing conditions (see [3]):

(&) DT, P) is lower semi-continuous in the following sense. If (7,, P) —
—> (T, P) uniformly, then &(T,, P)<lim inf &(T,, P) for n — oo.

(e2) P(T, P) is additive under partition, i.e., if the mappings (77, P),
(I", P) constitute a partition of (T, P) (see [3]), then &(T, P) = DT, P) +
+ o1, P).

(&) If (T, P) admits of an unrestricted factorization whose middle space
is a simple arc, then &(7, P) =0.

The main result of this paper is to show that (7, A) is eyclicly additive
under the definition of an unrestricted factorization given in .the next
paragraph.

L.9. - In this paragraph we shall generalize the definition of an unres-
tricted factorization given in I.6. Since we are dealing now with continuous

mappings from a mefric space (see I.8), the definition of I.6 is no longer ap-
plicable.

Definition. Let 7 be a continuous mapping from a metric space
S into a metric space P*. An wnrestricted factorization of T consists of a
PEANO space 9, a subset Ofo*c Do, and two continuous mappings s, f
such that

(1) f . S - @]@iy
(2) - § : Oo*— P*,
- (3) T = sf.

We shall write 7 = sf, 11 8 — D*, s: DMo* — P*, Mo*c e .

Remark 1. 9pp* Qma)y be a proper subset of Do and need not be a PEANO
subspace of Oll. In general, s does not admit of a continuous extension to
Ole. It should also be noted that s(i*) may contain T(8S) properly.
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Remark 2. In view of the generality of the metric spaces 8 and P¥*, there
may not exist an unrestricted factorization of a continuous mapping 7' : S—P*.
However, if the metric space S is a subset of a PEANO space P (this will be the
case in the applications), then a continuous mapping 7': S — P* admits of
a trivial unrestricted factorization T =TI, I:8= 8, T:8 - P*, ScP,
where I is the identity mapping. o

Remark 3. In the sequel we will be concerned with the collection of map-
pings (&, &) defined in I.8. It will implicitly be assumed that enough con-
ditions are available (e.g., the condition of the previous Remark) to ensure that
there is at least one unrestricted factorization of 2 mapping (7, 4)e (3, &)
in the above sense.

1.10. — The following Lemma will be important as it exihibits some rel-
ationship between the definitions of unrestricted factorizations given in 1.6, 1.9,

Lemma. Let P be a PEANO space in &, & c & (L.1). For I a continuous

mapping from P into P*, let T — sf, f: P DMo*, s MMo* —>P‘, M C Do,
be an unrestricted factoumtlon of 7 (1.9). If @ is a functional satisfying («)
.and (&) of 1.8, then ‘

1) DT, P) = 3* D(sr,f, P),

where >* denotes the summation extended over all proper cyclic elements
C of 9l for which », f(P)c O*. Here r, denotes the monotone retraction
from & onto C.

Proof. We first note that (1) can be replaced by
(2) : DT, P) =3 Disr,f, P),

where 3’ denotes the summation extended over all Cc 9l for which
f(P)n G 0. To begin with we observe that for such a proper cyclic element
0, we have r, f(P) = f(P) n C c Olo* (see T. Rap6 [6; I1.2.42]). If there is
now a proper cyclic element C of Ot such that », f(P) c Di* but f(P) n C= 0,
then »,f is constant on P and hence @(s7,f, P) = 0.

Let now f(P) = 9ie’. Then I’ is a PEANO space in O*, and T = sf,
fiP= 9, s: D'~ P* is an unrestricted factorization of 7' in the sense of
1.6 (the symbol = is to indicate that a mappnvT is onto). Since D satisfies the
condmon (¢) of 1.8, we infer

3) DT, P)= Z D(sry |, P), ¢’ c o,
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where 1/, denotes the monotne retraction from 9%’ onto a proper cyclic
element ¢ of O'. Since every (' of O’ is contained in a unique proper cyelic
element of o, (2) follows in case there arve no proper cyclic elements ¢ of
O intersecting f(P) = DG'.

We can therefore assume that there is a proper cyclic element (! of ) for
which € n ®' = 0. For such a ¢, let K . be the class of proper cyclic elements
of D" contained in ¢ N &K', Since, by T. RADO [6; 11.2.42] (O =
= (' n O’ (and hence ¢ n O’ = D" is a PEANO space), the proper eyclic
elements of " are the sets in _KC . Moreover, each proper cyclic element of
O’ is in a unique K o

The mapping s»,f admits of an unvestricted factorization r, 1P =9l
$ 19" — P*. If we denote by 7'0' the monotone retraction from " onto
a proper cyclic element €' in K ,, we have from the condition (¢) of .8,

(4) D, f, P)=>dsr.r |, P), Cek,.

We will show now that r,, 7, =15 on Of’. Let #€ O’ If we (7, there

is nothing to prove. Assume then that x¢ C'. Let @' be the component of
e~ €' which contains x#. Then the frontier of ¢' with respect to O’ is
a single point p’ € C" and . (x) = p'.

Case 1. 2 ¢ OI". Then x ¢ C; for, otherwise, z €L’ N ¢ = DL”". Let
G be the component of Ol — ¢ containing x. Then » (#) = &', ' € (, where
x' is the frontier of (¢ with respect to . It should also be observed that
'€ D" Since G contains @, and G'U p’ is a connected set intersecting C,
we have G n(G'Up') #0, (Do—G)n (¢ Uup') 0. Hence «' €@ up’ It
@ = p’, then )Z 7 (T) = ')'U,' (@) =p = r;,(a:). If #'e@, then a' ¢,
and since 2’ €9L’, let G¢" be the component of 9" — (¢ containing
#'. Then G"C G’ and the frontier of G” with respect to ®” is p’. Therefore,
” " 7
Por To(®) = 7,(2") = p'=1r ().

. . 4

Case 2. If v € ®I”, then #'= » and the relation "'Z-' ro(®) = r () follows
from Case 1. '

From (4)

(5) D(sr,fy, P) =3 D (sr,.f, P), reK,.
Consequently, from (3),

D D(sr,f, P) =73’ Z(D(s-r;.f, Py =3 (s r;,f, P) = DT, P).
ek, oo :

[y

Theretore (2) and hence (1)3 is proved.
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L1l. - Let M and P* be metric spaces, and let & be the collection of sets
in M defined in L1. Let us denote (as in I.8) by (B, @) the class of all con-
tinuous mappings from 4 e & into P*. TFor (T, 4) € (§, ), let (7, A) = sf,
frd — 9% sk P¥% OMo*c e be an unrestricted factorization of
(1, 4) (See 1.9). In the study of cyclic additivity of a functional &7, 4) satis-
tying the conditions of 1.8, the following situation may avise. If for (! a proper
cyclic element of O, we denote by r, the monotone retraction from 9l
onto €, then the set r, f(4) may not be contained in ®p*, and s r, | need not
be defined on 4. 1In order to cope with this occurrence, let us first prove
the following Lemma.

Lemma. Let K be a connected subset of 4. For ¢ proper cyclic element
of O, the set r, f(K) is either disjoint with ®J* or else lies entirely in OGL*.

Proof. Tt suffices to show that,'if », f(K) is not a single point, then
7, fUC) C f(K). If », f(X) is not a single point, then f(X) n ¢ % 0. For, if it

were empty, f(I{) being connected lies in a component @ of o — C. Since
the frontier of ¢ is a single point p in € and r () = p for every # € ¢}, we con-
clude that », f(K) reduces to a single point.

Since f(K)n € 5= 0 and sinee f(K) is connected, we infer from T. RaDp6
[6; T1.2.42] that r, f0) = f(I) n Ccf(X) This completes the proof.

I12. - (Continuation). Let now € be proper cyclic element of .
Then for ¢ a component of A we have from the Lemma in L11 that », f(G) is
either disjoint with 9i* or else lies entirely in ®jo*. Using the Lemma of
I.11, we introduce the following terminology.

For (T, 4) e (S, Q), let (T, 4) =sf, {1 4 = Do*, s: Mo* — P, Jlo* C
C Olo be an unrestricted factorization of (7, A).

(T,) Assume that A can be written as a finite union of disjoint Praxo spa-
ces in &, & ca (see L1). Let J{ be the class of proper cyclic elements ¢ of
Dle for which there is at least one component ¢ of 4 such that r, flG) C Dle*.
Then, for each C € J{, we denote by ¢, the union of all components & of A
which satisfy », f(G) C O™, :

(T,) If A connot be written as a finite union of disjoint PEANO spaces in
&, ¢ c &, then we let J{ be the class of proper cyclic elements ¢ of O for
which there exists at least one component G of A such that G n A%s= 0 and
r, f(G) C O*. For each C € J{, we denote by G, the union of all components
G of A satistying ¢ n A% 0 and 7, f(G) C O™

In both cases (T,) and (T,), we shall term J¢ the class of proper cyclic elements
associated with (T, A) = sf, and we shall term G . the set associated with C e .
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L13. - Let (7, 4) =sf, f: 4 — 9o*, s:9p*—P* Oo* C Mo be an
unrestricted factorization of a mapping (7, A)e(Q, &), and let  and G,
be as in L.12. We shall proceed to establish a series of lemmas concerning G,
and J{. '

Lemma 1. The set G, is in &l (see I.1).

Proof: This follows from 1.5.

Lemma 2. Let 4'c 4% where A’ is a finite union of disjoint Praxo
spaces of &, & c & (I.1). Then (T, A’) admits of an unrestricted factoriza-
zion of the form (7', A') = sf, f: 4'— Do*, §:Do* — P*, Db* c Dp. Let
Ji’ be the class of proper cyeclic dements associated with (7, 4’) =sf. Then
a set G; is associated with C e g’ if -a.nd only if G’, is of the form G, N 4"

Pr oof Assume that G is the set a,ssocmted with Ce gf’. Then (I ca,

since G nAYz£ 0, and hcnee G C'G, A" To prove the complémentary mclu-
smn, we note that by deﬁmlnon, r, (G, n A’) Cc O*.  Since [see 1.12 (T)],
(v is the union of all components ( of 4’ satisfying r, f(G') C DI, we con-
clude that G >G,n A'. Therefore, G =G, n A, Similatly, if ¢ ,NA"50,
then G = G, n A" is the set associated \\1th Cedt. V

Remark. The hypothesis 4’ c A can be replaced by 4’ c A provided 4
is also a finite union of disjoint PrANO spaces of & [see 112 (T,)].

Lemma 3. Let A be a finite union of disjoint PraNo spaces of § (L1),
ie, 4 =P u..uP,, P,e§ (i =1, .., n). Then (T, P, admits of an unre-
stricted factorization (Z', P,) =sf, f: P, 9l¥, s:9Me* = P* Do*C Mo.
Let Jf; be the class of proper cyclic elements associated with (T, P,) = sf.

Then U J{; = ¥.

i=1
Proof. Since Jf;cd (¢ =1, ..., n), there follows U g,c . To prove
i=1 .
the reverse inclusion, let € e g and let G . be the set associated with C.e J{.
Then G n A= 0, and hence G, n P, 5= 0 for at least one 4, 1<< ¢ < n. By Lemma
2 (Remmk), G,.n P, is the set associated with (' e J,;, and consequently,

HcC U Jf:. This completes the proof of the Lemma,
=1
Assume now that 4 czmnot be wntten as a finite umon of disjoint PEANO

spaces of § (Ikl) Then by 1.2 there exists a sequence y £Q, } with the following
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properties:

i . is a finite union of disjoint PEANO spaces of & (n =1, 2, ...
o ? ? 1

(H) QnCQn-m (n =1, 2, "')7

(iii) @, cA® (n=1, 2, ..y
(iv) for any compact subset K c A°® there is an integer » such that
Kc@ic4e

For each n, the mapping (7, ¢,) admits of an unrestricted factorization
(Ty Qn) =sf, |1 Qu—> Do*, s:9N*— P* Oo*CcOl. Let Jf, be the class
of proper cyclic elements associated with (7, @,) = sf.

Lemma 4. Hn CIHptr (=1, 2, ...), and U 3, = J.

- . amE .
Proof. The assertions J, C .y (R=1, 2, ...) and U J, C J are obvious.
n=1
To prove that gf c U J{,, let C e J{. Then G,n 4°%0 [see L12 (T,)]. Con-

n=1
sequently, in view of (iv), G,n @, 0 for some n. By Lemma 2, ( € df, and
hence Jc U I - ‘

n=1

L14. - Let 3, @, § be given as in I.1, and denote by (&, &) the class of
all continuous mappings (7, 4) from 4 € & into a fixed metric space P*. Let
(T, A) be a functional defined for each (T, 4) € (B, Q) saﬁisfying the proper-
ties listed in 1.8.

Lemma. Let 4 be a finite union of disjoint PraNO spaces Py, ..., P,
of &, and let (T, 4) =sf, [: 4 — Olo*, s:Ob* - P*, Oo* C o be an un-
restricted factorization of (7, 4) (1.9). If for ¢ a proper cyclic element of
o, r, denotes the monotone retraction from 9 onto C, then

(1) @(T) 4) = z@(s ¥ 1, Gc)! Ce J,

where gi is the class of proper cyclic elements associated with (7, 4) = sf,
and where G, is the set associated with ¢ e Jf [see 112 (T,)].

Proof. We first assume that Jf # 0. For each 1, the mapping (T, P;)
admits of an unrestricted factorization (T, P;)=sf, f: P; — ¥, s OMo*— P*,
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Do*C . Liet Jf, be the class of proper ('Vdi( elements associated with

(I, P)) = sf [see 112 (T))]. By Lemma 3 of 113, U M= . For each (e J,
Te=y
let n(C) be the integers among ¢ =1, ..., # for which C ¢ J{z. If we set for

Cedat, G - P;n G, then by Lemma 2 ('hemfuk) of 1.13, G is the set asso0-

ciated w 1th Ced,. Sm(e P, is connected, G = P,;, and since G, =U G
i Eno)
¢, 1s a finite union of disjoint Praxo spaces of &. 'I?"rom 1.8, we have now

g DI, A) — S BT, P,

i=1

( Bisr f, G) =3 Dsr,f, GZ) for every (‘e gi.

icn(e)

By the Lemma in I.10, we have for each ¢, 1 < i < n, the following relation,

5 — R ;(])(T,,; p,):: z qv)(”af’ PA;

where >* denotes the summation extended over all proper cyclic elements
C of Mo for which r, {(P) c Ow*. Using our new terminology [L12 (T,
(3) becomes '

(4) DT, Py =3 D(s v, f,G), Cea,.

From (4) and (2) we obtain now

(5) DT, A) z S &, f, G

i=1 (EK;

Since, for a given Ce Ji, C € g, if and only if i e n(¢), we can rewrite (5) in
the form

(6) DT, A) =3 T Bsr,f 6.

cExr iEn(o)

Trom (2) we infer the formula (1).

The above proof was carried out under the assumption that K -<0. If
K =0, then it follows from (3) that &(T, P,) =0 (4 =1, ..., »n) and from
(2) that @(T, 4) = 0. This completes the proof fo the Lemma.
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L15. - We are now able to state and prove the main result.

Let M, &l be given as in L1, and let (3, &) be the class of all continuous
mappings (7, 4) from 4 e & into a fixed metric space P*. Let DT, 4) be a
functional defined for each (7, 4)e (3, Q) satisfying the conditions of L.8.

Theorem. Let (T, A) =sf, f:4 =% s:0k* > P* Mo*c Mo
be an unresiricted factorization of (T, A) (1.9). Ifr . denotes the monotone retrac-
tion from Do onto a proper cyclic clement C of Do, then

-

(1) DT, A) = S D(sr, ], G), ek,

where R is the class of proper cyelic elements associated 1with (7', 4) = sf, and
where G, is the set associated with ¢ e K (112).

Proof. Since the theorem is true in case 4 is a finite union of disjoint
Praxo spaces of & (1.14), we may assume that 4 cannot be written as a finite
union of disjoint PEANO spaces of &. By 1.2, there exists then a sequence

{ Q‘,,}‘with‘ the properties listed:
(i) For each n, @, is a finite union of disjoint PEANO spaces of &.
(ii) Foi‘ each », ), c A
(iii) For every compact subset K of A° there is an integer n = n(K)
such that K c @Q%c A° for all # > n.

(iv) For each n, ¢, C Q. -

Assume first that J 52 0. The mapping (7, ,) admits of an unrestricted
factorization (7, @.) = sf, f: Q. Olo*, s Mo* - P¥, o*C . Let K,
be the class of proper cyclic elements associated with (7, @,) = sf. Then by
Lemma 4 in 113, K, cH,sy (v =1,2, ..)), and U K,= K. Hence for each

n=1
C € K, there is an integer N(C) >0 such that ¢ e ¥,, n > N(¢). By Lemma 2
“in L13, G)=(@,n Q, is the set associated with ¢ e H},, n > N(0).
From 1.8 we infer that

(2) ,%l,lg (p(T: Q) = Q)(T, 4).
By Lemma 1 of L.13, the set &, is 'n &. The sequence { G} }, n > N(C) satis-
fies the following properties:

(v) For each n, G’; is a finite union of disjoint PrANO spaces, each of
which is in &, & c & (L.1).

. 1]
(vi) For each », ¢, c@,.
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(vii) For every compact subset K of G‘; there is an integer n > n(K)
such that K c G7 for all n>n.

(vili) G c & (n=1, 2, ...).

We only need to verify (vi) since the other properties are a consequence of
(i), (iii), iv). For the proof of (vi), let us first establish the relation G,n A= G3.
Since, by 1.4, G, is a denumerable union of components ¢ of 4 which intersect

A° [L12 (T,)], we can write ¢,= U G;. From L3 (3) there follows G, n A°=
. =1
=@ (i =1, 2, ...), and from the formula (5) of Lemma 2 in L5, we have
G0=UG}. Hence G9=UG=U (G;n4°) =(UG,)nA°=G,n A°. Since
i=1 izl =1 i=1
Q.cA® and Gr=G,nQ,, we have Gic G, n A°= G .
From 1.8 we conclude now that

(3) o Am D(sr, f, G)) =D(s7,f, G), n > N (C),

for every Cedl.
We establish now the following assertion. For 1> 0,

) DT, A) < 2 if and only if SO(s v, f, G) <A.
) cEER

Assume that &(7, 4) < 1. Then for each n, DT, Q.) < A (see 1.8). From
114,

(8) DT, Q) =2 Dsr,f, Gu)y< A (=1, 2, ..).

¢ Ex,

Let Oy, ..., C; be any finite number of proper cyclic elements in &. Then by
Lemma 4 of 113, we have an integer N >0 such that for n >N, C,ed,
(4 =1, ..., §). Thus, from (), ‘

: g
(6) > &(s Tty G2) <A n> N.
i=1 ‘

Consequently, from (3)

(7 i@(s 7oty G ) <A.

fmml
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Since €y, ..., C; was any finite number of proper cyclic elements in J, we
deduce from (7) ‘

(8) ' S ®(sr,f, G) <.

CEK

Conversely, assume that » ®(sr,f, ¢,) <A Then for each n (see .14,
1.8), cEXR

(9) DT, Q) = 3 Dlsr,f, G3) < T D (s7,f, G,) < 4y

¢cE K, cEx

and hence from (2)

(10) ' DT, 4)< ).

“From (4) we obtain now the desired equality

1y DT, A) :’z D(sr,f, Gp), Cedd.

For the above discussion we assumed that & 52 0. If & =0, then from
(8), D(T, Q) = 0 for all n, and hence from (2), ®(T, 4) = 0. This completes
the proof of the Theorem.
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