JAURÈS CECCONI (*)

Sulla esistenza del minimo degli integrali del Calcolo delle variazioni estesi ad una superficie di forma parametrica.

1. – Recentemente L. Cesari [5] e indipendentemente J. M. Danskin [6], A. G. Sigalov [8], hanno provato l'esistenza della superficie minimizzante un integrale doppio $\mathfrak{I}(S)$ di forma parametrica (quasi regolare, definito positivo) nella classe delle superficie di Fréchet S che si appoggiano ad una data curva di Jordan γ .

La dimostrazione di L. Cesari [5], alla quale ci riferiremo nel corso di questo lavoro, è fondata essenzialmente su di un nuovo processo di livellamento eseguito su di una opportuna successione di superficie poliedriche del tipo della 2-cella, non degeneri, le cui linee contorno tendono a γ . Mediante questo procedimento è possibile ottenere da tale successione una sotto-successione convergente ad una superficie di Fréchet che si appoggia a γ e minimizza l'integrale $\mathfrak{I}(S)$.

In questa Nota vogliamo usufruire del procedmento di livellamento introdotto da L. Cesari per stabilire un teorema di esistenza del minimo di un integrale doppio $\mathfrak{I}(\Sigma)$ nella classe delle superficie di Fréchet Σ del tipo della 2-sfera che avvolgono un opportuno insieme aperto e limitato Ω .

2. – Sia E_3 lo spazio dei punti $x=(x^1, x^2, x^3)$. Sia A un insieme chiuso e limitato di E_3 . Sia Ω un insieme aperto tale (1) che $\Omega + \Omega^* \subset (A)^\circ$.

^(*) Indirizzo: Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, Brasil.

⁽¹⁾ In tutto questo lavoro, se E è un insieme, E^* indicherà la sua frontiera, $(E)^\circ$ indicherà l'insieme dei punti interni a E.

J. CECCONI

Sia \sum una superficie orientata, del tipo della 2-sfera, il cui sostegno $[\sum]$ appartiene ad A ed avvolgente Ω ; tale cioè che per ogni $x \in \Omega$ sia $O(x, \sum) \neq 0$, essendo $O(x, \sum)$ l'indice topologico di x rispetto a \sum .

Supponiamo che l'insieme A sia convesso, in relazione a Ω supponiamo invece che esso sia «sufficientemente liscio» in modo da soddisfare ad una opportuna condizione.

Precisamente supponiamo che Ω soddisfi la seguente condizione $[C_{\lambda}]$. Esiste un numero $\lambda > 1$ tale che:

- a) detto $\Omega(\delta)$ ($\delta \geqslant 0$) l'insieme dei punti $x \in \Omega$ la cui distanza da Ω^* è $> \delta$, l'insieme $\Omega(\delta)$ è connesso se $\delta < 1/\lambda$;
- b) per ogni linea poligonale semplice chiusa p il cui sostegno [p] non incontro $\Omega(\delta)$ ($\delta < 1/\lambda$), e per la quale è diam $[p] < 1/\lambda$, esiste un poliedro P, del tipo della 2-cella, soddisfacente le seguenti condizioni: b·1) il sostegno [P] di P non incontra $\Omega(\delta)$, b·2) il contorno $\theta(P)$ di P è p, b·3) area $[P] < \lambda$ · (lungh p)², b·4) diam $[P] < \lambda$ · diam [p] (²).

Ciò posto dimostreremo, nella presente Nota, il seguente

Teorema. Sia W la classe di tutte le superficie orientate di F r é c h e t \sum del tipo della 2-sfera, di area secondo Le b e s g u e finita, il cui sotegno $[\sum]$ appartiene ad un insieme chiuso convesso A e che avvolgono un insieme Ω , sod-disfacente la condizione $[C_i]$, per il quale $\Omega + \Omega^* \subset (A)^\circ$.

Sia $\mathfrak{J}(\sum)$ un integrale quasi regolare, definito positivo (vedasi n. **6**) esteso alla superficie di classe W.

Allora, supposta la classe W non vuota, esiste in W il minimo di $\mathfrak{J}(\sum)$.

Preliminari.

3. – Sia ∑ una superficie orientata di Fréchet del tipo della 2-sfera, e sia

$$(\mathfrak{G},\,\mathfrak{C})\colon \qquad x^1 = x^1(u), \quad x^2 = x^2(u), \quad x^3 = x^3(u), \quad u = (u^1,\,u^2,\,u^3) \in \mathfrak{C}$$

una rappresentazione di \sum sulla sfera unitaria

$$\mathfrak{E}$$
: $(u^1)^2 + (u^2)^2 + (u^3)^2 = 1$.

⁽²⁾ Si riconosce facilmente che ogni sfera, ogni ellissoide, ogni poliedro non necessariamente convesso e, più generalmente, ogni insieme di E_3 la cui frontiera è costituita da una superficie semplice dotata di rappresentazione sufficientemente regolare, soddisfa la condizione $[C_i]$.

dello spazio $u = (u^1, u^2, u^3)$, sulla quale si è fissata come indicatrice positiva quella corrispondente al verso (1, 0, 0), (0, 1, 0), (0, 0, 1) sul triangolo sferico che ha gli stessi vertici.

Siano \mathcal{C}_1 , \mathcal{C}_2 rispettivamente l'emisfero superiore $(u^3 \ge 0)$ e quello inferiore $(u^3 \le 0)$ di \mathcal{C} .

Sia $(\Psi_1, \ \mathcal{C}_1)$ $[(\Psi_2, \ \mathcal{C}_2)]$ la trasformazione conforme di \mathcal{C}_1 $[\mathcal{C}_2]$ nel cerchio C del piano $u^3=0$ ottenuta proiettando \mathcal{C}_1 $[\mathcal{C}_2]$ dal punto (0, 0, -1) [(0, 0, +1)] sul piano $u^3=0$. Sia (Ψ_1^{-1}, C) $[(\Psi_2^{-1}, C)]$ la trasformazione inversa.

Sia (T, Q) una certa trasformazione, conforme, alla quale sempre nel seguito ci riferiremo, del quadrato unitario $Q: 0 \le u^1, u^2 \le 1$ del piano (u^1, u^2) nel cerchio C. [Il piano (u^1, u^2) è orientato in modo che la terna di assi u^1, u^2, u^3 sia levogira.]

Consideriamo infine le trasformazioni $(\mathfrak{S} \cdot \mathcal{Y}_1^{-1} \cdot T, Q)$, $(\mathfrak{S} \cdot \mathcal{Y}_2^{-1} \cdot T, Q)$. Esse determinano due superficie orientate di Fréchet del tipo della 2-cella, S_1 , S_2 , aventi il medesimo contorno, che diremo ottenute da \sum tagliando \sum lungo a lin ea $\mathfrak{S}(\mathfrak{S}_1^*) = \mathfrak{S}(\mathfrak{S}_2^*)$.

- 4. Sia A un insieme chiuso dello spazio E_3 dei punti $x=(x^1, x^2, x^3)$. Sia F(x, p), con $p=(p^1, p^2, p^3)$, una qualunque funzione reale degli argomenti x, p, tale che:
- a) F(x, p) è continua come funzione di (x, p) per $x \in A$ e per ogni p per il quale $|p| = [(p^1)^2 + (p^2)^2 + (p^3)^2]^{1/2} \neq 0$;
 - b) $F(x, tp) = t \cdot F(x, p)$ per ogni $x \in A, p \neq 0, t > 0$. Sia S una superficie di Fréchet del tipo della 2-cella e sia

$$(T,\ Q):\ x=x(v):\ x^1=x^1(v),\ x^2=x^2(v),\ x^3=x^3(v),\ v=(u^1,\ u^2)\in Q$$

una rappresentazione di S sul quadrato $Q: 0 \le u^1$, $u^2 \le 1$, del piano (u^1, u^2) . Supponiamo che l'insieme [S] dei punti x appartenenti alla superficie S (tale insieme sarà detto nel seguito sostegno [S] di S) appartenenza ad A, supponiamo altresi che l'area secondo LEBESGUE, a(S), di S sia finita.

In queste condizioni è stato introdotto, da L. Cesari [3], il concetto di integrale di Weierstrass di F(x, p) sulla superficie S, che sarà indicato con la notazione

$$\mathfrak{J}(S) = (S) \iint F(x, p)$$
.

L'integrale $\mathfrak{J}(S)$ è indipendente dalla rappresentazione di S e gode delle proprietà che sono espresse dai seguenti teoremi:

Teorema (L. Cesari [3]). Se la rappresentazione (T, Q) di S è dotata quasi ovunque in Q di Jacobiani ordinari $J=(J^1, J^2, J^3)$ e se si ha

$$a(S) = \iint\limits_{Q} \mid J \mid \mathrm{d} u^1 \, \mathrm{d} u^2, \qquad \mid J \mid = [(J^1)^2 + (J^2)^2 + (J^3)^2]^{1/2},$$

allora è anche

$$\mathfrak{J}(S) = \iint\limits_{Q} F(x, J) \, \mathrm{d} u^1 \, \mathrm{d} u^2,$$

gli integrali essendo intesi nel senso di Lebesgue.

Teorema (L. Cesari) [3]). Se S, S_n (n=1, 2, ...) sono superficie di Fréchet del tipo della 2-cella, di aree secondo Lebesgue finite, se [S], $[S_n] \subset A$, $||S, S_n|| \to 0$ ($||S, S_n||$ è la distanza secondo Fréchet fra S e S_n), $a(S_n) \to a(S)$, allora anche $J(S_n) \to J(S)$.

5. – Siano A e F(x, p) definiti come nel n. precedente.

Sia Σ una superficie di Fréchet del tipo della 2-sfera, di area secondo Le-BESGUE, $a(\Sigma)$, finita, il cui sostegno $[\Sigma]$ appartenga all'insieme A. Sia $(\mathfrak{S}, \mathfrak{C})$ una rappresentazione di Σ sulla sfera unitaria orientata \mathfrak{C} .

È possibile definire anche in questo caso l'integrale

$$\mathcal{J}(\sum) = (\sum) \iint F(x, p)$$

di F(x, p) su \sum . Tale integrale è indipendente dalla rappresentazione di \sum e gode della proprietà espressa dal secondo teorema enunciato nel n. precedente.

Supponiamo che la linea immagine secondo (\mathfrak{S} , \mathfrak{C}) della circonferenza C^* in cui \mathfrak{C} incontra il piano $u^3=0$ sia di lunghezza finita (3). Allora, dette S_1 e S_2 le superficie del tipo della 2-cella dedotte da \sum come nel n. $\mathbf{3}$, si ha

$$\mathfrak{I}(\Sigma)=\mathfrak{J}(S_1)+\mathfrak{J}(S_2),$$

in particolare si ha

$$a(\sum) = a(S_1) + a(S_2).$$

Questo fatto è stato essenzialmente provato da L. Cesari (4).

⁽³⁾ O, più generalmente, che abbiano misura 2-dimensionale secondo Lebesgue nulla i sostegni delle curve che si ottengono proiettando sui piani coordinati la linea (\mathfrak{S}, C^*) .

⁽⁴⁾ Vedasi, ad esempio, la Nota: Sulle superficie di Fréchet, Rivista Mat. Univ. Parma 1, 19-44 (1950).

6. – Siano A, F(x, p), S, \sum , $\Im(S)$, $\Im(\sum)$ definiti come nei nn. 3, 4, 5. Diremo che $\Im(S)$ $[\Im(\sum)]$ è definito in A se si ha F(x, p) > 0 per ogni $x \in A$ e $|p| \neq 0$. Supponiamo che le derivate $F_s(x, p) = \frac{\partial F(x, p)}{\partial p^s}$ (s = 1, 2, 3) esistano e siano continue.

Diremo che $\mathfrak{J}(S)$ $[\mathfrak{J}(\Sigma)]$ è quasi regolare positivo in A se si ha

$$E(x, p, \overline{p}) = F(x, \overline{p}) - \sum_{s} \overline{p}^{s} F_{s}(x, p) \geqslant 0$$

per ogni $x \in A$, $p \neq \overline{p}$, p, $|\overline{p}| \neq 0$.

Diremo che $\mathfrak{I}(S)$ $[\mathfrak{I}(\Sigma)]$ è inferiormente semicontinuo su S_0 $[\Sigma_0]$, rispetto ad una famiglia $\{S\}$ $[\{\Sigma\}]$, se per ogni $\varepsilon > 0$ si può determinare un $\delta > 0$ tale che per ogni $S \in \{S\}$ $[\Sigma \in \{\Sigma\}]$ per cui è $\|S, S_0\| < \delta$ $[\|\Sigma, \Sigma_0\| < \delta]$ si abbia

$$\mathfrak{J}(S) > \mathfrak{J}(S_0) - \varepsilon \quad \left[\mathfrak{J}(\sum) > \mathfrak{J}(\sum_0) - \varepsilon \right].$$

Sussiste il seguente

Teorema (L. Cesari [4]). Se $\mathfrak{I}(8)$ è definito positivo e quasi regolare in A, allora è inferiormente semicontinuo su ogni superficie S_0 per la quale si ha $a(S_0) < \infty$, $[S_0] \subset A$, rispetto ad ogni classe di superficie $\{S\}$ per cui $a(S) < \infty$, $[S] \subset A$.

Un analogo risultato sussiste anche per superficie ∑ del tipo della 2-sfera.

- 7. Sia S una superficie del tipo della 2-cella, data come nel n. 4. Diremo che una rappresentazione di S, sia per semplicità la rappresentazione (T, Q): $x = x(v), v \in Q$, considerata nel n. 4, è di classe L_2 se:
- a) le funzioni $x^{i}(u^{1}, u^{2}) = x^{i}(v)$ (i = 1, 2, 3) sono assolutamente continue secondo Tonelli (A.C.T.) su Q,
- b) le derivate $x_{ur}^i=\frac{\partial x^i}{\partial u^r}\,(r=1,\;2;\;i=1,\;2,\;3)$ di queste funzioni sono di quadrato integrabile su Q.

Per ogni trasformazione (T, Q) di classe L_2 consideriamo:

$$E = \sum\limits_{i}{(x_{u^{i}}^{i})^{2}} = \mid x_{u^{i}}\mid^{2}, \ G = \sum\limits_{i}{(x_{u^{i}}^{i})^{2}} = \mid x_{u^{i}}\mid^{2}, \ F = \sum\limits_{i}{x_{u^{i}}^{i}x_{u^{i}}^{i}} = x_{u^{i}}x_{u^{i}}^{i}$$

e gli integrali

$$\begin{split} D[T,\ Q] &= D[x,\ Q] = (1/2) \int\limits_{Q} \left(E \,+\, F\right) \,\mathrm{d} u^1 \,\,\mathrm{d} u^2, \\ I[T,\ Q] &= I[x,\ Q] = \int\!\!\int \mid EG - F\mid^{1/2} \,\mathrm{d} u^1 \,\,\mathrm{d} u^2 \!=\! \int\!\!\int \mid J\mid \,\mathrm{d} u^1 \,\,\mathrm{d} u^2 \,. \end{split}$$

Sussiste il seguente

Teorema (L. Cesari [2]). Se (T,Q): $x=x(v),\ v\in Q$, è una rappresentazione di classe L_2 di S, allora si ha

$$a(S) = I[x, Q] = D[x, Q] < +\infty.$$

Diremo che una rappresentazione di S: x = x(v), $v \in Q$, è quasi conforme se è di classe L_2 e se inoltre si ha, quasi dappertutto su Q, E = G, F = 0.

8. – Siano S e (T, Q): x = x(v), $v \in Q$, definite come al n. **4**.

Consideriamo, per ogni $x \in [S]$, l'insieme $T^{-1}(x)$ costituito dai punti $v \in Q$ la cui immagine secondo (T, Q) è in x. L'insieme $T^{-1}(x)$ è chiuso ed i suoi componenti sono continui di Q, eventualmente ridotti a punti.

Diremo che S è non degenere se esiste una sua rappresentazione, sia la stessa (T, Q), per la quale i componenti di $T^{-1}(x)$ sono, per ogni $x \in [S]$, tutti ridotti a punti.

Sussiste il seguente

Teorema (C. B. Morrey [7], L. Cesari [2]). Se S è una superficie del tipo della 2-cella non degenere, di area secondo Lebesgue finita, esiste una sua rappresentazione, sia essa (\overline{T}, Q) : $x = \overline{x}(v), v \in Q$, che è quasi conforme. In conseguenza della quasi conformità si ha inoltre

$$a(S) = I[x, Q] = D[x, Q].$$

9. – Siano \sum e (\mathfrak{F} , \mathfrak{E}) definite come nel n. 3. Per ogni $x \in [\sum]$ sia $\mathfrak{F}^{-1}(x)$ l'insieme dei punti di \mathfrak{E} la cui immagine secondo (\mathfrak{F} , \mathfrak{E}) è in x.

Diremo che \sum è non degenere se esiste una sua rappresentazione, sia la stessa $(\mathfrak{S},\mathfrak{S})$, tale che per ogni $x \in [\sum]$ i componenti dell'insieme chiuso $\mathfrak{S}^{-1}(x)$ sono ridotti a punti.

Diremo che una rappresentazione (\mathfrak{S} , \mathfrak{S}) di una superficie Σ , del tipo della 2-sfera, è quasi conforme se, per ogni regione di Jordan \mathfrak{R} di \mathfrak{S} e per ogni rappresentazione conforme (Φ , \mathfrak{R}) di \mathfrak{R} su di una regione di Jordan r del piano (u^1 , u^2), risulta quasi conforme, nel senso del n. 7, la trasformazione ($\mathfrak{S} \cdot \Phi^{-1}$, r).

Sussiste il seguente

Teorema (C. B. Morrey [7]). Se \sum è una superficie del tipo della 2-sfera, non degenere, di area secondo Lebesgue finita, allora esiste una rappresentazione di \sum , sia la stessa (\mathfrak{S} , \mathfrak{S}), che è quasi conforme.

10. - Sussiste il seguente

Teorema. Dati due numeri positivi N, ε , esiste un numero $\eta = \eta(N, \varepsilon)$ che gode della seguente proprietà: ad ogni coppia di trasformazioni continue

$$\big\{\,(T_1,\ Q):\ x=x_1(v);\ (T_2,\ Q):\ x=x_2(v);\ v{\in}Q\,\big\},$$

per le quali è $D[x_1, Q] + D[x_2, Q] < N$, possiamo far corrispondere un numero $\delta = \delta[N, \varepsilon, x_1(v), x_2(v)], \ \eta < \delta < \varepsilon$, ed una suddivisione di Q, mediante corde parallele ai lati di Q, in rettangoli r le cui dimensioni sono comprese fra δ e 2δ , tale che l'immagine di ogni lato di r (che non appartiene a Q^*) secondo (T_i, Q) (i = 1, 2) sia una curva rettificabile di lunghezza $\varepsilon/4$.

Questo teorema si ottiene modificando in modo ovvio la dimostrazione di un analogo teorema di L. C. Young [9].

11. Sussistono i seguenti teoremi (L. Cesari [5]), sul secondo dei quali è fondato il procedimento di livellamento del quale faremo uso nel presente lavoro.

Teorema. Sia C una poligonale semplice chiusa in E_3 , l la sua lunghezza, π^* un poligono semplice del piano E_2 di (u^1, u^2) . Sia x = x(v), $v \in \pi^*$, una rappresentazione quasi lineare di C. Allora esistono una superficie poliedrica S, la cui frontiera $\vartheta(S) = C$, e una sua rappresentazione quasi lineare S: X = X(v), $v \in \pi$, di S su π tali che X(v) = x(v) se $v \in \pi^*$, $a(S) = l^2/4$, [S] appartiene al minimo insieme convesso contenente il sostegno [C] di C.

Teorema. Sia S una superficie poliedrica e (T,Q): $x=x(v), v\in Q$, una rappresentazione quasi lineare di S su Q, sia $C=\vartheta(S)$ la curva contorno di S, sia L la lunghezza di $\vartheta(S)$, sia D una costante > diam C, sia K una costante > 0, sia $x_0=x(v_0)$ con $v_0\in Q^*$.

Allora esiste una superficie poliedrica S_0 ed una rappresentazione quasi lineare (T_0, Q) : $x = x_0(v), v \in Q$, dotata delle seguenti proprietà:

- a) $[S_0]$ è contenuta in una sfera di centro x_0 e raggio $\varrho \leq 2D + 3[K a(S)]^{1/2}$.
- b) Esiste un insieme aperto $\pi \in Q$, che è la somma $\sum \pi_i$ di un numero finito di poligoni semplici disgiunti π_i (i=1,2,...,n), tale che $x_0(v)=x(v)$ su $Q-\pi$, quindi $x_0(v)=x(v)$ su ogni π_i^* e su Q^* . Indichiamo con σ , σ_0 , $[\sigma_i,\sigma_0]$ le superficie poliedriche rappresentate da x(v), $x_0(v)$ su π $[\pi_i$ (i=1,2,...,n)] e con $a(\sigma)$, $a(\sigma_0)$ le loro aree totali:

$$\sigma = \sum \sigma_i, \quad \sigma_0 = \sum \sigma_{0i}, \quad a(\sigma) = \sum a(\sigma_i), \quad a(\sigma_0) = \sum a(\sigma_{0i}).$$

Ogni superficie σ_{0i} è contenuta nel minimo corpo convesso contenente la curva $\vartheta(\sigma_i) = \vartheta(\sigma_{0i})$. Se, essendo i = 1, 2, ..., n, indichiamo con p_i le curve $\vartheta(\sigma_i) = \vartheta(\sigma_{0i})$ ed anche le loro lunghezze, indichiamo con $\mathfrak L$ la famiglia di curve p_i ed anche la loro lunghezza totale $\mathfrak L = \sum p_i$, allora:

- c) $\mathfrak{L}^2 = (\sum p_i)^2 \leqslant K^{-1} \cdot a(\sigma),$
- d) $a(\sigma_0) = (1/4)K^{-1} \cdot a(\sigma)$,
- e) ogni continuo $c \in Q$ tale che $e \cdot Q * \neq 0$, diamx(c) < D è completamente contenuto in $Q \pi$.
 - 12. Siano Ω e $\Omega(\delta)$ definiti come nel n. 2, sia inoltre Ω di classe $[C_i]$.

Un riesame della dimostrazione del secondo Teorema enunciato nel precedente n. ci consente di affermare che se, oltre alle ipotesi ivi fatte, il sostegno [S] della superficie poliedrica S non incontra l'insieme $\Omega(\delta)$ ($\delta < 1/\lambda$), e si ha $2D + 3[K \cdot a(S)]^{1/2} < 1/(2\lambda)$, allora è possibile anche determinare una superficie poliedrica S_0' ed una sua rappresentazione quasi lineare $x = x_0'(v)$, $v \in Q$, tali che:

- a') $[S_0']$ non incontra $\Omega(\delta)$ ed è contenuta nella sfera di centro x_0 e raggio $\varrho < \{2D + 3[K \cdot a(S)]^{1/2}\}(2\lambda + 1)$.
- b') Essendo π e π_i gli insiemi aperti di cui al b) dell'enunciato precedente, ed essendo σ_0' e σ_{0i}' le superficie poliedriche definite da $x=x_0'(v)$, su π e π_i ciascuna delle superficie σ_{0i}' ha diametro minore di λ diam $\vartheta(\sigma_i)$ ed è contenuta nel minimo insieme convesso contenente $\vartheta(\sigma_i)$ oppure dista dalla frontiera $[\Omega(\delta)]^*$ di $\Omega(\delta)$ per meno di $(1+\lambda)$ diam $\vartheta(\sigma_i)$.
- c') Essendo $\mathfrak{L}' = \mathfrak{L}$ la lunghezza complessiva delle curve $\vartheta(\sigma_i) = \vartheta(\sigma_{0i}) = \vartheta(\sigma_{0i}')$ si ha $\mathfrak{L}'^2 \leq K^{-1} \cdot a(\sigma)$.
 - $\mathbf{d}') \ \ a(\sigma_0') \leqslant \lambda K^{-1} \cdot a(\sigma).$
- e') Ogni continuo $c \in Q$ tale che $c \cdot Q * \neq 0$, diam x(c) < D è completamente contenuto in $Q \pi$.

Per la dimostrazione di questa proposizione consideriamo gli insiemi aperti π_i e le superficie poliedriche σ_{0i} su di essi definiti in virtù del Teorema del n. 11. Per ognuna di tali superficie, sia essa σ_{0i} , che non incontra $\Omega(\delta)$ facciamo $\sigma'_{0i} = \sigma_{0i}$. Sia, invece, per ogni σ_{0i} che incontra $\Omega(\delta)$, σ'_{0i} la superficie poliedrica avente lo stesso contorno di σ_{0i} , non incontrante $\Omega(\delta)$, per la quale si abbia inoltre

$$a(\sigma_{0i}^{'}) = \lambda \cdot \big\{ \operatorname{lungh} \, \vartheta(\sigma_{0i})^2 \big\}, \qquad \operatorname{diam} \left[\sigma_{0i}^{'}\right] = \lambda \cdot \operatorname{diam} \left[\vartheta(\sigma_{0i})\right].$$

Tale superficie certamente esiste per le ipotesi fatte su Ω e S.

Si vede allora (5) che il vettore quasi lineare $x=x_0'(v),\ v\in Q$, che coincide con x=x(v) su $Q-\pi$ e rappresenta linearmente su ciascun π_i la superficie poliedrica σ_{0i}' , soddisfa le condizioni a'), c'), d'), e') dell'enunciato.

Quanto alla condizione b') basta osservare che se σ_{0i} non incontra $\Omega(\delta)$ allora $\sigma'_{0i} = \sigma_{0i}$ e la nostra affermazione discende da Teorema del n. 11. Se invece σ_{0i} incontra $\Omega(\delta)$ allora si ha, per ogni punto $x \in [\sigma'_{0i}]$,

$$d\left\{x,\ [\varOmega(\delta)]^*\right\} \leqslant d\left\{x,\ \bar{x}\right\} \leqslant d\left\{x,\ \bar{\bar{x}}\right\} + d\left\{\bar{\bar{x}},\ \bar{x}\right\},$$

essendo $\bar{x} \in [\Omega(\delta)]^* \cdot [\sigma_{0i}]$ e $\bar{x} \in [\vartheta(\sigma_{0i})]$. Si ha perciò, in questo caso,

$$d\{x, [\Omega(\delta)]^*\} \leq \lambda \cdot \operatorname{diam} [\vartheta(\sigma_{0i})] + \operatorname{diam} [\vartheta(\sigma_{0i})]$$

e quindi

$$d\left\{ \left[\sigma_{0i}^{'}\right], \left[\Omega(\delta)\right]^{*}\right\} \leqslant (\lambda+1) \cdot \operatorname{diam}\left[\vartheta(\sigma_{i})\right].$$

13. – Sia $\mathcal S$ un poliedro del tipo della 2-sfera, non degenere, sia $(\mathfrak S,\mathfrak E)$ una sua rappresentazione quasi conforme.

Per ogni — 1 < ϱ < 1 sia C_ϱ la circonferenza intersezione di $\mathcal C$ con il piano π_ϱ di equazione $u^3=\varrho$.

Sia $\gamma(\varrho)$ la linea di Fréchet, non orientata, (S, C_ϱ) e sia $l(\varrho)$ la sua lunghezza, eventualmente $+\infty$.

La funzione $l(\varrho)$ è, ir virtù di note proprietà della lunghezza, una funzione inferiormente semicontinua, e pertanto misurabile di ϱ in (-1, +1).

Affermo che, in queste condizioni, per almeno un valore di ϱ , $l(\varrho)$ è finito. A questo scopo mi limito a considerare l'intervallo $(0,\ 1/2)$ della variabile ϱ .

$$\begin{split} d\left\{\,x_{0},\;x\,\right\} &\leqslant d\left\{\,x_{0},\;\bar{x}\,\right\} \,+\, d\left\{\,\bar{x},\;x\,\right\} &\leqslant \left\{\,2D \,+\, 3[K \cdot a(S)]^{1/2}\,\right\} \,+\, \lambda \cdot \mathrm{diam}\left[\,\vartheta(\sigma_{i})\right] \leqslant \\ &\leqslant (2\lambda \,+\,1) \cdot \left\{\,2D \,+\, 3[K \cdot a(S)]^{1/2}\,\right\}. \end{split}$$

Per ciò che concerne d') si tenga presente la Memoria [5] di L. Cesari e si utilizzi nel ragionamento dei nn. 22, 24 di quella Memoria la condizione $[C_{\lambda}]$.

⁽⁵⁾ Per ciò che concerne a') si osservi che se $x \in [\sigma'_{0i}]$ (essendo σ'_{0i} diversa da σ_{0i}), detto $\bar{x} \in [\vartheta(\sigma'_{0i})] = [\vartheta(\sigma_i)] \subset [S_0]$, si ha

Sia, come nel n. 3, (Ψ_1, \mathfrak{S}_1) la trasformazione, conforme, ottenuta proiettando la calotta $u^3 \ge 0$ di \mathfrak{S} dal punto (0, 0, -1) sul piano $u^3 = 0$. L'insieme dei punti di \mathfrak{S} per i quali è $0 \le u^3 \le 1/2$ si trasforma nella corona

$$\overline{C}$$
: $\frac{1}{3} \leqslant (u^1)^2 + (u^2)^2 \leqslant 1$, $u^3 = 0$.

Se diciamo $\mathfrak{L}(r)$ la lunghezza della linea di Jordan immagine, secondo $(\mathfrak{S}\cdot \mathcal{\Psi}_1^{-1},\ \overline{C}_r),$ della circonferenza

$$\overline{C}_r$$
: $(u^1)^2 + (u^2)^2 = r^2$, $u^3 = 0$,

è $\mathfrak{L}(r)=l(\varrho)$ con $r=[1-\varrho^2]^{1/2}/(1+\varrho)$. Ora si ha, per i nn. 7, **9** e per la disuguaglianza di SCHWARZ,

$$\begin{split} a(\mathfrak{S}) \geqslant & \frac{1}{2} \iint_{\overline{c}} (E + G) \, \mathrm{d} u^1 \, \mathrm{d} u^2 = \\ & = \frac{1}{2} \int_{1/\sqrt{3}}^{1} \mathrm{d} r \int_{0}^{2\pi} \left\{ \left[(\overline{x}_r^1)^2 + (\overline{x}_r^2)^2 + (\overline{x}_r^3)^2 \right] + \frac{1}{r^2} \left[\overline{x}_\theta^1 \right]^2 + (\overline{x}_\theta^2)^2 + (\overline{x}_\theta^3)^2 \right] \right\} r \, \mathrm{d} \theta \geqslant \\ & \geqslant \frac{1}{2} \int_{1/\sqrt{3}}^{1} \mathrm{d} r \int_{0}^{2\pi} \frac{1}{2} \left[(\overline{x}_\theta^1)^2 + (\overline{x}_\theta^2)^2 + (\overline{x}_\theta^3)^2 \right] \, \mathrm{d} \theta = \\ & = \frac{1}{8\pi} \int_{1/\sqrt{3}}^{1} \mathrm{d} r \left\{ \int_{0}^{2\pi} \left[(\overline{x}_\theta^1)^2 + (\overline{x}_\theta^2)^2 + (\overline{x}_\theta^3)^2 \right]^{\frac{1}{2}} \, \mathrm{d} \theta \right\}^2 \geqslant \frac{1}{8\pi} \int_{1/\sqrt{3}}^{1} \mathfrak{L}^2(r) \, \mathrm{d} r, \end{split}$$

essendo (${\mathfrak F}\cdot {\mathcal Y}_1^{-1}, \ \overline{C}$): $x=\overline{x}(r,\ \theta)=[\overline{x}^{\scriptscriptstyle 1}(r,\ \theta),\ \overline{x}^{\scriptscriptstyle 2}(r,\ \theta),\ \overline{x}^{\scriptscriptstyle 3}(r,\ \theta)],\ (r,\ \theta)\in \overline{C}.$

Da questa, in virtù di noti teoremi sulla integrazione, discende il nostro asserto.

14. – Sia \mathcal{S} un poliedro di tipo della 2-sfera, sia $(\mathfrak{S},\mathfrak{S})$: $x=x(u), u\in\mathfrak{S}$, una sua rappresentazione quasi conforme sulla sfera.

Per ogni $-1 < \varrho < 1$ sia C_{ϱ} la circonferenza intersezione di ϱ con il piano π_{ϱ} di equazione $u^3 = \varrho$. Siano $\mathfrak{S}_{1,\varrho}$ e $\mathfrak{S}_{2,\varrho}$ le regioni di Jordan di \mathfrak{S} sulle quali è, rispettivamente, $u^3 > \varrho$, $u^3 < \varrho$.

Consideriamo la trasformazione continua $(\Psi_\varrho,\ \mathfrak{C})$ di \mathfrak{C} in se stessa che è definita nella seguente maniera.

Sia $(\Psi_{1\varrho},\,\mathfrak{S}_{1\varrho})$ la proiezione di $\mathfrak{S}_{1\varrho}$ dal punto $(0,\,0,\,-1)$ sul piano $u^3=0$. Sia $\overline{C}_{1\varrho}$ il cerchio immagine di $\mathfrak{S}_{1\varrho}$ secondo $(\Psi_{1\varrho},\,\mathcal{S}_{1\varrho})$. Sia $(\overline{\Psi}_{\varrho},\,\overline{C}_{1\varrho})$ la rappresentazione conforme di $\overline{C}_{1\varrho}$ nel cerchio C del piano $u^3=0$ che si ottiene facendo corrispondere ad ogni punto $(u^1,\,u^2,\,0)\in\overline{C}_{1\varrho}$ il punto $(hu^1,\,hu^2,\,0)\in C$, essendo h il rapporto fra 1 e il raggio di $\overline{C}_{1\varrho}$.

Per ogni $u{\in}C_{{\bf 1}\varrho}$ sia allora
 $\check{\varPsi}_\varrho(u)=\varPsi_{\bf 1}^{-1}{\cdot}\overline{\varPsi}_\varrho{\cdot}\varPsi_{{\bf 1}\varrho}(u)$.

In modo analogo sia definito $\Psi_{\rho}(u)$ se $u \in \mathcal{Q}_2$.

Osserviamo che ($\mathfrak{F}\cdot\varPsi_{\varrho}$, \mathfrak{E}) costituisce una nuova rappresentazione quasi conforme (°) del poliedro \mathfrak{F} .

15. - Dalle proposizioni dei nn. 13, 14 discende la seguente:

Sia $\mathcal S$ un poliedro non degenere, del tipo della 2-sfera, sia $(\mathfrak S,\mathfrak E)$ una sua rappresentazione quasi conforme.

Siano, per ogni $-1 < \varrho < 1$, $S_{1,\varrho}$ e $S_{2,\varrho}$ i due poliedri del tipo della 2-cella rappresentati rispettivamente da $(\mathfrak{S},\ \mathcal{C}_{1\varrho})$ e $(\mathfrak{S},\ \mathcal{C}_{2\varrho})$. Si ha allora

$$a(S) = a(S_{1\varrho}) + a(S_{2\varrho}).$$

Osserviamo che questa è senz'altro vera se si ha, con le notazioni del n. 13, $l(\varrho) < +\infty$. Basta infatti in tal caso effettuare la costruzione del n. precedente e tenere presente l'osservazione in fine del n. 5.

Nel caso generico la nostra affermazione discende dal caso particolare considerato, dall'osservazione del n. 14 e dal Teorema enunciato in fine del n. 7 (7).

(7) Abbiamo infatti, detto $\overline{\varrho}$ un valore tale che $l(\overline{\varrho}) < \infty$ e supposto $\overline{\varrho} < \varrho$,

$$\begin{split} a(\mathcal{S}) &= a(S_{1\overline{\varrho}}) \,+\, a(S_{2\overline{\varrho}}) \,=\, (1/2) \int_{C_1 \, \overline{\varrho}} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 + \, (1/2) \int_{C_2 \, (\overline{\varrho})} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 = \\ &= (1/2) \int_{C_1 \, (\varrho)} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 + \, (1/2) \int_{C_1 \, (\varrho \,, \overline{\varrho})} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 + \, (1/2) \int_{C_2 \, (\overline{\varrho})} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 = \\ &= a(S_{1\varrho}) \,+\, (1/2) \int_{C_2 \, (\overline{\varrho} \,, \varrho)} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 + \, (1/2) \int_{C_2 \, (\overline{\varrho})} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 = \\ &= a(S_{1\varrho}) \,+\, (1/2) \int_{C_2 \, (\varrho)} (E \,+\, G) \; \mathrm{d} u^1 \; \mathrm{d} u^2 = a(S_{1\varrho}) \,+\, a(S_{2\varrho}) \;, \end{split}$$

essendo $C_1(\varrho)$, $C_1(\overline{\varrho})$, $C_1(\varrho, \overline{\varrho})$ $[C_2(\varrho), C_2(\overline{\varrho}), C_2(\overline{\varrho}, \varrho)]$ le proiezioni delle regioni di $\mathfrak E$ nelle quali è rispettivamente $u^3 > \varrho$, $u^3 > \overline{\varrho}$, $\overline{\varrho} < u^3 < \varrho$ $[u^3 < \varrho, u^3 < \overline{\varrho}, \overline{\varrho} < u^3 < \varrho]$ sopra il piano $u^3 = 0$ ed essendo E, G definite come nel n. 7.

⁽⁶⁾ Qui utilizziamo la seguente nota proprietà: Se J_1 , J_2 , J_3 sono regioni di Jordan (appartenenti ad un piano o ad una sfera) e se (T_1, J_1) è una rappresentazione conforme di J_1 su J_2 , (T_2, J_2) è una rappresentazione conforme di J_2 su J_3 , allora (T_2T_1, J_1) è una rappresentazione conforme di J_1 su J_3 .

17. - Sussiste il seguente

Teorema. Sia $\mathfrak F$ un poliedro del tipo della 2-sfera, non degenere. Allora esiste una sua rappresentazione $(\overline{\mathfrak S},\ \mathfrak C)$: $x=x(u),\ u\in\mathfrak C,\ quasi\ conforme,\ per\ la$ quale si ha:

$$a[(\overline{\mathfrak{G}}, \mathfrak{S}_i)] = (1/2)a(\mathfrak{F}) \qquad (i = 1, 2, ..., 6),$$

essendo \mathcal{Q}_i (i=1, 2, ..., 6) le porzioni di \mathcal{Q} sulle quali si ha rispettivamente $u^3>0$, $u^3<0$, $u^2>0$, $u^2<0$, $u^1>0$, $u^1<0$, ed essendo a[$(\overline{\mathfrak{D}}, \mathfrak{S}_i)$] l'area della superficie definita da ($\overline{\mathfrak{D}}, \mathfrak{S}$) su \mathfrak{S}_i .

Dimostrazione. Siano $(\Psi_1,\ \mathfrak{S}_1)$ e $(\Psi_2,\ \mathfrak{S}_2)$ le trasformazioni conformi, definite nel n. 3, di \mathfrak{S}_1 e \mathfrak{S}_2 sul cerchio unitario C del piano $u^3=0$.

Consideriamo le trasformazioni ($\mathfrak{S} \cdot \Psi_1^{-1}$, C), ($\mathfrak{S} \cdot \Psi_2^{-1}$, C) le quali rappresentano conformemente su C i poliedri S_1 e S_2 definiti da (\mathfrak{S} , \mathfrak{C}) su \mathfrak{C}_1 e \mathfrak{C}_2 rispettivamente.

Per il n. 15 e per i nn. 7, 9 avremo:

$$a(\mathcal{S}) = a(S_1) + a(S_2) = (1/2) \iint_{\sigma} (E_1 + G_1) \, \mathrm{d} u^1 \, du^2 + (1/2) \iint_{\sigma} (E_2 + G_2) \, \mathrm{d} u^1 \, du^2,$$

essendo E_1 , G_1 , E_2 , G_2 definite come nel n. 7 in relazione a $(\mathfrak{G}\cdot \Psi_1^{-1},\ C)$ e $(\mathfrak{G}\cdot \Psi_2^{-1},\ C)$.

Per ogni $0 < \varrho < 1$ sia $C(\varrho)$ il cerchio concentrico a C e raggio ϱ ; sia $F_i(\varrho)$ la funzione così definita:

$$F_i(\varrho) = rac{1}{2} \iint\limits_{\mathcal{C}(\varrho)} (E_i + G_i) \, \mathrm{d} u^1 \, \mathrm{d} u^2 \, .$$

La funzione

$$F(z) = \left\{ egin{array}{ll} F_1(z) & ext{se} & 0 \leqslant z \leqslant 1, \ F_1(1) + F_2(z-1) & ext{se} & 1 \leqslant z \leqslant 2. \end{array}
ight.$$

è continua e non decrescente in (0, 2) e tale che

$$F(0) = 0, F(2) = a(S).$$

Esiste perciò un valore $0 < \overline{z} < 2$ tale che $F(\overline{z}) = (1/2) \ a(\mathcal{S})$.

Sia $\overline{\varrho}$ il valore \in (-1, 1) che si ottiene da \overline{z} nella seguente maniera. Se $0 < \overline{z} < 1$, allora $\overline{\varrho}$ è la coordinata u^3 dei punti di $\mathfrak C$ che sono immagini di $[C(z)]^*$ secondo (Ψ_1^{-1} , C), altrimenti $\overline{\varrho}$ è la terza coordinata dei punti di $\mathfrak C$ che sono immagini dei punti di $[C(z)]^*$ secondo (Ψ_2^{-1} , C).

Sia quindi $(\overline{\mathfrak{G}}, \mathfrak{S})$ la rappresentazione quasi conforme di \mathfrak{F} che si ottiene da $(\mathfrak{S}, \mathfrak{S})$ operando come nel n. 14 a partire dal valore $\overline{\mathfrak{g}}$.

Risulterà intanto, per il n. 15.

$$a[(\overline{\mathfrak{B}}, \mathfrak{S}_{\mathfrak{b}})] = (1/2)a(\mathfrak{F}), \quad a[(\overline{\mathfrak{B}}, \mathfrak{S}_{\mathfrak{b}})] = a(\mathfrak{F}) - (1/2)a(\mathfrak{F}) = (1/2)a(\mathfrak{F}).$$

Giunti a questo punto permutiamo circolarmente per due volte consecutive l'ufficio delle coordinate u^1 , u^2 , u^3 e ripetiamo tutte le operazioni effettuate finora su u^3 .

Ciascuna di queste operazioni lascia invariato il segno delle rimanenti due coordinate di ciascun punto di E.

Il nostro Teorema è così provato.

Dimostrazione del Teorema del n. 2.

17. – La funzione F(x, p) è, in virtù delle ipotesi, continua nell'insieme chiuso e limitato I costituito dai punti (x, p) per i quali $x \in A$, $|p| = [(p/)^2 + (p^2)^2 + (p^3)^2]^{1/2} = 1$. Inoltre è F(x, p) > 0 per ogni $(x, p) \in I$. Siano $m \in M$ il minimo e il massimo di F(x, p) in I. Sarà $0 < m \le F(x, p) \le M$ per $(x, p) \in I$ e perciò, in virtù della condizione b) del n. 4, si avrà, per ogni (x, p) $(x \in A, |p| \ne 0)$, $0 < m |p| \le F(x, p) \le M |p|$.

Sarà perciò possibile, come nella Memoria [5] di L. CESARI, prolungare la funzione F(x, p) fino ad una funzione $F_0(x, p)$ definita per ogni $x \in E_3$, $|p| \neq 0$ in modo che $F_0(x, p)$ sia continua per ogni (x, p) con $p \neq 0$ e si abbia:

a)
$$0 < m \leqslant F_0(x, p) \leqslant M$$
 per ogni $x \in E_3$, $|p| = 1$,

b)
$$F_0(x|p) = |p| \cdot F_0(x,|p||p|)$$
 per ogni $x \in E_3, |p| \neq 0$.

Osserviamo che in conseguenza delle definizione di $\mathfrak{I}(S)$ e $\mathfrak{J}(\sum)$ si avrà, per ogni superficie S e \sum di area finita,

$$0 < ma(S) \leqslant \mathfrak{J}(S) \leqslant Ma(S),$$
 $0 < ma(\sum) \leqslant \mathfrak{J}(\sum) \leqslant Ma(\sum).$

J. CECCONI

18. – Siano Ω e A definiti come nel n. 2.

Sia, per ogni $\delta \geqslant 0$, $A(\delta)$ l'insieme convesso chiuso formato da tutti i punti di E_3 la cui distanza da $A \in \delta$. Sarà $A(\delta) \supset A$, A(0) = A. Sia, per ogni $\delta \geqslant 0$, $\Omega(\delta)$ l'insieme aperto, eventualmente vuoto, costituito da tutti i punti di E_3 che appartengono ad Ω e che distano dalla frontiera Ω^* di Ω per più di δ . Sarà $\Omega(\delta) \subset \Omega$, $\Omega(0) = \Omega$.

Sia, per ogni $\delta \geqslant 0$, $W(\delta)$ la famiglia costituita da tutte le superficie \sum , del tipo della 2-sfera, tali che $[\sum] \subset A(\delta)$, $O(x, \sum) \neq 0$ se $x \in \Omega(\delta)$.

Si ha, per ogni $\delta \geqslant 0$, $W(0) \subset W(\delta)$, W(0) = W, donde si deduce in particolare che ciascuna delle famiglie $W(\delta)$ non è vuota. Si ha infine $W(\delta') \supset W(\delta)$ se $0 \le \delta \le \delta'$.

Indichiamo con $i \in j(\delta)$ gli estremi inferiori di $\mathfrak{I}(\sum)$ quando $\sum \in W$ oppure $\sum \in W(\delta)$.

Risulterà, per ogni $0 \leqslant \delta \leqslant \delta', \ j(\delta') \leqslant j(\delta) \leqslant i$. Esisterà perciò $\lim_{\delta \to 0+} j(\delta) = j \leqslant i$.

Sia $\lambda^*>0$ la distanza di Ω^* da A^* . Sia $\lambda>1$ il numero di cui alla definizione di classe $[C_{\lambda}]$. Sia $2\bar{\delta}>0$ il raggio di una sfera tutta contenuta in Ω . Siano M e m definiti come nel n. precedente.

Sia, per ogni n = 1, 2, 3, ...,

$$\varepsilon_n = \frac{\min[2^{-n}, \lambda^*, \overline{\delta}]}{60 \left[\max(\lambda, M/m)\right]^3}, \qquad \mu_n = \min\left\{(n+2)^{-1} \cdot 2^{-(n+2)}, 2^{-2}M\lambda \varepsilon_n^2, \frac{1}{6}m\overline{\delta}^2\right\},$$

sia $0 < \delta_n < \min\left(\frac{1}{2}\,\overline{\delta}\,,\; \frac{1}{2\lambda}\,,\; \frac{1}{n}\right)$ tale che risulti $j(2\,\delta_n) > j - \mu_n\,.$

19. – Sia, per ogni $n=1, 2, ..., \sum_{n} \in W(\delta_n)$ tale che

$$j(\delta_n) \leqslant \Im(\sum_n) \leqslant j(\delta_n) + \mu_n$$
.

Sarà possibile determinare, per ogni $n=1,\ 2,...$, un poliedro $P_n \in W(2\delta_n)$, non degenere, in modo che risulti (8)

$$| \mathfrak{J}(\sum_n) - \mathfrak{J}(\mathfrak{F}_n) | < \mu_n,$$

e quindi

$$j - \mu_n < j(2\delta_n) = \mathfrak{J}(\mathfrak{S}_n) \leqslant j(\delta_n) + 2\mu_n \leqslant j + 2\mu_n$$
.

⁽⁸⁾ Basterà tenere presente il Teorema di Poincaré-Borel [1], il secondo teorema ricordato nel n. 4 e modificare eventualmente la posizione di qualche vertice.

Risulterà inoltre, per ogni n,

$$a(\mathcal{F}_n) \leqslant (1/m)\mathcal{J}(\mathcal{F}_n) \leqslant (1/m)(j+1)$$
.

20. – Ciascuna delle superficie poliedriche della successione $\{\mathcal{F}_n\}$ ora costruita è non degenere ed ha area (°) $a(\mathcal{F}_n) \geqslant 4\pi\bar{\delta}^2$.

È pertanto possibile (n. 16) ottenere, per ogni n, una rappresentazione conforme di \mathcal{F}_n , sia essa $(\mathfrak{F}_n, \mathfrak{E})$: $x = x_n(u), u \in \mathfrak{E}$, per la quale risulti

$$a(\mathfrak{S}_n, \mathfrak{C}_i) \geqslant 2\pi \overline{\delta}^2 \quad (i = 1, 2, ..., 6),$$

essendo \mathfrak{E}_i ($i=1,\ 2,\ ...,\ 6$) definite come nel n. 16.

A partire dalla successione $(\mathfrak{S}_n, \mathfrak{C})$ (n = 1, 2, ...) ora costruita, formiamo una successione di coppie di trasformazioni, del tipo della 2-cella, $\{(T_{1n}, Q), (T_{2n}, Q), (n = 1, 2, ...)\}$, ottenute ponendo

$$(T_{in}, Q) = (\mathfrak{S}_n \cdot \Psi_i^{-1} T, Q) \quad (i = 1, 2),$$

essendo (Ψ_i, \mathfrak{S}_i) (i=1, 2), (T, Q) le trasformazioni continue definite nel n. 3. Se indichiamo S_{1n} e S_{2n} le superficie poliedriche rappresentate da (T_{1n}, Q) e (T_{2n}, Q) (n=1, 2, ...), rispettivamente, avremo

$$a(S_{1n}) + a(S_{2n}) = a(S_n) \leq (j+1)/m$$
.

Indichiamo con $\tau > 0$ un numero tale che se $v', v'' \in Q$ ed è $d\{v', v''\} < \tau$ risulti $\pi/8$ la distanza sferica $d_s\{ \Psi_i(v'), \Psi_i(v'') \}$ dei punti $\Psi_i(v'), \Psi_i(v''), (i = 1, 2),$ su \mathfrak{E} .

21. – Applichiamo il Lemma del n. 10 alla successione di coppie di trasformazioni

$$\left\{ \ T_{1n}, \ Q) \ : \ x = x_{1n}(v), \ v \in Q; \qquad (T_{2n}, \ Q) \ : \ x = x_{2n}(v), \ v \in Q; \qquad (n = 1, \ 2, \ \ldots) \ \right\}$$

considerate nel n. precedente.

⁽⁹⁾ In virtù della ipotesi che \mathcal{F}_n avvolge $\Omega(2\delta_n)$ e della disuguaglianza isoperimetrica spaziale. Per questa disuguaglianza cfr.: T. RADÓ, The isoperimetric inequality and the Lebesgue definition of surface area, Trans. Amer. Math. Soc. **61**, 530-555 (1947).

^{12. -} Rivista di Matematica.

J. CECCONI

Indichiamo con ν un generico intero ($\nu=1,\,2,\,\ldots$) e con $\xi_{\nu}>0$ un numero reale. Facendo, nel Lemma del n. ${\bf 10},\,\varepsilon=\xi_{\nu}$ possiamo determinare per ogni ν i numeri reali $\eta_{\nu}>0,\,\delta_{n\nu}>0,\,\eta_{\nu}<\delta_{n\nu}<\xi_{\nu}$ e suddivisioni $\Delta_{n\nu}$ di Q, mediante corde parallele ai lati di Q, in rettangoli r le cui dimensioni sono comprese fra $\delta_{n\nu}$ e $2\delta_{n\nu}$ tali che l'immagine di ogni lato dei rettangoli $r\in \Delta_{n\nu}$, non su Q^* , secondo $(T_{1n},\,Q)$ oppure $(T_{2n},\,Q)$, sia una curva di lunghezza $<\xi_{\nu}/4$. Osserviamo che η_{ν} dipende unicamente da ν .

Facciamo

$$\xi_{\nu} = \min \left\{ \, \tau/2, \; \, \delta_{\nu}, \; \, \varepsilon_{\nu}, \; \, \eta_{\nu-1}/2^{3}, \; \, \eta_{\nu-2}/2^{4}, \; ..., \; \, \eta_{1}/2^{\nu+1} \, \right\} \ \ \, (\nu = 1, \; 2, \; ...) \; . \label{eq:epsilon}$$

Osserviamo, come nella Memoria [5] di L. Cesari, che per ogni ν le dimensioni dei rettangoli $r \in \Delta_{n_{\nu}}$ sono comprese fra η_{ν} e $\eta_{\nu-1}$, perciò esse sono minori delle dimensioni dei rettangoli $r \in \Delta_{n,\nu-1}$ $(n=1,\ 2,\ \dots)$.

Osserviamo anche che le immagini secondo (T_{in},Q) $(i=1,2;\ n=1,2,...)$ dei lati non su Q^* dei rettangoli $r\in \mathcal{L}_{nr}$ sono perciò archi di lunghezza $<\varepsilon_v/4$.

22. – Sia n = 1, 2, ... e sia v = 1, 2, ..., n.

Per ogni $r \in \mathcal{A}_{n\nu}$ che non incontra Q^* consideriamo le due regioni di Jordan $\mathfrak{R} \subset \mathcal{C}$ che sono rispettivamente immagini di r secondo le trasformazioni ($\Psi_1^{-1} \cdot T$, Q) e ($\Psi_2^{-1} \cdot T$, Q) considerate nel n. 3.

Per ogni rettangolo $r \in \mathcal{A}_{nr}$ che incontra Q^* consideriamo la regione di Jordan Rec che si ottiene saldando lungo la linea $\Psi_1^{-1}T(r^* \cdot Q^*) = \Psi_2^{-1}T(r^* \cdot Q^*)$ le regioni di Jordan di \mathcal{E} che sono immagini di r secondo $(\Psi_1^{-1} \cdot T, Q)$ e $(\Psi_2^{-1} \cdot T, Q)$ rispettivamente.

La sfera $\mathfrak E$ risulta così decomposta per ogni n e $v \le n$ in un gruppo finito di regioni di Jordan $\mathfrak R$. Diciamo $\overline{\Delta}_{nv}$ tale decomposizione di $\mathfrak E$.

Per ogni regione $\mathfrak{R}\in\overline{\mathcal{A}}_{nr}$ consideriamo la superficie poliedrica \sum del tipo della 2-cella, definita su \mathfrak{R} da $(\mathfrak{S}_n,\mathfrak{S})$.

Vogliamo provare che si ha

$$a(\Sigma) \leqslant 5\lambda \varepsilon_{\omega}^2 M/m$$
.

23. – Consideriamo in questo n. il caso in cui $\mathfrak R$ provenga, nel modo descritto nel n. precedente, da un rettangolo $r\in \mathcal A_{n_r}$ che non incontra Q^* .

La superficie \sum è in questo caso la superficie definita su r dalla trasformazione (T_{1n}, Q) oppure dalla (T_{2n}, Q) .

Dimostriamo dapprima che esiste una superficie poliedrica $\overline{\sum}$, avente il medesimo contorno di \sum , per la quale risulta

$$a(\overline{\sum}) \leqslant 4\lambda \varepsilon^2, \qquad [\overline{\sum}] \subset A(2\delta_n) - \Omega(2\delta_n).$$

A questo scopo osserviamo che se il sostegno $[\overline{\Sigma}]$ della superficie poliedrica $\overline{\Sigma}$, ottenuta applicando il primo teorema del n. 11 alla linea contorno di Σ , non incontra $\Omega(2\delta_n)$, allora facendo $\overline{\Sigma} = \overline{\Sigma}$ le condizioni richieste sono verificate

incontra $\Omega(2\delta_n)$, allora facendo $\overline{\Sigma}=\overline{\overline{\Sigma}}$ le condizioni richieste sono verificate. Se invece $\overline{\overline{\Sigma}}$ incontra $\Omega(2\delta_n)$, è possibile, poichè il contorno di Σ ha lunghezza $<1/\lambda$, poichè Ω è di classe $[C_\lambda]$ e poichè $2\delta_n<1/\lambda$, costruire una superficie $\overline{\Sigma}$ che non incontra $\Omega(2\delta_n)$ e per la quale si ha

$$a(\overline{\sum}) \leqslant 4\lambda \varepsilon_{\nu}^{2}, \quad \text{diam} [\overline{\sum}] < 2\lambda \varepsilon_{\nu}.$$

Risulta pertanto, per ogni $x \in [\overline{\sum}]$,

$$d\{x, [\Omega(2\delta_n)]^*\} \leqslant d\{x, \bar{x}\} + d\{\bar{x}, \bar{x}\},$$

essendo $\bar{x} \in [\Omega(2\,\delta_n)]^* \cdot [\overline{\overline{\sum}}]$ e $\bar{\bar{x}} \in [\vartheta(\sum)],$ dalla quale si deduce

$$d\{x, [\Omega(2\delta_n)]^*\} \leq 2\lambda\varepsilon_v + 2\varepsilon_v = 4\lambda\varepsilon_v < \lambda^*,$$

e quindi che $[\overline{\sum}] \subset A \subset A(2\delta_n)$.

Indichiamo con $(\mathfrak{S}'_{n\nu}, \mathfrak{R})$: $x = x'_{n\nu}(u)$, $u \in \mathfrak{R}$, una rappresentazione continua di $\overline{\sum}$ su \mathfrak{R} per la quale risulti $x'_{n\nu}(u) = x_n(u)$ se $u \in \mathfrak{R}^*$; indichiamo con $(\mathfrak{S}''_{n\nu}, \mathfrak{C} - \mathfrak{R})$: $x = x''_{n\nu}(u)$, $u \in \mathfrak{C} - \mathfrak{R}$, una rappresentazione continua di $\overline{\sum}$ su $\mathfrak{C} - \mathfrak{R}$ per la quale risulti ancora $x''_{n\nu}(u) = x_n(u)$ se $u \in \mathfrak{R}^*$.

Sia \mathcal{S}_n^* il poliedro del tipo della 2-sfera che è rappresentato dalla trasformazione $(\mathfrak{S}_n^*,\mathfrak{S})$ coincidente con $(\mathfrak{S}_n,\mathfrak{S})$ su $\mathfrak{S}-\mathfrak{R}$ e $(\mathfrak{S}_{n_r}',\mathfrak{R})$ su \mathfrak{R} ; sia \mathcal{S}_n^{**} il poliedro del tipo della 2-sfera che è rappresentato dalla trasformazione $(\mathfrak{S}_{n_r}^{**},\mathfrak{S})$ coincidente con $(\mathfrak{S}_n,\mathfrak{S})$ su \mathfrak{R} e con $(\mathfrak{S}_{n_r}'',\mathfrak{S}-\mathfrak{R})$ su $\mathfrak{S}-\mathfrak{R}$.

Dimostriamo che $\mathfrak{F}_n^* \in W(2\delta_n)$. Poichè dal ragionaento di sopra segue che $[\mathfrak{F}_n^*] \subset A(2\delta_n)$, rimane solo da provare che per ogni $x \in \Omega(2\delta_n)$ si ha $O(x, \mathfrak{F}_n^*) \neq 0$.

Osserviamo che i sostegni $[\mathcal{S}_n^*]$ e $[\mathcal{S}_n^{**}]$ dei poliedri \mathcal{S}_n^* e \mathcal{S}_n^{**} non incontrano l'insieme connesso $\Omega(2\delta_n)$, di modo che gli indici topologici $O(x, \mathcal{S}_n^*)$ e $O(x, \mathcal{S}_n^{**})$ si conservano invariati al variare di x in $\Omega(2\delta_n)$. Osserviamo inoltre che, per note proprietà dell'indice topologico, si ha

$$O(x, \mathfrak{F}_n) = O(x, \mathfrak{F}_n^*) + O(x, \mathfrak{F}_n^{**}), \quad \text{se } x \in \Omega(2\delta_n).$$

La nostra affermazione sarà così provata non appena si sarà provato che per ogni $x \in \Omega(2\delta_n)$ si ha $O(x, \mathcal{F}_n^{**}) = 0$.

Ora ove fosse $O(x, \mathcal{F}_n^{**}) \neq 0$, per ogni $x \in \Omega(2\delta_n)$, poichè $[\mathcal{F}_n^{**}] \subset A(2\delta_n)$, si avrebbe $\mathcal{F}_n^{**} \in W(2\delta_n)$; e ciò è assurdo.

Infatti, in tal caso dovremo avere

$$\mathfrak{J}(\mathfrak{F}_n^{**}) \geqslant j(2\delta_n),$$

mentre, per essere $J(\Sigma)$ definito positivo in A e per essere $a(\mathcal{S}_n - \Sigma) \geqslant 2\pi \bar{\delta}^2 \geqslant \bar{\delta}^2$, si ha (cfr. n. **20**) (10)

$$\begin{split} \Im(\mathfrak{F}_n^{\,*\,*}) &= \Im(\sum) \, + \, \Im(\overline{\sum}) = \Im(\mathfrak{F}_n) - \Im(\mathfrak{F}_n - \sum) \, + \, \Im(\overline{\sum}) \leqslant \\ &\leqslant \Im(\mathfrak{F}_n) - ma(\mathfrak{F}_n - \sum) \, + \, Ma(\overline{\sum}) \leqslant j \, + \, 2\mu_n - m\overline{\delta}^2 \, + \, 4\, M\lambda\varepsilon_v^2 \leqslant j - \mu_n < j(2\delta_n), \end{split}$$
 poichè risulta

$$3\mu_n \leqslant m\overline{\delta}^2/2, \qquad \varepsilon_v^2 \leqslant m\overline{\delta}^2/(8M\lambda).$$

Abbiamo così provato che $\mathcal{F}_n^* \in W(2\delta_n)$.

Possiamo ora provare che, nel caso considerato all'inizio del n. 23, si ha $a(\sum) \leq 5 M \lambda \varepsilon_r^2/m$.

Ove fosse infatti $a(\sum) > 5 M \lambda \varepsilon_r^2/m$ dovremmo avere, con le medesime notazioni,

$$\begin{split} j(2\delta_n) \leqslant \Im(\mathfrak{F}_n^*) \leqslant \Im(\mathfrak{F}_n) - \Im(\sum) + \Im(\overline{\sum}) &= j + 2\mu_n - ma(\sum) + Ma(\overline{\sum}) < \\ &< j + 2\mu_n - 5M\lambda\varepsilon_{\nu}^2 + 4M\lambda\varepsilon_{\nu}^2 \leqslant j + 2\mu_n - M\lambda\varepsilon_{\nu}^2, \end{split}$$

e quindi, per il n. 16 e per essere $v \leq n$,

$$j-\mu_{\mathrm{r}}\leqslant j-\mu_{\mathrm{n}}\leqslant \Im(\mathfrak{F}_{\mathrm{n}}^{*})< j\ +2\mu_{\mathrm{n}}-\ M\lambda\varepsilon_{\mathrm{r}}^{2}\leqslant j\ +2\mu_{\mathrm{r}}-\ M\lambda\varepsilon_{\mathrm{r}}^{2}\leqslant j-2\mu_{\mathrm{r}}$$

che è contradittoria.

24. – Nel caso rimanente la dimostrazione si conduce alla stessa maniera. Basta solo osservare che anche in questo caso il contorno di \sum ha lunghezza $\langle 2\varepsilon_r$, e che è ancora valida la disuguaglianza $a(\mathfrak{F}_n - \sum) > \bar{\delta}^2$ per il modo come si è scelto τ nel n. 20 e per la rappresentazione di \mathfrak{F}_n è dottata nello stesso n. 20.

⁽¹⁰⁾ Si tenga anche presente la proprietà additiva di J(S) citata in fine del n. 5.

25. – Per ogni n=1, 2, ... e v=1, 2, ..., n sia $\bar{\Delta}_{nv}$ la decomposizione di \mathfrak{S} in regioni di Jordan \mathfrak{R} considerata nel n. 22.

Per ogni $\mathfrak{R}\in\overline{\mathcal{A}}_{n_r}$ facciamo applicazione (11) del Lemma del n. 12 alla superficie poliedrica S, definita su \mathfrak{R} da $(\mathfrak{S}_n, \mathfrak{C})$, in relazione ad un punto $\mathfrak{S}_n(u)$, $u\in\mathfrak{R}^*$, $K=4\lambda M/m$, $D=2\varepsilon_r$.

Ciò è possibile poichè, per quanto si è visto nei nn. **21** e **22**, si ha $2D + 3[K \cdot a(S)]^{1/2} < 1/(2\lambda)$.

Indichiamo con $\mathfrak{S}_{n\nu}$ la classe delle regioni aperte semplici di Jordan $\overline{\pi} \subset \mathfrak{R}$ definite in ordine al Lemma del n. 12 sulla regione $\mathfrak{R} \in \overline{A}_{n\nu}$. In accordo con il Lemma del n. 12 ciascuna di queste regioni $\overline{\pi}$ è interna a \mathfrak{R} .

Sia $(\mathfrak{F}_{n_r}, \mathfrak{C})$: $x = x_{n_r}(u)$, $u \in \mathfrak{C}$, la trasformazione continua definita mediante l'applicazione del Lemma di livellamento, introdotto nel n. 12, ad ognuna delle regioni $\mathfrak{R} \in \overline{A}_{n_r}$.

Per ogni $\mathfrak{R}\in\overline{\Delta}_{n_{\nu}}$ siano σ e $\overline{\sigma}_{0}$ le famiglie di superficie poliedriche $\overline{\sigma}_{i}$, $\overline{\sigma}_{0i}$ definite sulle regioni di Jordan $\overline{\pi}\in\mathfrak{S}_{n_{\nu}}$, $\overline{\pi}\subset\mathfrak{R}$, dalle trasformazioni $(\mathfrak{S}_{n},\mathfrak{S})$ e $(\mathfrak{S}_{n_{\nu}},\mathfrak{S})$ rispettivamente. Per ciascuna di tali superficie $\overline{\sigma}_{i}$, $\overline{\sigma}_{0i}$ si ha $\vartheta(\overline{\sigma}_{i}) = \vartheta(\overline{\sigma}_{0i})$.

26. – Per ogni n=1, 2, ..., n sia \mathcal{F}_n la superficie poliedrica del tipo della 2-sfera definita dalla trasformazione $(\mathfrak{S}_{n_r}, \mathfrak{C})$ considerata nel n. precedente.

Vogliamo provare che $\mathcal{S}_{n_r} \in W(2\delta_n)$. Basterà allo scopo provare che $[\mathcal{S}_{n_r}] \subset A(2\delta_n)$ e che per ogni $x \in \Omega(2\delta_n)$ si ha $O(x, \mathcal{S}_{n_r}) \neq 0$.

Per ciò che concerne la prima parte della nostra affermazione osserviamo che questa discende dalla condizione b') del Teorema del n. 12, in quanto che il sostegno $[\overline{\sigma}_{0i}]$ di ciascuna delle superficie σ_{0i} della famiglia $\overline{\sigma}_{0}$ appartiene al minimo insieme convesso contenente $\vartheta(\overline{\sigma}_{0i})$ e perciò a $A(2\delta_n)$, oppure in quanto che, per essere

2 diam
$$[\mathfrak{S}_n(\mathfrak{R}^*)] + 3[Ka(\mathfrak{S}_n, \mathfrak{R})]^{1/2} = \{4 + 15M\lambda/m\} \varepsilon_r < 1/(2\lambda),$$

si ha, dal medesimo n. 12 e dal n. 16,

$$d\{\lceil \overline{\sigma}_{0i} \rceil, \lceil \Omega(2\delta_n) \rceil^*\} < (\lambda + 1) \operatorname{diam} \lceil \vartheta(\overline{\sigma}_{0i}) \rceil \leq 2\lambda \{4 + 15M/m\} \varepsilon_r < \lambda^*,$$

ciò che prova, in virtù della definizione di λ^* , che $[\overline{\sigma}_0] \subset A \subset A(2\delta_n)$.

⁽¹¹⁾ Il fatto che il campo base di S non sia un rettangolo R e che la rappresentazione di S non sia quasi lineare su R non costituisce evidentemente nessuna variante, eccetto la sostituzione di poligoni aperti semplici $\pi \subset R$ con regioni di Jordan $\overline{\pi}$ aperte semplici $\subset \mathfrak{R}$.

Per ciò che concerne la seconda parte della nostra affermazione, consideriamo per una generica $\mathfrak{N}\in\overline{A}_{n_r}$ le trasformazioni continue $(\mathfrak{S}_{n_r},\mathfrak{N})$ e $(\overline{\mathfrak{S}}_{n_r},\mathfrak{C}-\mathfrak{N})$ ottenute rappresentando su \mathfrak{N} e $\mathfrak{C}-\mathfrak{N}$, rispettivamente, la superficie poliedrica che si ottiene applicando alla superficie $(\mathfrak{S}_n,\mathfrak{N})$ il procedimento di livellamento del n. 12 ed in modo che $\mathfrak{S}_{n_r}(u) = \overline{\mathfrak{S}}_{n_r}(u) = \mathfrak{S}_n(u)$ se $u \in \mathfrak{N}^*$.

Consideriamo quindi la trasformazione continua $(\mathfrak{S}_{n\nu}^*,\mathfrak{C})$ che coincide con $(\mathfrak{S}_n,\mathfrak{C})$ su $\mathfrak{C}-\mathfrak{R}$ e con $(\mathfrak{S}_{n\nu},\mathfrak{R})$ su \mathfrak{R} ed infine la trasformazione continua $(\mathfrak{S}_{n\nu}^{**},\mathfrak{C})$ che coincide con $(\mathfrak{S}_n,\mathfrak{C})$ su \mathfrak{R} e con $(\overline{\mathfrak{S}}_{n\nu},\mathfrak{C}-\mathfrak{R})$ su $\mathfrak{C}-\mathfrak{R}$.

Diciamo $\mathcal{F}_{n\nu}^*$ e $\mathcal{F}_{n\nu}^{**}$ i poliedri rappresentati rispettivamente da $(\mathfrak{F}_{n\nu}^*, \mathfrak{C})$ e $(\mathfrak{F}_{n\nu}^{**}, \mathfrak{C})$ e osserviamo che si passa da \mathcal{F}_n a $\mathcal{F}_{n\nu}$ con un numero finito di operazioni analoghe a quelle effettuate per passare da \mathcal{F}_n a $\mathcal{F}_{n\nu}^*$.

Basterà pertanto provare che per ogni $x \in \Omega(2\delta)$ si ha $O(x, \mathcal{S}_{nr}^*) \neq 0$.

In virtù di note proprietà dell'indice topologico e per il fatto che nessuno degli insiemi $[\mathcal{S}_{n\nu}^*]$, $[\mathcal{S}_{n\nu}^{**}]$ incontra l'insieme connesso $\Omega(2\delta_n)$, sarà

$$0 \neq O(x, \mathfrak{F}_n) = O(x, \mathfrak{F}_{nr}^*) + O(x, \mathfrak{F}_{nr}^{**}),$$

gli indici topologici conservandosi invarianti al variare di x in $\Omega(2\delta_n)$.

Basterà pertanto provare che $O(x, \mathfrak{F}_{n\nu}^{**})$ è nullo per $x \in \Omega(2\delta_n)$.

Ora se si avesse $O(x, \mathcal{S}_{n_r}^{***}) \neq 0$ per $x \in \Omega(2\delta_n)$, poichè è $[\mathcal{S}_{n_r}^{***}] \subset A(2\delta_n)$, si avrebbe $\mathcal{S}_{n_r}^{***} \in W(2\delta_n)$. Quindi, per la disuguaglianza isoperimetrica (n. **20**) e per essere $2\delta_n < \overline{\delta}/2$, avremo che

$$a(\mathfrak{F}_{n\nu}^{**}) > \pi \overline{\delta}^2$$
.

Ma ě, in virtù del n. 22 e del Teorema del n. 12,

$$a(\mathfrak{F}_{nr}^{**}) = a[(\mathfrak{F}_n, \mathfrak{R})] + a([\overline{\mathfrak{F}}_{nr}, \mathfrak{R})] \leqslant$$

$$\leq 5 M \lambda \varepsilon_r^2 / m + 5 M \lambda \varepsilon_r^2 (1 + \lambda / K) / m \leq 15 M \lambda \varepsilon_r^2 / m < 2 \overline{\delta}^2$$
,

in virtù del modo come fu scelto ε_r .

Abbiamo così provato che $\mathcal{S}_{n_{\ell}} \in W(2\delta_n)$.

27. – Per ogni intero n=1, 2, ..., per ogni $\nu=1, 2, ..., n$ e $\mathfrak{A} \in \overline{A}_{n\nu}$, siano $\overline{\sigma}$ e $\overline{\sigma}_0$ le famiglie di superficie poliedriche considerate nel n. 24. Per il Lemma del n. 12 abbiamo

$$a(\overline{\sigma}_0) \leqslant \lambda K^{-1} \cdot a(\overline{\sigma})$$
.

In virtù del n. 17 risulta perciò

$$0 \leqslant \mathfrak{J}(\overline{\sigma_0}) \leqslant Ma(\overline{\sigma_0}) \leqslant M\lambda a(\overline{\sigma})/K = ma(\overline{\sigma})/4 \leqslant \mathfrak{J}(\overline{\sigma})/2$$

In virtù della definizione di \mathcal{F}_{nr} risulta quindi

$$\mathfrak{J}(\mathfrak{F}_{nv}) \leqslant \mathfrak{J}(\mathfrak{F}_n) \leqslant j + 2\mu_n$$
.

D'altra parte, poichè $\mathcal{F}_{nr} \in W(2\delta_n)$, si ha

$$j - \mu_n \leqslant j(2\delta_n) \leqslant \mathfrak{J}(\mathfrak{F}_{n_n})$$
.

Risulta così:

$$j - \mu_n \leqslant \mathfrak{J}(\mathfrak{F}_{n_n}) \leqslant \mathfrak{J}(\mathfrak{F}_n) \leqslant j + 2\mu_n$$
.

Dalle disuguaglianze di sopra risulta pertanto

$$3\mu_{\mathbf{n}} \geqslant \Im(\mathcal{S}_{\mathbf{n}}) - \Im(\mathcal{S}_{\mathbf{n}\mathbf{v}}) = \sum_{\mathfrak{N} \in \overline{A}_{\mathbf{n}\mathbf{v}}} \left\{ \Im(\overline{\sigma}) - \Im(\overline{\sigma_{\mathbf{0}}}) \right\} \geqslant \sum_{\mathfrak{N} \in \overline{A}_{\mathbf{n}\mathbf{v}}} (3/4) \Im(\overline{\sigma}) \;.$$

Si ha così

$$\sum_{\mathfrak{N}\in\overline{\mathcal{J}}_{n_{\nu}}}\mathfrak{J}(\overline{\sigma})\leqslant 4\mu_{n}$$

e quindi

$$\sum_{\mathfrak{N}\in\overline{\Delta}_{n_{\mathbf{r}}}}\mathfrak{J}(\sigma_{0})\leqslant\mu_{n}.$$

28. – Per ogni $\mathfrak{R}\in\overline{\Delta}_{n_r}$ indichiamo con \mathfrak{L} la lunghezza complessiva dei contorni p di tutte le superficie appartenenti alla famiglia σ_0 , cioè delle superficie definite dalle trasformazioni $(\mathfrak{S}_{n_r},\mathfrak{R})$ sulle regioni semplici di Jordan $\overline{\pi}\in\mathfrak{S}_{n_r}$.

In virtù del Lemma del n. 12 risulterà, per ogni £,

$$\mathfrak{L}^2 \leqslant K^{-1} \cdot a(\overline{\sigma}) \leqslant (4\lambda M/m)^{-1} \cdot a(\overline{\sigma})$$
.

Per la disuguaglianza (*) stabilita nel n. precedente risulta pertanto

$$\sum_{\mathfrak{N}\in \overline{\mathcal{A}}_{n_{r}}}\mathfrak{S}^{2} \leqslant \frac{m}{4\lambda M} \sum_{\mathfrak{N}\in \overline{\mathcal{A}}_{n_{r}}} a(\overline{\sigma}) \leqslant \frac{m}{4\lambda M} \sum_{\mathfrak{N}\in \overline{\mathcal{A}}_{n_{r}}} \frac{1}{m} J(\overline{\sigma}) \leqslant \frac{\mu_{n}}{\lambda M},$$

e quindi

$$\sum_{\mathfrak{R}\in\overline{A}_{n}} (\sum_{\pi} p)^{2} \leqslant \frac{\mu_{n}}{\lambda M} \leqslant \varepsilon_{r},$$

donde si deduce, per ogni regione semplice $\bar{\pi} \in \mathfrak{F}_{n_r}$

diam
$$\mathfrak{S}_{n\nu}(\overline{\pi}^*) \leqslant p \leqslant \varepsilon_n \leqslant \varepsilon_{\nu}$$
.

29. – Per ogni $\mathfrak{R}\in\overline{A}_{n_r}$ indichiamo d'ora in avanti con Σ le superficie poliedriche del tipo della 2-cella definite su \mathfrak{R} dalla trasformazione $(\mathfrak{S}_{n_r},\mathfrak{E})$.

Ciascuna di queste superficie \sum è, in forza del Teorema del n. 12 e del Teorema del n. 22, contenuta in una sfera di centro $\mathfrak{F}_n(u)$, $u \in \mathfrak{R}^*$, e raggio

$$\leq (1+2\lambda) \left\{ 4\varepsilon_r + 3[(4\lambda M/m)(5M\lambda\varepsilon_r^2/m)]^{1/2} \leq 60\varepsilon_r [\max(\lambda, M/m)]^2 \right\}.$$

Risulta perciò, in particolare,

diam
$$[\sum] = 120 \varepsilon_r [\max (\lambda, M/m)]^2$$
.

30. – Seguendo ancora la Memoria [5] di L. CESARI, indichiano con $\mathfrak{S}'_{n\nu}\subset\mathfrak{S}_{n\nu}$ la collezione formata con le regioni semplici di Jordan $\overline{\pi}\in\mathfrak{S}_{n\nu}$ nella seguente maniera: una regione $\overline{\pi}$ appartiene a \mathfrak{S}'_{n1} se e solamente se non è contenuta in nessuna delle regioni $\mathfrak{R}\in\overline{\mathcal{J}}_{n,2},\ \overline{\mathcal{J}}_{n,3},\ ...,\ \overline{\mathcal{J}}_{n,n}$.

Indichiamo con $\mathfrak{S}'_{n\nu}\subset\mathfrak{S}_{n\nu}$ $(\nu=2,\ldots,n-1)$ la collezione formata dalle regioni $\overline{\pi}\in\mathfrak{S}_{n\nu}$ nella seguente maniera: una regione $\overline{\pi}$ appartiene a $\mathfrak{S}'_{n\nu}$ se non è contenuta (12) nell'insieme $\sum_{s=1}^{\nu-1}\mathfrak{S}'_{ns}$ e se non è contenuta in alcuna delle regioni $\mathfrak{N}\in\overline{\Delta}_{n,+1},\ \overline{\Delta}_{n,\nu+2},\ \ldots,\ \overline{\Delta}_{n,n}$. Diciamo infine $\mathfrak{S}'_{n,n}\subset\mathfrak{S}_{n,n}$ la collezione delle regioni $\overline{\pi}\in\mathfrak{S}_{nn}$ formata nella seguente maniera: $\overline{\pi}\in\mathfrak{S}'_{nn}$ se non è contenuta in $\sum_{s=1}^{n-1}\mathfrak{S}'_{ns}$.

Sia $\overline{\pi}$ un elemento della collezione $\mathfrak{F}'_{n\nu}$ ($\nu=1,\,2,\,...,\,n$), sia $\mathfrak{R}\in\overline{\Delta}_{n\nu}$ la regione di Jordan cui $\overline{\pi}$ appartiene.

Il medesimo ragionamento contenuto nel n. 37 della Memoria [5] di L. Cesari consente di affermare che $\bar{\pi}$ non incontra l'insieme $\Re \cdot (\Im'_{n_1} + \Im'_{n_2} + \dots + \Im'_{n_r-1})$.

⁽¹²⁾ Con $\mathfrak{S}_{n_{\nu}}$, $\mathfrak{F}'_{n_{\nu}}$, $(\nu = 1, 2, ..., n)$ indichiamo anche l'insieme dei punti di \mathfrak{E} ricoperto dalle regioni (chiuse) di Jordan $\bar{\pi}$ che appartengono alle collezioni $\mathfrak{F}_{n_{\nu}}$, $\mathfrak{F}'_{n_{\nu}}$.

31. – Seguendo ancora il ragionamento della Memoria [5] di L. Cesari, definiamo, per ogni n=1, 2, ..., la trasformazione $(\overline{\mathfrak{S}}_n, \mathfrak{S}): x=X_n(u), u \in \mathfrak{S},$ nella seguente maniera:

$$x = X_n(u) = \begin{cases} x_{n\nu}(u) & \text{se} \quad u \in \mathfrak{S}'_{n\nu} \quad (\nu = 1, 2, ..., n), \\ \\ x_n(u) & \text{se} \quad u \in \mathfrak{C} - \sum_{r=1}^n \mathfrak{S}'_{n\nu}. \end{cases}$$

Per quanto si è osservato nel n. precedente la trasformazione $(\overline{\mathfrak{S}}_n,\ \mathfrak{S})$ è continua e quasi lineare.

Sia $\overline{\mathfrak{F}}_n$ la superficie poliedrica del tipo della 2-sfera rappresentata da $(\overline{\mathfrak{D}}_n,\mathfrak{C})$.

Con gli stessi argomenti del n. 26 si riconosce che $\overline{\mathcal{S}}_n \in W(2\delta_n)$.

Diciamo $\sigma'_{n\nu_0}$ la famiglia di superficie poliedriche definite dalla trasformazione $(\overline{\otimes}_{n\nu}, \mathcal{C})$ sulle regioni $\overline{\pi} \in \mathfrak{S}'_{n\nu}$ $(\nu = 1, 2, ..., n)$, diciamo $\overline{\sigma}_{n\nu_0}$ la famiglia di superficie poliedriche definite dalla trasformazione $(\mathfrak{S}_{n\nu}, \mathcal{C})$ su tutte le regioni $\overline{\pi} \in \mathfrak{S}_{n\nu}$ $(\nu = 1, 2, ..., n)$.

Diciamo \mathcal{F}_{n0} la superficie definita dalla trasformazione $(\overline{\mathfrak{D}}_n, \mathfrak{C})$ su $\mathfrak{C} = \sum_{\nu=1}^n \mathfrak{D}'_{n\nu}$. Per i nn. 17 e 27 risulta

$$\begin{split} \mathfrak{J}(\overline{\mathfrak{S}}_n) &= \mathfrak{J}(\mathfrak{S}_{n0}) + \sum_{\nu} \mathfrak{J}(\overline{\sigma}'_{n\nu_0}) \leqslant \mathfrak{J}(\mathfrak{S}_{n0}) + \sum_{\nu} \mathfrak{J}(\overline{\sigma}_{n\nu_0}) \leqslant \\ &\leqslant j + 2\mu_n + \sum_{\nu} \mu_{\nu} = j + (n+2)\mu_n \leqslant j + 2^{-n}. \end{split}$$

Poichè d'altra parte si ha

$$j-2^{-n}\leqslant j-\mu_n\leqslant \mathfrak{J}(\overline{\mathcal{F}}_n),$$

otteniamo così:

$$j-2^{-n} \leqslant \Im(\overline{\mathfrak{F}}_n) \leqslant j+2^{-n}$$
.

32. – Sia $\varepsilon > 0$ arbitrario. Sia μ il più piccolo intero positivo tale che $1100 \cdot \max \left[\lambda, \ M/m\right]^2 \varepsilon_{\mu} < \varepsilon$ (essendo ε , la successione definita nel n. 18). Sia $\overline{\delta}(\varepsilon) = \eta_{\mu}$ (essendo $\left\{\eta_{\tau}\right\}$ la successione definita nel n. 21).

Sia $\delta = \delta(\varepsilon)$ il numero così definito.

Per ogni $0 < \varrho < \pi/2$ sia

$$\omega(\varrho) = \sup_{\substack{u', u'' \in \mathcal{C}_1 \\ d_s(u', u'') < \varrho}} d\left\{ T^{-1} \cdot \Psi_1(u'), T^{-1} \cdot \Psi_1(u'') \right\} = \sup_{\substack{u', u'' \in \mathcal{C}_2 \\ d_s(u', u'') < \varrho}} d\left\{ T^{-1} \cdot \Psi_2(u'), T^{-1} \cdot \Psi_2(u'') \right\},$$

essendo u', u'' punti di \mathcal{C}_i (i=1,2) la cui distanza sferica $d_s(u',u'')$ è $<\varrho$, essendo $(T^{-1}\cdot \mathcal{Y}_1,\ \mathfrak{C}_1)$, $(T^{-1}\cdot \mathcal{Y}_2,\ \mathfrak{C}_2)$ le trasformazioni continue definite nel n. 3 ed essendo d(v',v'') la distanza euclidea di due punti v', $v''\in Q$. La funzione $\omega(\varrho)$ è crescente con ϱ ed è $\lim_{\varepsilon\to0+}\omega(\varrho)=0$.

Sia allora $\delta(\varepsilon)$ l'estremo superiore dei numeri ϱ per i quali è $\omega(\varrho) < \overline{\delta}(\varepsilon)$. Siano u_1 , u_2 due punti di \mathfrak{E} la cui distanza sferica è $< \delta(\varepsilon)$. Affermo che per ogni $n \geqslant \mu$ si ha

$$d\{(\overline{\mathfrak{V}}_n(u_1), \ \overline{\mathfrak{V}}_n(u_2)\} < \varepsilon,$$

essendo $\overline{\mathfrak{S}}_n(u_1)$, $\overline{\mathfrak{S}}_n(u_2)$ i punti immagini di u_1 e u_2 secondo la trasformazione $(\overline{\mathfrak{S}}_n,\,\mathfrak{S})$ introdotta nel n. 31, ed essendo $d\left\{\overline{\mathfrak{S}}_n(u_1),\,\overline{\mathfrak{S}}_n(u_2)\right\}$ la distanza in E_3 di tali punti.

- **33**. Suppongo inizialmente che u_1 e u_2 appartengano a \mathfrak{E}_1 . Considero, seguendo la Memoria [5] di L. CESARI, i vari casi seguenti:
- a) u_1 e u_2 appartengono alla stessa regione di Jordan $\pi \in \mathfrak{F}'_{n\nu}$ $(\nu = 1, 2, ..., n)$. Si ha in questo caso

$$d\left\{\overline{\mathfrak{S}}_n(u_1), \ \overline{\mathfrak{S}}_n(u_2)\right\} \leqslant 2(1 + \lambda) \text{ diam } \overline{\mathfrak{S}}_n(\overline{\pi}^*) \leqslant 2(1 + \lambda)\varepsilon_n = 4\lambda\varepsilon_n < \varepsilon.$$

b) $u_i \in \overline{\pi}_i$, $\overline{\pi}_i \subset \overline{\mathbb{S}}_{n_{\nu_i}}$, $\overline{\pi}_i$ non è contenuta in nessuna delle regioni $\mathfrak{R} \subset \overline{A}_{n_{\mu}}$ Sia $u_i \in \mathfrak{R}_i$, $\mathfrak{R}_i \in \overline{A}_{n_{\mu}}$. Esistono allora due punti $u_i' \in \mathfrak{R}_i^* \cdot \overline{\pi}_i^*$ (i = 1, 2) tali che

$$d\{\overline{\mathfrak{D}}_n(u_i), \overline{\mathfrak{D}}_n(u_i')\} < 2(1+\lambda)\varepsilon_n \quad (i=1, 2).$$

Detti $v_i = T^{-1} \cdot \Psi_1(u_i)$, $v_i' = T^{-1} \cdot \Psi_{s_i}(u_i')$, (i = 1, 2) con $s_i = 1$ oppure 2 a seconda che $u_i' \in \mathcal{C}_1$ oppure $u_i' \in \mathcal{C}_2$, si ha che $d\{v_1, v_2\} < \overline{\delta}(\varepsilon) = \eta_{\mu}$, donde si deduce che v_1 e v_2 appartengono a due rettangoli r_1 e r_2 aventi almeno un vertice in comune. Si ha perciò

$$\begin{split} d\left\{\,\overline{\mathfrak{S}}_{n}(u_{1}), \ \ \overline{\mathfrak{S}}_{n}(u_{2})\,\right\} &\leqslant d\left\{\,\overline{\mathfrak{S}}_{n}(u_{1}), \ \ \overline{\mathfrak{S}}_{n}(u_{1}')\,\right\} + d\left\{\,\overline{\mathfrak{S}}(u_{1}'), \ \ \overline{\mathfrak{S}}_{n}(u_{2}')\,\right\} + \\ &\quad + d\left\{\,\overline{\mathfrak{S}}_{n}(u_{2}'), \ \ \overline{\mathfrak{S}}_{n}(u_{2})\,\right\} &\leqslant 2(1\,+\,\lambda)\varepsilon_{n} + d\left\{\,\overline{\mathfrak{S}}_{n}(u_{1}'), \ \ \overline{\mathfrak{S}}_{n}(u_{2}')\,\right\} + \\ &\quad + 2(1\,+\,\lambda)\varepsilon_{n} \leqslant 4(1\,+\,\lambda)\varepsilon_{n} + 4\varepsilon_{\mu} = 12\lambda\varepsilon_{\mu} < \varepsilon, \end{split}$$

in forza del n. 21, in quanto

$$d\left\{\left.\overline{\mathfrak{G}}_{n}(u_{i}^{'}),\ \mathfrak{G}_{n}\cdot\varPsi_{1}^{-1}\cdot T(v_{i}^{'})\right.\right\}=d\left\{\left.\mathfrak{G}_{n}\cdot\varPsi_{s_{i}}^{-1}\cdot T(v_{i}^{'}),\ \mathfrak{G}_{n}\cdot\varPsi_{1}^{-1}\cdot T(v_{i}^{'})\right.\right\}\leqslant\varepsilon_{\mu}\ (i=1,\,2)$$

ed in quanto che i punti v'_1 , v'_2 possono essere uniti da una poligonale formata al più da quattro segmenti consecutivi appartenenti ai lati di r_1 e r_2 non su Q^* .

e)
$$u_i \in \overline{\pi}_i$$
, $\overline{\pi}_i \in \mathfrak{S}'_{n,r_i}$, $\overline{\pi}_i \in \mathfrak{N}_i$, $\mathfrak{N}_i \in \overline{\Delta}_{n\mu}$, $(i = 1, 2)$.

Poichè $\bar{\pi}_i$ è contenuta in \mathfrak{R}_i , ne viene intanto che $\mu \leqslant \nu_i \leqslant n$ $(i=1,\ 2)$. Sia $u_{i,\nu_i+1} \in \bar{\pi}_i^*$, $u_{i,\nu_i+1} \in \mathfrak{C}_1$; si ha

$$d\left\{\overline{\mathfrak{G}}_{n}(u_{i}), \overline{\mathfrak{G}}_{n}(u_{i,\nu_{i}+1})\right\} \leqslant 2(1+\lambda)\varepsilon_{n} \leqslant 4\lambda\varepsilon_{n},$$

$$\overline{\mathfrak{G}}_{n}(u_{i,\nu_{i+1}}) = \mathfrak{G}_{n\nu_{i}}(u_{i,\nu_{i}+1}) = \mathfrak{G}_{n}(u_{i,\nu_{i}+1}).$$

Si ha $\overline{\pi}_i \in \mathfrak{S}'_{nr_i}$, quindi $\overline{\pi}_i \subset \mathfrak{N}_{ir_i}$, $\mathfrak{N}_{ir_i} \in \overline{\mathcal{A}}_{nr_i}$. Per ogni punto $u_{ir_i} \in \mathfrak{N}^*_{ir_i}$ si ha

$$d\left\{\mathfrak{S}_n(u_{ir_i}),\ \mathfrak{S}_{nr_i}(u_{i,r_i+1})\right\} < 120\varepsilon_{r_i} \left[\max\left(\lambda,\ M/m\right)\right]^2.$$

Affermo ora che in ogni caso possiamo scegliere $u_{i,v_i} \in \mathfrak{N}_{i,v_i}^*$ in modo che non sia interno ad alcuna delle regioni delle collezioni $\mathfrak{S}'_{n,1}, \mathfrak{S}'_{n,2}, \ldots, \mathfrak{S}'_{n,v_i-1}, \mathfrak{S}_{n,v_i-1}$. Infatti \mathfrak{N}_{i,v_i} non è contenuta in alcuna delle regioni $\overline{\pi} \in \mathfrak{S}'_{n,v_i-1}$. D'altra parte le regioni $\overline{\pi} \in \mathfrak{S}_{n,v_i-1} - \mathfrak{S}'_{n,v_i-1}$ o sono contenute nelle regioni $\mathfrak{N} \in \overline{\Delta}_{n,t}, \ t \geqslant v_i$ (13), oppure sono contenute in $\sum_{s=1}^{v_i-2} \mathfrak{S}'_{ns}$ (14). Perciò possiamo scegliere sopra $\mathfrak{N}^*_{iv_i}$ un punto u_{iv_i} non interno a nessuna delle regioni della collezione \mathfrak{S}_{n,v_i-1} nè ad alcuna delle regioni delle collezioni \mathfrak{S}'_{ns} ($s=1,\ldots,v_i-2$). Risulterà così $\mathfrak{S}_{n,v_i-1}(u_{i,v_i})=\mathfrak{S}_n(u_{i,v_i})$. Il punto u_{i,v_i} ora scelto appartiene a una regione $\mathfrak{N}_{i,v_i-1} \in \overline{\Delta}_{n,v_i-1}$ e per ogni punto appartenente a \mathfrak{N}^*_{i,v_i-1} si ha

$$d\left\{ \, \mathfrak{S}_{n,v_{i-1}}(u_{i,v_{i}}), \quad \mathfrak{S}_{n}(u_{i,v_{i-1}}) \, \right\} < 120 \, \varepsilon_{v_{i-1}} \, [\max \, (\lambda, \ M/m)]^{2}.$$

Ripetendo questo procedimento otteniamo un gruppo di punti $u_{i,i} \in \mathfrak{N}_{i,i}^*(t = \nu_i, \nu_{i-1}, ..., \mu + 1, \mu)$ per i quali $\mathfrak{S}_n(u_{i,t+1}) = \mathfrak{S}_{n,t}(u_{i,t+1})$ e $d \in \mathfrak{S}_n(u_{i,t+1}), \mathfrak{S}_n(u_{i,t}) < (120\varepsilon_t [\max(\lambda, M/m)]^2 \quad (t = \nu_i, \nu_{i-1}, ..., \mu).$

(14) E $\Re_{i,\nu_i} \supset \overline{\pi}_i$ non può essere contenuta in $\sum_{s=1}^{\nu_i-2} \Im_{n,s}'$, poichè $\overline{\pi}_i$ non è contenuta in $\sum_{s=1}^{\nu_i-2} \Im_{n,s}'$.

⁽¹³⁾ E in tal caso non possono contenere \mathfrak{R}_{i,v_i} nel loro interno. Infatti $\overline{\pi} \in \mathfrak{S}_{n,v_i-1}$ — \mathfrak{S}'_{n,v_i-1} non può ovviamente appartenere a $\mathfrak{R} \in \overline{A}_{n,v_i}$ nè può appartenere a $\mathfrak{R} \in \overline{A}_{n,t}$, $t > v_i$, perchè allora l'insieme $T^{-1} \cdot \Psi_1(\overline{\pi} \cdot \mathfrak{C}_1) + T^{-1} \cdot \Psi_2(\overline{\pi} \cdot \mathfrak{C}_2)$ dovrebbe contenere un rettangolo $r \in A_{n,v_i}$ e dovrebbe essere contenuto in uno dei rettangoli $r \in A_{n,t}$, $t > v_i$; e ciò è impossibile perchè le dimensioni dei rettangoli $r \in A_{n,v_i}$ sono maggiori delle dimensioni dei rettangoli $r \in A_{n,t}$, $t > v_i$.

Abbiamo perciò

$$\begin{split} d\left\{\left.\mathfrak{S}_{n}(u_{i,\nu_{i}+1}),\ \mathfrak{S}_{n}(u_{i,\mu})\right.\right\} &< 120\ [\max\left(\lambda,\ M/m\right)]^{2}\left\{\left.\varepsilon_{\mu}+\varepsilon_{\mu+1}+\ldots\right.\right. + \left.\varepsilon_{\nu_{i}}\right\} \leqslant \\ &\leqslant 120\ [\max\left(\lambda,\ M/m\right)]^{2}\left.2\varepsilon_{\mu}, \right. \end{split}$$

poichè è $\varepsilon_{t+1} \leqslant \varepsilon_t/2$.

Indicati in seguito come sopra con v_1 e v_2 i punti $T^{-1} \cdot \Psi_1(u_1)$, $T^{-1} \cdot \Psi_1(u_2)$, consideriamo per ogni t i punti

$$v_{i,t} = T^{-1} \Psi_{s_{i,t}}(u_{i,t})$$
 $(i = 1, 2; t = v_i + 1, ..., \mu)$

con $s_{i,t}$ eguale ad 1 oppure 2 secondo che $u_{i,t}$ appartiene a \mathcal{C}_1 oppure a \mathcal{C}_2 ; indichiamo quindi per comodità con $v_i^{'}$ e $v_i^{''}$ i punti $v_{i,v_i+1},\ v_{i,\mu},\ (i=1,\ 2)$.

Osserviamo che i punti $v_{i,t+1}$, $v_{i,t}$ appartengono al medesimo rettangolo $r \in \Delta_{n,t}$ $(t = v_i, ..., \mu)$ e quindi

$$d\left\{\left.v_{i,\,t}, \right.\right.\left.v_{i,\,t+1}\right\} \leqslant 4\xi_{\,t} \leqslant \eta_{\,t-1}/2 \; .$$

Si ha perciò

Questo assicura che il punto $v_{i,\mu+1}$ ha dal punto v_i' distanza minore del minimo delle dimensioni dei rettangoli $r\in \Delta_{n,\mu}$. Perciò se diciamo $r_i,\ r_i'\in \Delta_{n,\mu}$ i rettangoli cui appartengono rispettivamente v_i e v_i'' , allora necessariamente r_i e r_i' hanno almeno un vertice in comune. Quindi per la stessa osservazione fatta in b) i rettangoli $r_1',\ r_2'$ appartengono ad una catena $r_1',\ r_1,\ r_2,\ r_2'$ di rettangoli $r\in \Delta_{n,\mu}$ che hanno a due a due almeno un vertice in comune.

In conseguenza i punti $v_1'' \in r_1'^* - Q^*$, $v_2'' \in r_2'^* - Q^*$ possono essere uniti mediante una linea poligonale formata al più da 16 segmenti consecutivi appartenenti ai lati di rettangoli $r \in \Delta_{n,u}$ non su Q^* . Sarà pertanto

$$\begin{split} d\left\{\left.\overline{\mathfrak{S}}_{n}(u_{1}),\ \overline{\mathfrak{S}}_{n}(u_{2})\right\}\leqslant\\ \leqslant d\left\{\left.\overline{\mathfrak{S}}_{n}(u_{1}),\ \overline{\mathfrak{S}}_{n}(u_{1,r_{1}+1})\right\}+d\left\{\left.\overline{\mathfrak{S}}_{n}(u_{1,r_{1}+1}),\ \mathfrak{S}_{n}(u_{1,\mu})\right\}+d\left\{\left.\mathfrak{S}_{n}(u_{1,\mu}),\ \mathfrak{S}_{n}(u_{2,\mu})\right\}+\\ +d\left\{\left.\mathfrak{S}_{n}(u_{2,\mu}),\ \mathfrak{S}_{n}(u_{2,r_{2}+1})\right\}+d\left\{\left.\mathfrak{S}_{n}(u_{2,r_{2}+1}),\ \mathfrak{S}_{n}(u_{2})\right\}\leqslant\\ \leqslant 8\lambda\varepsilon_{n}+4\cdot120\varepsilon_{\mu}\left[\max\left(\lambda,\ M_{l}m\right)\right]^{2}+d\left\{\overline{\mathfrak{S}}_{n}\cdot\varPsi_{s_{1}}^{-1}(v_{1}''),\ \mathfrak{S}_{n}\cdot\varPsi_{s_{2}}^{-1}(v_{2}'')\right\}, \end{split}$$

essendo s_1 , s_2 uguali a 1 oppure 2.

Osserviamo che se nessuno dei rettangoli $r \in \Delta_{n,t}$ che contengono i punti $v_{i,t}$ ($t = v_i + 1, v_i, ..., \mu_i$) incontra Q^* allora è $s_i = 1$; nel caso contrario sarà, per il medesimo ragionamento di sopra (15),

$$d\left\{ \mathop{\mathfrak{S}_n} \cdot \mathop{\varPsi_{s_i}}(v_{_i}^{''}), \quad \mathop{\mathfrak{S}_n} \cdot \mathop{\varPsi_{\mathsf{I}}}(v_{_i}^{''}) \right\} < 3\mu_{\mu} \; .$$

Avremo perciò

$$d \left\{ \overline{\mathfrak{D}}_n(u_1), \overline{\mathfrak{D}}_n(u_2) \right\} \leqslant$$

$$\leqslant 4\cdot 120\varepsilon_{\mu}\cdot [\max{(\lambda,\ M/m)}]^2 + 8\lambda\varepsilon_{\mu} + 8\varepsilon_{\mu} + 6\varepsilon_{\mu} \leqslant 510\varepsilon_{\mu}\cdot [\max{(\lambda,\ M/m)}]^2 < \varepsilon.$$

d) $u_i \in \mathcal{C}_1 - \sum_{s=1}^n \mathfrak{S}'_{ns}$ (i=1, 2), oppure si è in uno dei casi rimanenti. Seguendo il medesimo ragionamento della Memoria [5] di L. CESARI si ha, in tutti questi casi,

$$d\left\{\; \overline{\mathfrak{V}}_{\scriptscriptstyle n}(u_1),\; \overline{\mathfrak{V}}_{\scriptscriptstyle n}(u_2)\;\right\} \leqslant 510\,\varepsilon_{\mu} \cdot [\max\;(\lambda,\;M/m)]^2 < \varepsilon\;.$$

Si ha così in ogni caso, se u_1 e $u_2 \in \mathcal{Q}_1$,

$$d\left\{\,\overline{\mathfrak{F}}_{n}(u_{\scriptscriptstyle 1}),\ \overline{\mathfrak{F}}_{n}(u_{\scriptscriptstyle 2})\,\right\} \leqslant 510\ [\max(\lambda,\ M/m)]^{2}\varepsilon_{\mu}\!\!<\,\varepsilon\;.$$

34. – Passando al caso in cui u_1 e u_2 siano in posizione generica avremo, detto u' il punto in cui l'arco sul quale si misura la distanza sferica fra u_1 e u_2 incontra il piano $u^3 = 0$,

$$\begin{split} d\left\{\,\overline{\mathfrak{S}}_{n}(u_{1}),\ \overline{\mathfrak{S}}_{n}(u_{2})\,\right\} &\leqslant d\left\{\,\overline{\mathfrak{S}}_{n}(u_{1}),\ \overline{\mathfrak{S}}_{n}(u')\,\right\} + \,d\left\{\,\overline{\mathfrak{S}}_{n}(u'),\ \overline{\mathfrak{S}}_{n}(u_{2})\,\right\} &\leqslant \\ &\leqslant 2\big(510[\max\left(\lambda,\ M/m\right)]^{2}\varepsilon_{\mu}) < \varepsilon\;. \end{split}$$

35. – Abbiamo così provato che per ogni $\varepsilon > 0$, arbitrario, esiste un numero $\delta(\varepsilon) > 0$ ed un intero μ tale che se $n \ge \mu$ ed u_1 e u_2 sono due punti di $\mathfrak E$ la cui distanza sferica è $< \delta(\varepsilon)$, allora

$$d\left\{ \overline{\mathfrak{V}}_{n}(u_{1}), \overline{\mathfrak{V}}_{n}(u_{2}) \right\} < \varepsilon.$$

⁽¹⁵⁾ Detto infatti $v_{i,s}$ il primo dei punti $v_{i,t}$ ($t=v_i+1,\,v_i,\,...,\,\mu$) per il quale il corrispondente rettangolo $r\in \Delta_{n,s}$ incontra Q^* , si ha d { $v_{i,s},\,v_{i,\mu+1}$ } $<\eta_{\mu}$, in modo che, detto r_i'' un rettangolo $\in \Delta_{n,\mu}$ che contiene $v_{i,s}$, allora r_i'' ha in comune con r_i almeno un vertice. Ma le dimensioni di $r\in \Delta_{n,s}$, $s>\mu$, sono minori delle dimensioni di ogni $r\in \Delta_{n,\mu}$, si ha perciò che r_i'' incontra Q^* e quindi che v_i'' può essere unito a Q^* mediante al più due segmenti appartenenti a lati di rettangoli $r\in \Delta_{n,\mu}$, non su Q^* .

Ma le trasformazioni $(\mathfrak{S}_n, \mathfrak{C})$ $(n=1, 2, ..., \mu-1)$ sono continue, è perciò possibile, in base al medesimo $\varepsilon > 0$ di sopra, determinare $0 < \delta'(\varepsilon) < \delta(\varepsilon)$ tale che se $u_1, u_2 \in \mathfrak{C}$ ed è $d_s(u_1, u_2) < \delta'(\varepsilon)$ risulti, per ogni n,

$$d\left\{\overline{\mathfrak{D}}_n(u_1),\ \overline{\mathfrak{D}}_n(u_2)\right\} < \varepsilon$$
.

Le funzioni vettoriali $x=X_n(u),\ (u\in\mathcal{C};\ n=1,\ 2,\ \ldots),$ mediante le quali sono definite le trasformazioni $(\overline{\mathfrak{S}}_n,\ \mathfrak{C})$ risultano perciò ugualmente continue su $\mathfrak{C}.$

Le stesse funzioni vettoriali sono inoltre ugualmente limitate per essere

$$[\overline{\mathfrak{F}}_n] \subset A(2\delta_n) \subset A(2\delta_1) \qquad (n = 1, 2, ...).$$

36. – Mediante applicazione del teorema di Ascoli è perciò possibile estrarre dalla successione $\{n\}$ una sottosuccessione $\{n_m\}$ tale che la successione di funzioni vettoriali $x=X_{n_m}(u),\ u\in\mathcal{C},\ \text{sia}\ \text{uniformemente}\ \text{convergente}\ \text{su}\ \mathcal{C}$.

Per semplicità supponiamo che sia $n_m = m$.

Esiste perciò una funzione vettoriale $x = X_0(u)$, $u \in \mathcal{C}$, verso la quale le funzioni vettoriali $x = X_n(u)$, $u \in \mathcal{C}$, convergono uniformemente.

Sia \sum_0 la superficie del tipo della 2-sfera rappresentata da $(\mathfrak{S}_0, \mathfrak{S}): x = X_0(u), u \in \mathfrak{S}$.

Voglio mostrare che $\sum_{0} \in W(0) = W$.

Dal fatto che $\overline{\mathcal{F}}_n \in W(2\delta_n)$ $(n=1,\ 2,\ \ldots)$ e che quindi $[\overline{\mathcal{F}}_n] \subset A(2\delta_n) \longrightarrow \Omega(2\delta_n)$ segue intanto, poichè lim $\delta_n = 0$, che $[\sum_0] \subset A \longrightarrow \Omega \subset A$.

Per ogni $x \in \Omega$ diciamo $\delta(x)$ la distanza che x ha da Ω^* , diciamo quindi n(x) un intero tale che se n > n(x) sia $2\delta_n < \delta(x)$. Ne segue allora $x \in \Omega(2\delta_n)$ per n > n(x) e pertanto che $O(x, \overline{S}_n) \neq 0$ per i medesimi n > n(x).

Per il teorema di Poincaré-Bohl. [1], per il fatto sopra stabilito che $x\notin [\sum_0]$, e per la convergenza secondo Fréchet di \overline{s}_n verso \sum_0 , si ha perciò

$$O(x, \sum_{0}) = \lim_{n \to \infty} O(x, \overline{s}_{n}) \neq 0$$
.

È così provato che $\sum_{0} \in W(0) = W$, risulta quindi

$$\Im(\sum_0)\geqslant i$$
 .

Ma poiché per le ipotesi e per il Teorema del n. 6 l'integrale $\Im(\sum)$ è inferiormente semicontinuo su \sum_0 rispetto alla successione di superficie $\{\overline{\mathscr{F}}_n\}$ si ha anche, per il n. 31,

$$\mathfrak{I}(\sum_{0}) \leqslant \lim_{n \to \infty} \, \mathfrak{I}(\overline{\mathscr{S}}_{n}) = \lim_{n \to \infty} \, (j + 2^{-n}) = j.$$

È così

$$i \leqslant \mathfrak{I}(\sum_{0}) \leqslant j$$
.

Ma poichè, per il n. 18, si ha $j \le i$, rimane così provato che

$$\Im(\sum_0)=i$$
.

Il Teorema del n. 2 è così completamente provato.

Bibliografia.

- [1] P. ALEXANDROFF und H. HOPF, Topologie, Berlin 1936.
- [2] L. Cesari, Criteri di uguale continuità ed applicazioni alla quadratura delle superficie, Ann. Scuola Norm. Sup. Pisa (2) 12, 61-84 (1943).
- [3] L. Cesari, La nozione di integrale sopra una superficie in forma parametrica, Ann. Scuola Norm. Sup. Pisa (2) 13, 73-117 (1947).
- [4] L. Cesari, Condizioni sufficienti per la semicontinuità degli integrali sopra una superficie in forma parametrica, Ann. Scuola Norm. Sup. Pisa (2) 14, 47-79 (1948).
- [5] L. Cesari, An existence theorem of Calculus of variations for integrals on parametric surfaces, Amer. J. Math. 74, 265-295 (1952).
- [6] J. M. Danskin (Jr.), On the existence of minimizing surfaces in parametric double integral problems of the Calculus of variations, Rivista Mat. Univ. Parma 3, 43-53 (1952).
- [7] C. B. Morrey, A class of representation of manifolds, Amer. J. Math.: 55, 683-687 (1933); 56, 275-293 (1934).
- [8] A. G. Sigalov, Problemi 2-dimensionali del Calcolo delle variazioni (in russo), Uspehi Mat. Nauk 6, 16-101 (1951) [Cfr.: Traduzione No. 83 della Amer. Math. Soc. .]
- [9] L. C. Young, Some applications of the Dirichlet integral to the theory of surfaces, Trans. Amer. Math. Soc. 64, 317-335 (1948).

