CHRISTOPH J. NEUGEBAUER (*)

I. - A Cyclic Additivity Theorem of a Functional. (**)

Introduction.

Let $Q \equiv [0 \leqslant u,v \leqslant 1]$ be the unit square in the Euclidean plane E_2 and let E_3 be the Euclidean three space. For T a continuous mapping from Q into E_3 , we denote by L(T, Q) the Lebesgue area of the surface represented by the continuous mapping T (T. Radó [6], L. Cesari [1]). The Lebesgue area L(T, Q) satisfies remarkable cyclic additivity properties which led to generalization to functionals. Let for T a continuous mapping from Q into E_3 ,

(1)
$$T = lm, \qquad m: Q \Longrightarrow \mathfrak{IG}, \qquad l: \mathfrak{IG} \to E_3$$

be a monotone-light factorization of T (G. T. WHYBURN [7]). The symbols \Longrightarrow and \to denote that a mapping is *onto* or *into*, respectively. If for C a proper cyclic element of $\mathfrak{I}_{\mathbb{C}}$ we denote by r_{σ} the monotone retraction from $\mathfrak{I}_{\mathbb{C}}$ onto C, then the Lebesgue area L(T,Q) is weakly cyclicly additive, i.e.,

(2)
$$L(T, Q) = \sum L(lr_c m, Q), \qquad C \in \mathfrak{I}_{\mathcal{G}}.$$

This formula is due to T. RADÓ [5].

In a paper by T. Radó and E. J. Mickle [3], the formula (2) is generalized in several ways. First of all, the writers consider a Peano space P, a metric space P^* , and the class $\mathfrak S$ of all continuous mappings T from P into P^* .

^(*) Address: Department of Mathematics, Purdue University, Lafayette, Indiana, U.S.A. .

^(**) Received September 9, 1955.

^{3. -} Rivista di Matematica.

Instead of using monotone-light factorizations of T, the more general concept of an unrestricted factorization of T is introduced. An unrestricted factorization of T consists of a Peano space \mathfrak{I} and two continuous mappings s, f such that

(3)
$$T = sf, \quad f: P \to \mathfrak{IG}, \quad s: \mathfrak{IG} \to P^*.$$

If $\Phi(T)$ is a functional defined for each $T \in \mathfrak{S}$ and satisfying the properties listed in [3], then in the same paper the following strong cyclic additivity formula has been proved

(4)
$$\Phi(T) = \sum \Phi(s \, r_{\sigma} \, t), \qquad C \in \mathfrak{I}_{\mathfrak{G}},$$

where r_c is the monotone retraction from \mathfrak{I} onto a proper cyclic element $C \subset \mathfrak{I}$. The Lebesgue area L(T, Q) possesses the properties sufficient for the validity of (4), and hence

(5)
$$L(T, Q) = \sum L(s r_c f, Q), \qquad C \in \mathfrak{I}_{\mathfrak{G}}.$$

All the cyclic additivity theorems mentioned so far dealt with functionals defined for continuous mappings from a Peano space into a metric space. In this paper a cyclic additivity theorem for functionals is studied, where the functionals are now defined for continuous mappings from a *metric* space into a metric space. This investigation was motivated by a recent book of L. Cesari [1], in which the writer considers continuous transformations from admissible sets $A \subset E_2$ into E_3 . The class of admissible sets consists of all open subsets of E_2 , all finite unions of finitely connected disjoint Jordan regions and their open subsets [1; 5.1]. If (T, A) is a continuous mapping from an admissible set $A \subset E_2$ into E_3 , then L. Cesari has defined the Lebesgue area of (T, A), denoted by L(T, A) (see [1; 5.8]).

In this paper a class \mathcal{C} of subsets of a metric space M is considered, which satisfies properties analogous to those of the class of admissible sets (see I.1). Let P^* be a metric space, and let $(\mathfrak{S}, \mathfrak{L})$ be the class of all continuous mappings from $A \in \mathfrak{L}$ into P^* . Since A need not be a Peano space, a more general definition of an unrestricted factorization of (T, A) is necessary. Similar to (3) above, an unrestricted factorization of (T, A) consists of a Peano space \mathfrak{N} , a subset \mathfrak{N} of \mathfrak{N} and two continuous mappings s, f such that

(6)
$$(T, A) = sf, \qquad f: A \to \mathfrak{IS}^*, \qquad s: \mathfrak{IS}^* \to P^*.$$

In general, OK* is not a Peano subspace of OK.

Instead of dealing with the Lebesgue area, one considers a functional $\Phi(T, A)$ defined for each $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ satisfying the properties listed in **I.8.** In order to prove a cyclic additivity theorem for $\Phi(T, A)$ using factorizations of the form (6), the following observations may be helpful. If C is a proper cyclic element of $\mathfrak{N}_{\mathfrak{S}}$ and r_c is the monotone retraction from $\mathfrak{N}_{\mathfrak{S}}$ onto C, it may occur that r_c f(A) is not contained in $\mathfrak{N}_{\mathfrak{S}}^*$, and hence s need not be defined on r_c f(A). The proper cyclic elements C for which r_c f(A) does not meet $\mathfrak{N}_{\mathfrak{S}}^*$ can be neglected. With the other proper cyclic elements C of $\mathfrak{N}_{\mathfrak{S}}$ there is associated a non-empty subset G_c of A (see **I.12**). For $\Phi(T, A)$ a functional satisfying the properties of **I.8**, the main result of this paper states that

(7)
$$\Phi(T, A) = \sum \Phi(s r_c f, G_c),$$

where the summation is extended over all proper cyclic elements C of \mathfrak{I} for which G_c is defined (see I.15).

To avoid excessive length of this paper, it seemed advisable to deal with the applications to the Lebesgue area and a surface integral due to L. Cesari in two subsequent papers. This paper is then the first in a series of three papers, which we will designate by **I**, **II**, and **III** (see [4, 5]).

A Cyclic Additivity Theorem.

I.1. — A metric space P which is a continuous image of the unit interval [0, 1] will be termed a Peano space. Let \mathcal{F} be a collection of Peano spaces P all of which lie in a metric space M. In the applications (see [4]) \mathcal{F} will be the collection of all finitely connected polygonal regions in any open subset M of E_2 , where E_2 is the Euclidean plane. The interior of a set $A \subset M$ will be denoted by A^0 .

In the sequel we shall be concerned with a collection \mathcal{E} of subsets of M defined in the following manner. The collection \mathcal{E} contains all Peano spaces of \mathcal{F} and all finite unions of disjoint Peano spaces of \mathcal{F} . Moreover, \mathcal{E} contains all those subsets A of M which satisfy the following property. There exists a sequence $\{Q_n\}$, where for each n, Q_n is a finite union of disjoint Peano spaces of \mathcal{F} , such that

(i)
$$Q_n \subset A^0$$
 $(n = 1, 2, ...),$

(ii) for any compact subset K of A° there is an integer $\overline{n} = n(K)$ with the property that $K \subset Q_n^{\circ} \subset A^{\circ}$ for all $n \geqslant \overline{n}$.

It should be noted that $Q_n \in \mathcal{E}$ for all n. In the next four paragraphs we shall prove some lemmas concerning the collection \mathcal{E} .

- I.2. Lemma. If $A \in \mathcal{A}$ cannot be written as a finite union of disjoint Peano spaces of \mathcal{S} , then there exists a sequence $\{Q_n\}$ satisfying (i), (ii) of I.1 and the additional property that $Q_n \subset Q_{n+1}^0$ $(n=1, 2, \ldots)$.
- Proof. Let $\{Q_n'\}$ be any sequence satisfying (i), (ii) of **I.1**. Since Q_1' is compact and contained in A° , there is by (ii) of **I.1** a first integer $n_2 > 1$ such that $Q_{n_1}' \subset Q_{n_2}'^{\circ} \subset A^{\circ}$, where $n_1 = 1$. By the same argument, there is a first integer $n_3 > n_2$ such that $Q_{n_2}' \subset Q_{n_2}'^{\circ} \subset A^{\circ}$. Continuing in this manner, we obtain a sequence $\{Q_{n_i}'\}$ satisfying (i) and (ii) of **I.1** and $Q_{n_i}' \subset Q_{n_{i+1}}'^{\circ}$ (i = 1, 2, ...).
- **I.3.** Lemma. Let G be a component of a set $A \in \mathcal{E}$ (see **I.1**). Then the following statements hold.
 - (1) If A is a finite union of disjoint Peano spaces of \mathcal{F} , then $G \in \mathcal{A}$.
- (2) If A connot be written as a finite union of disjoint Peano spaces of \mathcal{S} , then $G \in \mathcal{C}$ provided $G \cap A^0 \neq 0$.

Proof. The statemet (1) is obvious, since in this case G is a Peano space in \mathcal{E} , and hence G is in \mathcal{E} (see I.1). To prove (2), let $\{Q_n\}$ be a sequence satisfying (i), (ii) of I.1 relative to A.

We first establish the equality

$$G \cap A^0 = G^0.$$

Since $G \cap A^{\circ} \supset G^{\circ}$ is obvious, let $x \in G \cap A^{\circ}$. Since x is a compact subset of A° , there is an integer n for which $x \in Q_{n}^{\circ} \subset A^{\circ}$. In view of the fact that Q_{n} is a finite union of disjoint Peano spaces P_{1}, \ldots, P_{k} , we infer that $Q_{n}^{\circ} = P_{1}^{\circ} \cup \ldots \cup P_{k}^{\circ}$. Therefore, $x \in P_{i}^{\circ}$ for a unique i. Since P_{i} is connected and G is a component of A which intersects P_{i} , there follows that $x \in P_{i}^{\circ} \subset P_{i} \subset G$, and hence $x \in G^{\circ}$. Thus $G \cap A^{\circ} \subset G^{\circ}$, and (3) is proved.

Let now n_1, n_2, \ldots be all those integers n for which $Q_n \cap G \neq 0$, and let Q'_{n_i} be the union of all Peano spaces P in Q_{n_i} $(P \in \mathcal{S})$ which intersect G. We assert that $Q'_{n_i} \subset G^{\circ}$. For, let P be a Peano space, $P \in \mathcal{S}$, $P \subset Q_{n_i}$, which intersects G. Then $P \subset G$, and since $P \subset A^{\circ}$, we infer from (3), $P \subset G \cap A^{\circ} = G^{\circ}$. Next let K be any compact subset of G° . Then K is also a compact subset of A° , and hence there is an integer n for which $K \subset Q_n^{\circ} \subset A^{\circ}$, $n \geqslant n$. Since $K \subset G^{\circ}$, certainly, $K \subset Q'_{n_i}$ for all i large enough. Therefore, $G \in \mathcal{C}$.

I.4. – Lemma. A set $A \in \mathcal{C}$ (see **I.1**) has at most a denumerable number of components G for which $G \cap A^0 \neq 0$.

Proof. We may exclude the case where A is a finite union of disjoint Peano spaces in \mathcal{S} , because then the assertion is obvious. There is now a sequence $\{Q_n\}$ $(n=1,2,\ldots)$, such that each Q_n is a finite union of disjoint Peano spaces in \mathcal{S} , say $P_n^1,\ldots,P_n^{i_n}$, and such that the conditions (i), (ii) of I.1 are satisfied. The collection of Peano spaces $\{P_n^i\}$ $(i=1,\ldots,i_n;\ n=1,2,\ldots)$, is denumerable, and therefore the collection $\{G\}$ of all components G of A which contain at least one P_n^i is denumerable.

We assert now that every component G of A intersecting A^0 is contained in $\{G\}$. For, if G is such a component of A, there is by the same argument as used in the proof of I.3 (3) a Peano space P_n^i contained in G. This completes the proof.

I.5. – Lemma 1. Let $A \in \mathcal{E}$ a finite union of Peano spaces of \mathcal{F} (see **I.1**). Then, if \mathcal{G}_0 denotes any collection of components G of A, the set $G_0 = \cup G$, $G \in \mathcal{G}_0$ is a finite union of disjoint Peano spaces of \mathcal{F} and hence is in \mathcal{E} .

Proof: Obvious.

Lemma 2. Assume that $A \in \mathcal{A}$ cannot be written as a finite union of disjoint Peano spaces of \mathcal{S} (see I.1). If \mathcal{S}_0 denotes any collection of components G of A which intersect A^0 , the set $G_0 = \bigcup G$, $G \in \mathcal{S}_0$ is in \mathcal{A} .

Proof. From I.3 there follows that any such G is in \mathfrak{C} 1 and from I.4 the collection \mathfrak{S}_0 is denumerable. Hence we can write

$$\mathfrak{S}_{0} = \{G_{i}\}_{i \geq 1} .$$

Let us first assume that $\{G_i\}_{i\geq 1}$ is infinite. For each i, there is a sequence $\{Q_n^i\}$ $(n=1,\ 2,\ \dots)$, such that each Q_n^i is a finite union of disjoint Peano spaces in $\mathcal S$ and

(2)
$$Q_n^i \subset G_i^0 \qquad (n = 1, 2, ...);$$

(3) for any compact subset K of G_i^0 , there is an integer $\overline{n}_i = n_i(K)$ such that $K \subset Q_n^{i_0} \subset G_i^0$ for $n \geqslant \overline{n}_i$.

Define now

(4)
$$Q_n = Q_n^1 \cup Q_n^2 \cup ... \cup Q_n^n \quad (n = 1, 2, ...).$$

Then for every n, Q_n is a finite union of disjoint Peano spaces of \mathcal{S} and $Q_n \subset G_0^0$.

We assert now that

$$G_0^0 = \bigcup_{i \ge 1} G_i^0.$$

Since $G_0^0 \supset \bigcup_{i \geq 1} G_i^0$, let $x \in G_0^0$. Then $x \in A^0$, and since x is compact, there is a finite union of disjoint Peano spaces P_1, \ldots, P_t of $\mathcal S$ such that $x \in Q^0 \subset A^0$, where $Q = P_1 \cup \ldots \cup P_t$. Since $x \in G_0^0 \subset \cup G_i$, we have that x is in a unique G_i . Since $x \in Q^0$, there follows that $x \in P_r^0$ for a unique r, $1 \leq r \leq t$. In view of the connectedness of P_r and $P_r \cap G_i \neq 0$, we infer that $x \in P_r^0 \subset P_r \subset G_i$, and hence $x \in G_i^0$. Thus (5) follows.

Ler now K be any compact subset of G_0^0 . From (5), there is an integer i_0 such that

(6)
$$K \subset \bigcup_{i \ge 1}^{i_0} G_i^0.$$

Since the G_i are disjoint, we conclude that $K_i = K \cap G_i^0$ is compact. For, otherwise, there would exist an open covering in G_i^0 of K_i which does not admit of a finite subcovering of K_i . Hence by adjoining the open sets G_i^0 ($i \neq j$; $j = 1, \ldots, i_0$), to this covering one would obtain an open covering of K which does not admit of a finite subcovering of K.

From (3) there is now an integer $\overline{n}_i = \overline{n}_i(K_i)$ available with the property that

(7)
$$K_i \subset Q_n^{i0} \subset G_i^0, \qquad n \geqslant \overline{n}_i.$$

Let $\overline{n} = n(K) = \max [\overline{n}_i; i = 1, ..., i_0]$. Let n be any integer not less than \overline{n} . From (4) and (7) we obtain

$$(8) K \subset Q_n^0.$$

If $\{G_i\}$ is finite, say, $\{G_i\}_{i=1}^{i_0}$, then let $Q_n = Q_n^1 \cup \ldots \cup Q_n^{i_0}$, and proceed as above.

I.6. – Let P be a Peano space and let P^* be a metric space. In the sequel we shall be concerned with continuous mappings T from P into P^* (written $T\colon P\to P^*$). As a reference for the following definition the reader should consult E. J. Mickle and T. Radó [3].

Definition. An unrestricted factorization of a continuous mapping $T: P \to P^*$ consists of a Peano space \mathfrak{IG} , called *middle space*, and two continuous mappings s, f such that $f: P \to \mathfrak{IG}$, $s: \mathfrak{IG} \to P^*$, T = sf.

This definition of an unrestricted factorization will be generalized in paragraph 1.9.

- 1.7. In the subsequent paragraphs we will have occasion to use some results of the theory of proper cyclic elements of a Peano space P. The reader is referred to T. Radó [6], or a forthcoming paper of E. J. Mickle and C. J. Neugebauer [2].
- **1.8.** Let M and P^* be metric spaces, and let $\mathfrak A$ be a collection of sets in M defined in **I.1**. Denote by $(\mathfrak S, \mathfrak A)$ the class of all continuous mappings (T, A) from a set $A \in \mathfrak A$ into P^* . The symbol (T, A) is meant to indicate that T operates from A even though T may be defined over a set which contains A properly.

Let $\Phi(T, A)$ be a functional defined for each $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ satisfying the following properties:

- (a) $\Phi(T, A)$ is real-valued and non-negative. For certain $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ we may have $\Phi(T, A) = +\infty$.
- (β) For every $(T, A) \in (\mathfrak{S}, \mathfrak{A})$, where A is a finite union of disjoint Peano spaces P_1, \ldots, P_n in \mathfrak{F} (I.1), the functional $\Phi(T, A)$ is additive, i.e.,

$$\Phi(T, A) = \sum_{i=1}^{n} \Phi(T, P_i).$$

(γ) For $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ and $\{Q_n\}$ a sequence as in I.1 (i), (ii),

$$\Phi(T, A) = \lim \Phi(T, Q_n), \quad \text{as} \quad n \to \infty.$$

(b) For A', A'' two sets in \mathfrak{A} for which $A'' \subset A'$ and for $(T, A') \in (\mathfrak{B}, \mathfrak{A})$,

$$\Phi(T, A'') \leqslant \Phi(T, A')$$
.

(e) For $P \in \mathcal{E}$ (I.1) and T any continuous mapping from P into P^* , $\Phi(T, P)$ is strongly cyclicly additive, i.e., if T = sf, $f: P \to \mathfrak{IG}$, $s: \mathfrak{IG} \to P^*$ is an unrestricted factorization of T (I.6), then

(1)
$$\Phi(T, P) = \sum \Phi(s r_c f, P), \qquad C \in \mathfrak{IG},$$

where r_c denotes the monotone retraction from \mathfrak{I} onto a proper cyclic element C of \mathfrak{I} .

Remark 1. Concerning (1), if \mathfrak{I} contains no proper cyclic elements, i.e., if \mathfrak{I} is a dendrite, then we agree that $\Phi(T,P)=0$. Moreover, the summation in (1) is understood as follows: if $\Phi(s\,r_{\sigma}f,\,P)=+\infty$ for some $C\subset\mathfrak{I}$, or if the series in (1) diverges, then $\Phi(T,\,P)=+\infty$. Otherwise, $\Phi(T,\,P)$ is the sum of the series in (1).

Remark 2. Instead of the condition (ε) one can impose upon Φ the following conditions (see [3]):

- (ε_1) $\Phi(T,P)$ is lower semi-continuous in the following sense. If $(T_n,P) \to (T_0,P)$ uniformly, then $\Phi(T_0,P) \leqslant \liminf \Phi(T_n,P)$ for $n \to \infty$.
- (ε_2) $\Phi(T, P)$ is additive under partition, i.e., if the mappings (T', P), (T'', P) constitute a partition of (T, P) (see [3]), then $\Phi(T, P) = \Phi(T', P) + \Phi(T'', P)$.
- (ε_3) If (T, P) admits of an unrestricted factorization whose middle space is a simple arc, then $\Phi(T, P) = 0$.

The main result of this paper is to show that $\Phi(T, A)$ is cyclicly additive under the definition of an unrestricted factorization given in the next paragraph.

I.9. – In this paragraph we shall generalize the definition of an unrestricted factorization given in I.6. Since we are dealing now with continuous mappings from a metric space (see I.8), the definition of I.6 is no longer applicable.

Definition. Let T be a continuous mapping from a metric space S into a metric space P^* . An unrestricted factorization of T consists of a Peano space \mathfrak{IS} , a subset $\mathfrak{IS}^* \subset \mathfrak{IS}$, and two continuous mappings s, f such that

$$f: S \to \mathfrak{I} \mathfrak{S}^*,$$

$$(2) s: \mathfrak{I}_{\mathfrak{G}}^* \to P^*,$$

$$(3) T = sf.$$

We shall write $T=sf,\ f:\ S\to\mathfrak{IG}^*,\ s:\ \mathfrak{IG}^*\to P^*,\ \mathfrak{IG}^*\subset\mathfrak{IG}$.

Remark 1. Now * may be a proper subset of No and need not be a Peano subspace of No. In general, s does not admit of a continuous extension to No. It should also be noted that $s(\mathfrak{N})$ may contain T(S) properly.

Remark 2. In view of the generality of the metric spaces S and P^* , there may not exist an unrestricted factorization of a continuous mapping $T: S \rightarrow P^*$. However, if the metric space S is a subset of a Peano space P (this will be the case in the applications), then a continuous mapping $T: S \rightarrow P^*$ admits of a trivial unrestricted factorization T = TI, $I: S \Longrightarrow S$, $T: S \rightarrow P^*$, $S \subset P$, where I is the identity mapping.

Remark 3. In the sequel we will be concerned with the collection of mappings (\mathfrak{S} , \mathfrak{A}) defined in **I.8**. It will implicitly be assumed that enough conditions are available (e.g., the condition of the previous Remark) to ensure that there is at least one unrestricted factorization of a mapping $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ in the above sense.

I.10. – The following Lemma will be important as it exhibits some relationship between the definitions of unrestricted factorizations given in **I.6**, **I.9**.

Lemma. Let P be a Peano space in \mathcal{S} , $\mathcal{S} \subset \mathfrak{A}$ (I.1). For T a continuous mapping from P into P^* , let T = sf, $f: P \to \mathfrak{I} \mathfrak{S}^*$, $s: \mathfrak{I} \mathfrak{S}^* \to P^*$, $\mathfrak{I} \mathfrak{S}^* \subset \mathfrak{I} \mathfrak{S}$, be an unrestricted factorization of T (I.9). If Φ is a functional satisfying (α) and (ε) of I.8, then

(1)
$$\Phi(T, P) = \sum^* \Phi(s r_o f, P),$$

where \sum^* denotes the summation extended over all proper cyclic elements C of $\mathfrak{I}_{\mathcal{O}}$ for which r_{σ} $f(P) \subset \mathfrak{I}_{\mathcal{O}}^*$. Here r_{σ} denotes the monotone retraction from $\mathfrak{I}_{\mathcal{O}}$ onto C.

Proof. We first note that (1) can be replaced by

(2)
$$\Phi(T, P) = \sum_{i}' \Phi(s r_c f, P),$$

where \sum' denotes the summation extended over all $C \subset \mathfrak{N}_{\mathcal{S}}$ for which $f(P) \cap C \neq 0$. To begin with we observe that for such a proper cyclic element C, we have r_c $f(P) = f(P) \cap C \subset \mathfrak{N}_{\mathcal{S}}^*$ (see T. Radó [6; II.2.42]). If there is now a proper cyclic element C of $\mathfrak{N}_{\mathcal{S}}$ such that r_c $f(P) \subset \mathfrak{N}_{\mathcal{S}}^*$ but $f(P) \cap C = 0$, then r_c f is constant on P and hence $\Phi(s r_c f, P) = 0$.

Let now $f(P) = \mathfrak{I}[G']$. Then $\mathfrak{I}[G']$ is a Peano space in $\mathfrak{I}[G^*]$, and T = sf, $f: P \Longrightarrow \mathfrak{I}[G']$, $s: \mathfrak{I}[G'] \to P^*$ is an unrestricted factorization of T in the sense of **I.6** (the symbol \Longrightarrow is to indicate that a mapping is *onto*). Since Φ satisfies the condition (ε) of **I.8**, we infer

(3)
$$\Phi(T, P) = \sum \Phi(s \, r'_{\sigma'} f, P), \qquad C' \subset \mathfrak{IG}',$$

where $r'_{c'}$ denotes the monotne retraction from $\mathfrak{N}\mathfrak{G}'$ onto a proper cyclic element C' of $\mathfrak{N}\mathfrak{G}'$. Since every C' of $\mathfrak{N}\mathfrak{G}'$ is contained in a unique proper cyclic element of $\mathfrak{N}\mathfrak{G}$, (2) follows in case there are no proper cyclic elements C of $\mathfrak{N}\mathfrak{G}$ intersecting $f(P) = \mathfrak{N}\mathfrak{G}'$.

We can therefore assume that there is a proper cyclic element C of NG for which $C \cap \mathfrak{NG}' \neq 0$. For such a C, let K_c be the class of proper cyclic elements of NG contained in $C \cap \mathfrak{NG}'$. Since, by T. Radó [6; II.2.42], $r_c(\mathfrak{NG}') = C \cap \mathfrak{NG}'$ (and hence $C \cap \mathfrak{NG}' = \mathfrak{NG}''$ is a Peano space), the proper cyclic elements of NG are the sets in K_c . Moreover, each proper cyclic element of NG is in a unique K_c .

The mapping $s r_c f$ admits of an unrestricted factorization $r_c f: P \Longrightarrow \mathfrak{I} \mathfrak{G}'', s: \mathfrak{I} \mathfrak{G}'' \to P^*$. If we denote by $r''_{c'}$ the monotone retraction from $\mathfrak{I} \mathfrak{G}''$ onto a proper cyclic element C' in K_c , we have from the condition (ε) of **I.8**,

(4)
$$\Phi(s \, r_c \, f, \, P) = \sum \Phi(s \, r_c'' \, r_c \, f, \, P), \qquad C' \in K_c.$$

We will show now that $r''_{c'}$ $r_c = r'_{c'}$ on \mathfrak{IG}' . Let $x \in \mathfrak{IG}'$. If $x \in C'$, there is nothing to prove. Assume then that $x \notin C'$. Let G' be the component of $\mathfrak{IG}' - C'$ which contains x. Then the frontier of G' with respect to \mathfrak{IG}' is a single point $p' \in C'$ and $r'_{c'}$ (x) = p'.

Case 1. $x \notin \mathfrak{N} \mathfrak{S}''$. Then $x \notin C$; for, otherwise, $x \in \mathfrak{N} \mathfrak{S}' \cap C = \mathfrak{N} \mathfrak{S}''$. Let G be the component of $\mathfrak{N} \mathfrak{S} - C$ containing x. Then $r_c(x) = x'$, $x' \in C$, where x' is the frontier of G with respect to $\mathfrak{N} \mathfrak{S}$. It should also be observed that $x' \in \mathfrak{N} \mathfrak{S}''$. Since G' contains x, and $G' \cup p'$ is a connected set intersecting C, we have $G \cap (G' \cup p') \neq 0$, $(\mathfrak{N} \mathfrak{S} - G) \cap (G' \cup p') \neq 0$. Hence $x' \in G' \cup p'$. If x' = p', then $r''_{c'} r_c(x) = r'_{c'} (x') = p' = r'_{c'} (x)$. If $x' \in G'$, then $x' \notin C'$, and since $x' \in \mathfrak{N} \mathfrak{S}''$, let G'' be the component of $\mathfrak{N} \mathfrak{S}'' - C'$ containing x'. Then $G'' \subset G'$ and the frontier of G'' with respect to $\mathfrak{N} \mathfrak{S}''$ is p'. Therefore, $r''_{c'} r_c(x) = r''_{c'} (x') = p' = r'_{c'} (x)$.

Case 2. If $x \in \mathfrak{D} \mathfrak{G}''$, then x' = x and the relation $r''_{c'} r_c(x) = r'_{c'}(x)$ follows from Case 1.

From (4)

(5)
$$\Phi(s r_{o} f, P) = \sum \Phi(s r_{o'} f, P), \qquad C' \in K_{o}.$$

Consequently, from (3),

$$\sum' \Phi(s \, r_c \, f, \, P) = \sum' \sum_{C' \in K_c} \Phi(s \, r_{c'}^{'} \, f, \, P) = \sum_{C' \in \mathcal{N}'} \Phi(s \, r_{c'}^{'} \, f, \, P) = \Phi(T, \, P).$$

Therefore (2) and hence (1) is proved.

I.11. – Let M and P^* be metric spaces, and let $\mathfrak C$ be the collection of sets in M defined in I.1. Let us denote (as in I.8) by $(\mathfrak S, \mathfrak C)$ the class of all continuous mappings from $A \in \mathfrak C$ into P^* . For $(T,A) \in (\mathfrak S, \mathfrak C)$, let (T,A) = sf, $f:A \to \mathfrak N \mathfrak S^*$, $s:\mathfrak N \mathfrak S^* \to P^*$, $\mathfrak N \mathfrak S^* \subset \mathfrak N \mathfrak S$ be an unrestricted factorization of (T,A) (see I.9). In the study of cyclic additivity of a functional $\mathfrak O(T,A)$ satisfying the conditions of I.8, the following situation may arise. If for C a proper cyclic element of $\mathfrak N \mathfrak S$, we denote by r_c the monotone retraction from $\mathfrak N \mathfrak S$ onto C, then the set r_c f(A) may not be contained in $\mathfrak N \mathfrak S^*$, and s r_c f need not be defined on A. In order to cope with this occurrence, let us first prove the following Lemma.

Lemma. Let K be a connected subset of A. For C proper cyclic element of \mathfrak{IK} , the set r_c f(K) is either disjoint with \mathfrak{IK}^* or else lies entirely in \mathfrak{IK}^* .

Proof. It suffices to show that, if r_c f(K) is not a single point, then r_c $f(K) \in f(K)$. If r_c f(K) is not a single point, then $f(K) \cap C \neq 0$. For, if it were empty, f(K) being connected lies in a component Q of $\mathfrak{I} \otimes -C$. Since the frontier of Q is a single point p in C and $r_c(x) = p$ for every $x \in Q$, we conclude that r_c f(K) reduces to a single point.

Since $f(K) \cap C \neq 0$ and since f(K) is connected, we infer from T. Radó [6; II.2.42] that r_c $f(K) = f(K) \cap C \subset f(K)$ This completes the proof.

- I 12. (Continuation). Let now C be proper cyclic element of $\mathfrak{I}_{\mathfrak{S}}$. Then for G a component of A we have from the Lemma in I.11 that r_c f(G) is either disjoint with $\mathfrak{I}_{\mathfrak{S}}^*$ or else lies entirely in $\mathfrak{I}_{\mathfrak{S}}^*$. Using the Lemma of I.11, we introduce the following terminology.
- For $(T, A) \in (\mathfrak{S}, \mathfrak{A})$, let (T, A) = sf, $f: A \to \mathfrak{O}(\mathfrak{S}^*, s: \mathfrak{O}(\mathfrak{S}^* \to P^*, \mathfrak{O}(\mathfrak{S}^* \subset \mathfrak{O}))$ be an unrestricted factorization of (T, A).
- (T₁) Assume that A can be written as a finite union of disjoint Peano spaces in \mathcal{E} , $\mathcal{E} \subset \mathcal{E}$ (see **I.1**). Let \mathcal{H} be the class of proper cyclic elements C of \mathfrak{M} for which there is at least one component G of A such that r_c $f(G) \subset \mathfrak{M}$. Then, for each $C \in \mathcal{H}$, we denote by G_c the union of all components G of A which satisfy r_c $f(G) \subset \mathfrak{M}$.
- (T₂) If A connot be written as a finite union of disjoint Peano spaces in \mathcal{E} , $\mathcal{E} \subset \mathcal{E}$, then we let \mathcal{H} be the class of proper cyclic elements C of $\mathfrak{N}_{\mathcal{E}}$ for which there exists at least one component G of A such that $G \cap A^{\circ} \neq 0$ and r_c $f(G) \subset \mathfrak{N}_{\mathcal{E}}^*$. For each $C \in \mathcal{H}$, we denote by G_c the union of all components G of A satisfying $G \cap A^{\circ} \neq 0$ and r_c $f(G) \subset \mathfrak{N}_{\mathcal{E}}^*$.

In both cases (T_1) and (T_2) , we shall term \mathcal{K} the class of proper cyclic elements associated with (T, A) = sf, and we shall term G_c the set associated with $C \in \mathcal{K}$.

I.13. – Let $(T, A) = sf, f: A \to \mathfrak{IG}^*, s: \mathfrak{IG}^* \to P^*, \mathfrak{IG}^* \subset \mathfrak{IG}$ be an unrestricted factorization of a mapping $(T, A) \in (\mathfrak{S}, \mathfrak{A})$, and let \mathfrak{K} and G_c be as in **I.12**. We shall proceed to establish a series of lemmas concerning G_c and \mathfrak{K} .

Lemma 1. The set G_a is in \mathfrak{A} (see I.1).

Proof: This follows from 15.

Lemma 2. Let $A' \subset A^{\circ}$, where A' is a finite union of disjoint Peano spaces of \mathcal{F} , $\mathcal{F} \subset \mathfrak{A}$ (I.1). Then (T, A') admits of an unrestricted factorization of the form (T, A') = sf, $f: A' \to \mathfrak{N} \otimes ^*$, $s: \mathfrak{N} \otimes ^* \to P^*$, $\mathfrak{N} \otimes ^* \subset \mathfrak{N} \otimes ^*$. Let \mathcal{H}' be the class of proper cyclic elements associated with (T, A') = sf. Then a set G'_{σ} is associated with $C \in \mathcal{H}'$ if and only if G'_{σ} is of the form $G_{\sigma} \cap A'$.

Proof. Assume that G_c' is the set associated with $C\in \mathcal{K}'$. Then $G_c'\subset G_c$ since $G_c'\cap A^0\neq 0$, and hence $G_c'\subset G_c\cap A'$. To prove the complementary inclusion, we note that by definition, r_c $f(G_c\cap A')\subset \mathfrak{N}_{\mathfrak{C}}^*$. Since [see **I.12** (T₁)], G_c' is the union of all components G' of A' satisfying r_c $f(G')\subset \mathfrak{N}_{\mathfrak{C}}^*$, we conclude that $G_c'\supset G_c\cap A'$. Therefore, $G_c'=G_c\cap A'$. Similarly, if $G_c\cap A'\neq 0$, then $G_c'=G_c\cap A'$ is the set associated with $C\in \mathcal{K}'$.

Remark. The hypothesis $A' \subset A^0$ can be replaced by $A' \subset A$ provided A is also a finite union of disjoint Peano spaces of \mathcal{F} [see I.12 (T_1)].

Lemma 3. Let A be a finite union of disjoint Peano spaces of \mathcal{F} (I.1), i.e., $A = P_1 \cup ... \cup P_n$, $P_i \in \mathcal{F}$ (i = 1, ..., n). Then (T, P_i) admits of an unrestricted factorization $(T, P_i) = sf$, $f: P_i \to \mathfrak{N} \mathcal{F}^*$, $s: \mathfrak{N} \mathcal{F}^* \to P^*$, $\mathfrak{N} \mathcal{F}^* \subset \mathfrak{N} \mathcal{F}$. Let \mathcal{H}_i be the class of proper cyclic elements associated with $(T, P_i) = sf$. Then $\bigcup_{i=1}^n \mathcal{H}_i = \mathcal{H}$.

Proof. Since $\mathcal{K}_i \subset \mathcal{K}$ (i=1, ..., n), there follows $\bigcup_{i=1}^n \mathcal{K}_i \subset \mathcal{K}$. To prove the reverse inclusion, let $C \in \mathcal{K}$ and let G_c be the set associated with $C \in \mathcal{K}$. Then $G_c \cap A \neq 0$, and hence $G_c \cap P_i \neq 0$ for at least one $i, 1 \leqslant i \leqslant n$. By Lemma 2 (Remark), $G_c \cap P_i$ is the set associated with $C \in \mathcal{K}_i$, and consequently, $\mathcal{K} \subset \bigcup_{i=1}^n \mathcal{K}_i$. This completes the proof of the Lemma.

Assume now that A cannot be written as a finite union of disjoint Peano spaces of \mathcal{S} (I.1). Then by I.2 there exists a sequence $\{Q_n\}$ with the following

properties:

- (i) Q_n is a finite union of disjoint Peano spaces of \mathcal{S} (n = 1, 2, ...),
- (ii) $Q_n \in Q_{n+1}$ (n = 1, 2, ...),
- (iii) $Q_n \in A^0$ (n = 1, 2, ...),
- (iv) for any compact subset $K \subset A^{\mathfrak o}$ there is an integer n such that $K \subset Q^{\mathfrak o}_n \subset A^{\mathfrak o}$.

For each n, the mapping (T, Q_n) admits of an unrestricted factorization $(T, Q_n) = sf, f: Q_n \to \mathfrak{N} \otimes^*, s: \mathfrak{N} \otimes^* \to P^*, \mathfrak{N} \otimes^* \subset \mathfrak{N} \otimes$. Let \mathcal{K}_n be the class of proper cyclic elements associated with $(T, Q_n) = sf$.

Lemma 4.
$$\mathcal{H}_n \subset \mathcal{H}_{n+1}$$
 $(n = 1, 2, ...)$, and $\bigcup \mathcal{H}_n = \mathcal{H}$.

Proof. The assertions $\mathcal{K}_n \subset \mathcal{K}_{n+1}$ $(n=1,\ 2,\ \ldots)$ and $\bigcup_{n\geq 1} \mathcal{K}_n \subset \mathcal{K}$ are obvious. To prove that $\mathcal{K} \subset \bigcup_{n\geq 1} \mathcal{K}_n$, let $C \in \mathcal{K}$. Then $G_c \cap A^o \neq 0$ [see **I.12** (T₂)]. Consequently, in view of (iv), $G_c \cap Q_n \neq 0$ for some n. By Lemma 2, $C \in \mathcal{K}_n$ and hence $\mathcal{K} \subset \bigcup_{n\geq 1} \mathcal{K}_n$.

I.14. – Let M, \mathfrak{A} , \mathfrak{F} be given as in **I.1**, and denote by $(\mathfrak{F}, \mathfrak{A})$ the class of all continuous mappings (T, A) from $A \in \mathfrak{S}$ into a fixed metric space P^* . Let $\Phi(T, A)$ be a functional defined for each $(T, A) \in (\mathfrak{F}, \mathfrak{A})$ satisfying the properties listed in **I.8**.

Lemma. Let A be a finite union of disjoint Peano spaces P_1, \ldots, P_n of \mathcal{F} , and let (T, A) = sf, $f: A \to \mathfrak{I} \mathbb{G}^*$, $s: \mathfrak{I} \mathbb{G}^* \to P^*$, $\mathfrak{I} \mathbb{G}^* \subset \mathfrak{I} \mathbb{G}$ be an unrestricted factorization of (T, A) (I.9). If for C a proper cyclic element of $\mathfrak{I} \mathbb{G}$, r_c denotes the monotone retraction from $\mathfrak{I} \mathbb{G}$ onto C, then

(1)
$$\Phi(T, A) = \sum \Phi(s \ r_c f, G_c), \qquad C \in \mathcal{K},$$

where \mathcal{H} is the class of proper cyclic elements associated with (T, A) = sf, and where G_c is the set associated with $C \in \mathcal{H}$ [see I.12 (T_1)].

Proof. We first assume that $\mathcal{H} \neq 0$. For each i, the mapping (T, P_i) admits of an unrestricted factorization $(T, P_i) = sf$, $f: P_i \to \mathfrak{N} \otimes^*$, $s: \mathfrak{N} \otimes^* \to P^*$,

 $\mathfrak{IS}^* \subset \mathfrak{IS}. \quad \text{Let } \mathfrak{K}_i \text{ be the class of proper cyclic elements associated with } (T,\,P_i) = sf \text{ [see I.12 (T_1)]}. \text{ By Lemma 3 of I.13, } \bigcup_{i=1}^n \mathfrak{K}_i = \mathfrak{K}. \text{ For each } C \in \mathfrak{K}, \text{ let } n(C) \text{ be the integers among } i = 1, \ldots, n \text{ for which } C \in \mathfrak{K}_i. \text{ If we set for } C \in \mathfrak{K}_i, \ G_c^i = P_i \cap G_c, \text{ then by Lemma 2 (Remark) of I.13, } G_c^i \text{ is the set associated with } C \in \mathfrak{K}_i. \text{ Since } P_i \text{ is connected, } G_c^i = P_i, \text{ and since } G_c = \bigcup_{i \in n(c)} G_c^i, G_c^i \text{ is a finite union of disjoint Peano spaces of } \mathfrak{F}. \text{ From I.8, we have now}$

(2)
$$\begin{cases} \Phi(T, A) = \sum_{i=1}^{n} \Phi(T, P_i), \\ \Phi(s r_c f, G_c) = \sum_{i \in n(c)} \Phi(s r_c f, G_c^i) & \text{for every } C \in \mathcal{M}. \end{cases}$$

By the Lemma in **I.10**, we have for each $i, 1 \le i \le n$, the following relation,

(3)
$$\Phi(T, P_i) = \sum^* \Phi(s r_g f, P_i),$$

where \sum^* denotes the summation extended over all proper cyclic elements C of $\mathfrak{D}|_{\mathfrak{G}}$ for which r_c $f(P_i) \subset \mathfrak{D}|_{\mathfrak{G}}^*$. Using our new terminology [I.12 (T₁)], (3) becomes

(4)
$$\Phi(T, P_i) = \sum \Phi(s \ r_c f, G_c^i), \qquad C \in \mathcal{K}_i.$$

From (4) and (2) we obtain now

(5)
$$\varPhi(T, A) = \sum_{i=1}^{n} \sum_{c \in \pi_i} \varPhi(s \, r_c \, f, \, G_c^i).$$

Since, for a given $C \in \mathcal{H}$, $C \in \mathcal{H}$ if and only if $i \in n(C)$, we can rewrite (5) in the form

(6)
$$\Phi(T, A) = \sum_{c \in \kappa} \sum_{i \in n(c)} \Phi(s \, r_c \, f, \, G_c^i).$$

From (2) we infer the formula (1).

The above proof was carried out under the assumption that $\mathcal{K} \neq 0$. If $\mathcal{K} = 0$, then it follows from (3) that $\Phi(T, P_i) = 0$ (i = 1, ..., n) and from (2) that $\Phi(T, A) = 0$. This completes the proof to the Lemma.

I.15. - We are now able to state and prove the main result.

Let M, \mathfrak{A} be given as in **I.1**, and let $(\mathfrak{S}, \mathfrak{A})$ be the class of all continuous mappings (T, A) from $A \in \mathfrak{A}$ into a fixed metric space P^* . Let $\Phi(T, A)$ be a functional defined for each $(T, A) \in (\mathfrak{S}, \mathfrak{A})$ satisfying the conditions of **I.8**.

Theorem. Let (T, A) = sf, $f: A \to \mathfrak{N} \mathfrak{S}^*$, $s: \mathfrak{N} \mathfrak{S}^* \to P^*$, $\mathfrak{N} \mathfrak{S}^* \subset \mathfrak{N} \mathfrak{S}$ be an unrestricted factorization of (T, A) (I.9). If r_c denotes the monotone retraction from $\mathfrak{N} \mathfrak{S}$ onto a proper cyclic element C of $\mathfrak{N} \mathfrak{S}$, then

(1)
$$\Phi(T, A) = \sum \Phi(s r_c f, G_c), \qquad C \in \mathcal{K},$$

where \Re is the class of proper cyclic elements associated with (T, A) = sf, and where G_c is the set associated with $C \in \Re$ (I.12).

Proof. Since the theorem is true in case A is a finite union of disjoint Peano spaces of \mathcal{F} (I.14), we may assume that A cannot be written as a finite union of disjoint Peano spaces of \mathcal{F} . By 1.2, there exists then a sequence $\{Q_n\}$ with the properties listed:

- (i) For each n, Q_n is a finite union of disjoint Peano spaces of \mathfrak{F} .
- (ii) For each n, $Q_n \subset A^0$.
- (iii) For every compact subset K of A° , there is an integer $\overline{n} = n(K)$ such that $K \subset Q_n^{\circ} \subset A^{\circ}$ for all $n \geqslant \overline{n}$.
 - (iv) For each n, $Q_n \subset Q_{n+1}$.

Assume first that $\mathcal{K} \neq 0$. The mapping (T, Q_n) admits of an unrestricted factorization $(T, Q_n) = sf$, $f: Q_n \to \mathfrak{N} \mathbb{G}^*$, $s: \mathfrak{N} \mathbb{G}^* \to P^*$, $\mathfrak{N} \mathbb{G}^* \subset \mathfrak{N} \mathbb{G}$. Let \mathcal{K}_n be the class of proper cyclic elements associated with $(T, Q_n) = sf$. Then by Lemma 4 in I.13, $\mathcal{K}_n \subset \mathcal{K}_{n+1}$ (n = 1, 2, ...), and $\bigcup \mathcal{K}_n = \mathcal{K}$. Hence for each $C \in \mathcal{K}$, there is an integer N(C) > 0 such that $C \in \mathcal{K}_n$, n > N(C). By Lemma 2 in I.13, $G_o^n = G_o \cap Q_n$ is the set associated with $C \in \mathcal{K}_n$, n > N(C). From I.8 we infer that

(2)
$$\lim_{n\to\infty} \Phi(T, Q_n) = \Phi(T, A).$$

By Lemma 1 of **I.13**, the set G_c is in \mathfrak{C} . The sequence $\left\{G_c^n\right\}$, n>N(C) satisfies the following properties:

- (v) For each n, G_c^n is a finite union of disjoint Peano spaces, each of which is in \mathcal{F} , $\mathcal{F} \subset \mathcal{E}$ (I.1).
 - (vi) For each n, $G_c^n \subset G_c^0$.

(vii) For every compact subset K of G_c^0 there is an integer $n \ge n(K)$ such that $K \subset G_c^{n^0}$ for all $n \ge n$.

(viii)
$$G_c^n \subset G_c^{n+1}$$
 $(n = 1, 2, ...)$.

We only need to verify (vi) since the other properties are a consequence of (i), (iii), iv). For the proof of (vi), let us first establish the relation $G_c \cap A^0 = G_c^0$. Since, by **I.4**, G_c is a denumerable union of components G of G which intersect G [I.12 (T₂)], we can write $G_c = \bigcup_{i \geq 1} G_i$. From **I.3** (3) there follows $G_i \cap A^0 = G_c^0$ (G is G is G is G is G in G is G in G in

(3)
$$\lim_{n \to \infty} \Phi(s r_n f, G_n) = \Phi(s r_n f, G_n), \qquad n > N(C),$$

for every $C \in \mathcal{K}$.

We establish now the following assertion. For $\lambda > 0$,

(4)
$$\Phi(T, A) \leqslant \lambda$$
 if and only if $\sum_{\sigma \in \kappa} \Phi(s \ r_{\sigma} \ f, \ G_{\sigma}) \leqslant \lambda$.

Assume that $\Phi(T, A) \leq \lambda$. Then for each $n, \Phi(T, Q_n) \leq \lambda$ (see I.8). From I.14,

Let C_1, \ldots, C_i be any finite number of proper cyclic elements in \mathcal{H} . Then by Lemma 4 of **I.13**, we have an integer N > 0 such that for n > N, $C_i \in \mathcal{H}_n$ $(i = 1, \ldots, j)$. Thus, from (5),

(6)
$$\sum_{i=1}^{j} \Phi(s \, r_{c_i} f, \, G_{c_i}^n) \leqslant \lambda, \qquad n > N.$$

Consequently, from (3)

(7)
$$\sum_{i=1}^{j} \Phi(s \, r_{\sigma_i} f, \, G_{\sigma_i}) \leqslant \lambda.$$

Since C_1, \ldots, C_r was any finite number of proper cyclic elements in \mathcal{K} , we deduce from (7)

(8)
$$\sum_{c \in \kappa} \Phi(s \, r_c f, \, G_c) \leqslant \lambda.$$

Conversely, assume that $\sum_{\sigma \in \kappa} \Phi(s \, r_c \, f, \, G_\sigma) \leqslant \lambda$. Then for each n (see I.14, I.8),

(9)
$$\Phi(T, Q_n) = \sum_{c \in K_n} \Phi(s \, r_c \, f, G_c^n) \leqslant \sum_{c \in K} \Phi(s \, r_c \, f, G_c) \leqslant \lambda,$$

and hence from (2)

$$\Phi(T, A) \leqslant \lambda.$$

From (4) we obtain now the desired equality

(11)
$$\Phi(T, A) = \sum \Phi(s r_o f, G_o), \qquad C \in \mathcal{K}.$$

For the above discussion we assumed that $\mathcal{K} \neq 0$. If $\mathcal{K} = 0$, then from (5), $\Phi(T, Q_n) = 0$ for all n, and hence from (2), $\Phi(T, A) = 0$. This completes the proof of the Theorem.

Bibliography.

- 1. L. Cesari, Surface Area, Princeton University Press, No. 35, Princeton 1956.
- 2. E. J. MICKLE and C. J. NEUGEBAUER, Weak and Strong Cyclic Additivity, (to apappear).
- 3. E. J. MICKLE and T. RADÓ, On Cyclic Additivity Theorems, Trans. Amer. Math. Soc. 66 (1949), 347-365.
- 4. C. J. NEUGEBAUER, A Cyclic Additivity Theorem of the Lebesgue area, Riv. Mat. Univ. Parma, (to appear).
- 5. C. J. NEUGEBAUER, A Further Extension of a Cyclic Additivity Theorem of a Surface Integral, Riv. Mat. Univ. Parma, (to appear).
- 6. T. RADÓ, Length and Area, Amer. Math. Soc. Col. Pub., Vol. 30, 1948.
- 7. G. T. WHYBURN, Analytic Topology, Amer, Math. Soc. Col. Pub., Vol. 27, 1942.
 - 4. Rivista di Matematica.

