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JOosEPHE MILKMAN (%)

Hermite polynomials, Hermite functionals

and their integrals, in real Hilbert space. (**

In the quantum theory of fields [1] (*) it appears appropriate to represent
the probability amplitudes of certain dynamical variables by points in real

HroBERT space and HERMITE functionals defined in the real HILBERT Space.
The object of this paper is to develope a mathcmatwal theory of such Hermite
functionals and their integrals.

My method of approach is to express Hermite functionals and their in-
tegrals in n-dimensional Euclidean space in a way that does not depend
explicitly on the dimension n. Such expressions can then be used to define
HerMITE functionals and their integrals in a space of aleph-null dimensions,
i.e., HILBERT space. :

Parr 1.

n-dimensional Euclidean space.

We begin with some notations, definitions, and ideas suggested by pro-
fessor HAROLD GRAD’s paper Note on n-dimensional Hermite polynomials [2].

Definition I. Given 2n dummy indices 4;, s, ..., 4 the 2n-th ovder
tensor o] or J" (where the indices referred to are understood) is the

fprigr e o
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sum of all distinet products of KRONECKER ¢,; of the form

6i/11i;': 61';':‘1';_4 ‘e 61')

"an—1

i
o ?

where (1;, Ay ...y Z2a) is a permutation of the natural numbers (1,2, ..., 2n).
Two products are considered identical if one can be obtained from the other
by re-arranging the order of the factors and or replacing & by S, i.e., per-
muting the subscripts in any one of the factors. Thus there are (2n)!/(27-n!)
terms in 6" and it is symmetric in its 2n subseripts:

7

1
iy _ é;bl--n! (;z) 6i;'11'2’2 (Sii,azl, e 6i}'31;~1£22n )

where Y indicates the sum over all permutations (Ary Aoy ey Aaw) OF (1, 2,..., 2m).
()

Let
(wym) = o o F 2D, =aw(E) =TT
. 2
i = o, !
then
1) V(@) = — 2az,w(®) ,
1"
(2) A; BBy e By = > @i Ti . winmgléij ,
J=1
(3) [ w(@)dw=1.
En)

Hereafter we shall use the simbol f to indicate the integral over the n-dimen-
sional Euclidean space:

fw(:v) z;x;de = (27)"1 0,

and, by mathematical induction using integration by parts and applying (1)
and (2), we obtain

(4) f w(oo):io,»‘m,»= o do = (2m)7 51’1,'2...,-”
It
@)= 3 am.io® .2
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is a p-ic and
n
g((v) = Z b,-ll-z.._,-qwila}ig ves miq

{penig=1

is a g¢-ic, then (4) implies

{ ’ n
(5) [{r@pue)ao = @ 3 oty B,
dpnig=1
: . .
| @@ S, by S OPTER i p g is even
(6) [f(x)g(w)'w($)dm = g Pty Tpedg Rt giady i ’

lO if p+gqisodd.
Notations:

or
lo) V:’ ;TS e
vl axiﬂ oy .. By

2°) Y followed by an expression with subsecripts means the sum over
all permissible values of all the subseripts.
3°) > followed by an expression having subseripts i,,

iydyk,...
kyy .oy kr, ete. indicates that the sumamation is to be over all permissible values
of the subscripts 4,..., i, and jy, ..., f,.
4°) If (4, Ay, ..., 4,) designates a permutation of the integers 1, 2, ..., p,

then Y followed by an expression with subscripts iy, ..., 1, 7',.“, iy e §; Indi-
Y] 2 D
cates the sum over all the permutations (4, 4, ..., 4,) of (1,2, vy D)-

et zﬂ? 717 T 702

Definition II: Hermite polinomial in N-dimensional Buclidean space.
The HERMITE polynomial of order p denoted by

H? | = (— 1)”(2n)*ﬂw*1vg’w, w .

1'p P

HY i) is a polynomial of degree p whose highest degree term is L% ooy .
1 1 2 q
Theorem I. If H?,...ip ts a Hermite polynomial of order p in n-dimen-

sional Buclidean space and the set of integers i, ..., 4, is such that P of them have

the value 1, p, of them the value 2, ..., p, the value n, then

H?x,.‘i,n = H"(x,) H™{(w,) ... H™(z,) ,

where H"(x;) is the Hermite polynomials of roder D1 in one dimensional space.
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Proof:
—1)P BheTT BheTE pPueT
B, = (—1P@n) 0 VP = L SR TRORE T O
feeip vty (2or)w Ox 0z SwPn

(2p,/Bxty) e~ ( Bp,0xT:) em (2p,/0xin) i

T (= 2ame ™ (- 2a)he” ™ (— 2m)Pae” R

= H™(@,) H™(2,)... H™(2,,).

Theorem II. Any two Hermite polynomials of different orders, or of the
same order referred to different combinations of subscripts, are orthogonal relative
to the weight function w(z), 1i.e.

Jw@rs | B, dow=0

Jq

if p =g or (iy, ..., %,) is not & permutation of (ji, ..., Ja)-

Pl‘Obf; 'As‘ in GRAb’s paper (["2],“ kpka.rge 329, corresponding to (19)), we
would have c

(7) J w(x) H?,.A.ipH?,qu dx : (2m)~" % 6,‘1,‘21 (3,-1),-21' .

Theorem IIT. Any p-ic 3 Qi1 BBz mlm is expressible in the form
P
a§1§i: bi;...ia,qul...iq ’

and hence any polynomial of degree p, may be expressed in the form

IVE

q
> . JHY L.
: L PY Ak FRA
1

q

The Theorem follows from Hj ‘Y being a polynomial in @, , «, , ..., #; whose
b S 1 2 q
highest degree term is z;; ... ; .

Theorem IV. If f(x) i a function defined in n-dimensional’Euclidean
space and ‘

lim {V‘;;:l;?’qf(m) Vflmipw(cv)} =0 (p=0,1,2,..,,9—1),

]z} =>ce
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then

ff(w) w(m)H“ g do = fw (w) de .

The Theorem is obtained by repeated integration by parts.
Corollary I. 1If

lim {va S @)V («)}:0 p=01,2..,q¢—1)

Hall >

and
Vfr”,-qf(w) =0 3

then

Jw@) j@) B, dv=0.

A polynomial of degree less than q is a such function.

Corollary IL

: » - ~ » . : —
fmjl e wHY L, dw = (201) wa,.r“,.”a,jl @y do =

Iq

; J )
£ s Vg1 Yq-p

‘[(q—p)!2‘""’”2~{<q——p)/2}! @) S O by, 0500, g, O
, V if ¢>p and ¢—p is even,

0 if g<<p orif g—p is odd.

If |

where @ i is symmetric with respect to 4, ..., %, by (7)

(8)

@y = [@7) 1] f w(w) fe) By, do

1k

(3) Where (Z is the sum over all permutations (¥;, ¥ss..r, Yp—pn) Of (/'«.DH,ZMZ,..., Aa)s
)

and 2 is the sum over all permutations (4, 4,,..., 4,) of (1,2,...,¢).
(A)
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and

(9) j'w(w){f(m)}ﬁdw=§ Z ¢! @m)""a; -

4=0 ippaniyg=1

Theorem V. The operators {o;,— (27)- Wit and {@;— (27)- W} are com-
mutative when applied to functions f, for which Viif is continuous.

Theorem VI:
, =17, — @0V, Hao,  — (2m) Vo fede, — @)V, 31
The Theorem is established by mathmeatical induction on .

Lemma I:

Vi m"1‘%"2 wf'n, = {(p— 1)'}”12 (Siii {vi}.nwi}. o Ty
N N . - )] 1 ¢ 5 D
Proof. Let
1 8u »
U =x @ N
ll lp’ w a;['z Zgl 1171/ 1;17

o = Z 5,,; By @i e miq)mi—},ll :{(p——l)}‘i% (31-%11.00{;_2 wi;_p .

- Lemma II:

Vi 2w, .. N [{ristas}=

[¥H} '1 'r 1 e r425—1 Tries

—2251130 e B S: ...5, i /{r—-1)'7’8'2}—-
;'r%»ll‘l'r+z 28

@ w N Ur Arizen A

== z 5iizlm,~}_: ...(I/'z';.r 51') i 5, i I 61' i /{(7‘—1)'812 }

braon Yrps Aras Ares Argasy Proes

B ey = @@, — 300 400 oy, [{2:(p—2)! 22} +
e & h 'p
e % 8, X (Sij_azfa‘miﬂs ...milp/{zz-zz (p—4)! (2m)2}—
—-% d; O, 1, O, 1, @i, - :vz-;.ﬂ/{z?fﬁ! (p—6)! 27} + ...

(®) Where Y is the sum over permutationé (15es Yp) OF (Apsees ), and 3 is the
® @

sum over all permutations (2;,..., 24,) of (1, 2,..., r--s).
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Proof. The Theorem is true for p = 1. Assuming the Theorem for

p ==k, and by Theorem VI,

lej‘ly__“ :{ (27 }H" " =
- {wl — (27)1V A+1}[w @y — (}Z} 6,«/111-12%23 w%/{z (k—2)! 2n}“1+
-{—%61 Oy 1y @iy @y [{27-21 (B — 4! (2m)*} —

— 20 o, S, i ‘szaf,,f’“"'z, xillc/{zs-:az (k—6)! (2m) 1+ ...].

@)
Applying Lemmas I and II, we obtain

HAYY =g L, (20)~ zaw w /{2 (k—1) }—

fipay i i,
1 + 1 7+1 @

71

"‘:’7)— 25; 9, 1A32;‘ izs...wi /{2" 7' k__3)1}._

A)

a0 4,

———(275)‘ zék 6.0 6

A

Ty o ¢i1k+1/{23~3! (k—5)1} +

which-is the Theorem for p =k 4 1.

Parr I1.

Real Hilbert space.

Definition III: Multilinear form. A is a multilinear form of order n

on .the real HILBERT space H, if:

1. For every n elements z,, &, ..., #, of H, A(x,, ..., #,) i3 a complex

number and is no identically 0.
20 A(@yyiens Bimgy BiFYiy Birryeoey Ty) =
| = Ay, ey T) + A@1y ey Bivry Yy Bitas -
for 1=1,2,..,n
3. AlDyy ey Bimys ABiy Bipry ony &) == AA(Ry, oury Tn)

for any real number A and 1 =1, 2, ..., n.

vy Tn)
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Theorem VIIL. If A(z,..., x,) is « multilinear form, then
Ay Aoy ooy Ann) = Ny oo A A(®y, ooy )

and

. o .
A@yy ey Bimyy 2 A5y Bigy ey Ta) = 3 Ay A(@y ..., Licay Biy Tivgy veey )
i=1

Definition IV: Boundedness. A multilinear form A(@y, ..., #,) is bounded
if there exists a constant € such that

[A(@y, ...y @) | < Ol ||| 2

A

for every m-tuple (z,, ..., ,) of elements of H. ;

Definition V: Continuity. A multilinear form A(z, .., a,) is conti-
nuous at (27, ..., 45) if given any &> 0, there is a d(e) such that

| 4@} + @y, ooy 2y + ) — A@@), .y @) |<e

whenever

|2, — a?| = V (e, — a?, z;,— 27) << 8(¢) for i=1,2,.., n

Theorem IX. A bounded multilinear form is continwous.

Theorem X. If A(®y, ..., x,) is a continuous multilinear form and {(pi}
is a complete orthonormal sequence in H, then

AA(mly m2’ ; wn) = z (mly (pil)(wza %2) (mny (pvin) A(Qvil; seey (Pin)

Definition VI: Symmetry. A multilinear form Ay, .y @,) is sym-
metric if

A(Dyy Byy oy Bemyy Ty Brray eony Bjgy Tiy Bysgy ey Tp) = Ay, Ly euny L)

(2,=1,2,...,m).

Definition VII. A(w, a,..,2) is called an n-ic if 4 is a multilinear
form of the n-th order. A 1-icis called a linear form, a 2-ic a quadratic form, ete..
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Definition VIII. If 4, is a complex number, 4, is a linear form, ...,

and 4, is a p-ic, then ¥ 4, is a polynomial of the n-th degree.
1:=0
Definition IX. If A(x) is a n-ic, A(x) is continuous if the multilinear
form A(z,, ..., @,) defining it is continuous, A(z) is bounded if A(z, ..., 2,)
is bounded and A(x) is symmetric if A(x,, ..., #,) is symmetric.

Definition X: Inner product of two n-ics. If A, (@) and B,(x) are n-ics
of order p and ¢ respectively, we define the inner product with respect to the
complete orthonormal system {e;} by

, 10 if pstgq,
(4, B) =

ZA(%I’ ) ¢iq);B((pil7 ) (Pip) i p=gq.

~{Ay-BY-is-also-ealled-the-inner-produet-of ~the mul‘cﬂineé;,ff forms - A(@yy vy @)
and B(®y, ..., ¥,). ' ’

Definition XI: Norm of an n-ic or multilinear form. If A(z) is a n-ic

Theorem XI. If A(w,, ..., @) and B{w,, ..., ,) are multilinear forms with
finite norms referred to the c. o. s. (complete orthonormal system) {(pi}, then (4, B)
with respect to {«pi} 18 absolutely convergent.

Proof: (4, B)<|4]|B| by the ScAWARz inequality.
Theorem XII. If 4 and B are continuous multilinear forms for which
(4, B) is absolutely convergent, (A, B) is independent of the choice of the c.0.s.

{cp,-} with respect to which it is defined.
The theorem follows from Theorem X and

SHps w)|=1,  where {w} is a c.os..
H

Not every continuous n-ic has-a finite norm, i.e., (x, x) is evidently con-
tinuous and bounded but has an infinite norm.

Definition XII. A cdntinuous n-ic or multilinear form with a finite
norm is said to be « strictly bounded ». "




J. MILKMAN
Notation.

It A@, .., ®) is a multilinear form and {¢,} is a c.o.s.,
then 4, 1, denotes A(qy, s @; ) and @, denotes (z, p,).

Theorem XIII. If A(z,y,..,w) is a strictly bounded multilinear form,
Az, 9, ..., w) is bounded and

| 4@, g, -y @) | <[ AL 2] ] . Je0] -
Theorem XIV.

For any given n the set C, of strictly bounded n-ics and
the constant 0 form a Hilbert space

Proof. A. O, is a linear space by its definition and the SCHWARZ in-
- equality.

B. (4, B) has the properties of a scalar product

C. The set multilinear forms (z,, @i s By @)y eney (w,,,(p, )..form..a. se-. ...
quence of strictly bounded multilinear fon:as each form eouespondmg to a set
(@ -

.y ix) of » natural numbers, such that any % of the forms are linearly inde-
pendent if {p,} is an c.0...

D. The set of n-ics of the form

n

b

1|

u M?
=8
&1

11'

where a i, 18 @ complex number with rational real and imaginary parts,
1 k¢
form a denumerable everywhere dense set of elements of O

E. O, is complete.

MURRAY and VON NEUMANN [3] have given a different proof of Theorem XIV

Theorem XV. If A(x,..,s,) = zA, @50 o (@, 9, ) ds a conti-
nuous multilinear form and {gv,} a ¢.0.8., then

2 @ @1) o 0y 05 | <A 2] ] -

_ Corollary. If A@) =34, T e @ 18 a
2 Ail...i,,‘”'

3 strictly bounded m-ie,
;- @ | converges for every Z in h.

Definition XIIT. If 3 A4; and > B, are polynomials of degree m and N,

g2 i={
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where 4; and B; are i-ics, their inner product

m

(_z An ‘z Bi) __.z (Ai7 Bi)

i=0
where { = min (n, m), and

it i0,

0
(A .Bi = Ai .B :[
o Bi) = (4s, Bo) lAOBO if i=0.

Definition XIV: Power series and their inner products. If A, is a
complex number and 4, is an ¢-ic for 4 > 1, we shall call the formal sum Z A;
: i=0
a pover series. If > 4, and Y B, are two power series or a power series and
a polynomial, then the inner product

(>4, 2B) =>4, B)).
Theorem XVI. The space C consisting of all polynomials of finite norms

and power series of finite norms is a Hilbert space.
This follows from Theorem 1.27 in [4].

Definition XV. If A(x) is a symmetric continuous s-ic, the partial
derivative of 4 with respect to x;, referred to {(p,},

54
5;:;' = 'nA(m, ey &y (}J,) .

If A is a complex number, then 04/dx; = 0. If P = > A, is a polynomial
or a power series, then

64,
dx;

SP
2

Definition XVI: Trace or Laplacian. If A is a continuous symmetric
n-ic, then the trace or Laplacian of A is defined as a generalization. of voxN
NEYMANN’s [8] trace of a quadratic form by

1 54 . n{n — 1)

=‘—1—7—t,5}:_ 4

TA > (B, Ty ey By iy ;)
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We define
5(T4) _n{n-—1) S :

S = s Y A2y o, @, @5, @)
51 oo JE (’)\.’l?il( 3 w0y @y Piy @)

We define T°4 as 4 and T*4 is defined inductively for k> 1 by

nt

TFA = TT#14 = (n—~27.)—'(4rc)" z A, 2, ..., @, Piys Piy Piys Piyoney P ‘Pik) .
If 3 A, is a polynomial or a power series, T SA,=3TA4,.

Definition XVII: Gradient. If A is a continuous symmetric n-ic for
which }'|04/dx,|°< co, the gradient of 4, '

64
in == E‘(S;" (pf = N z A(a;, ceny m, (Pj)qjj .

If 4 is a complex number, VA==0. If > 4, is a polynomial or power

a series, V> 4, = >V4,. Moreover
T r

7!

VI = (n — 2k — 1)1 (4=)* 2 A, @, ..., z, Pis Py Pas voey Py Pi) P -

A n-ic may be strictly bounded and not have a finite trace.

Theorem XVII. If TA is absolutely convergent, it is independent of the
c.0.8. used to define it. )

Theorem XVIII. VA(z) maps every element x of H into an element of H
and this mapping is independent .of the c.o.s. used to define VA.

Theorem XIX. A symmetric strictlly bounded n-ic has a gradient.

Proof:
 2104[0w, P < o F | Ayt _ps @it

&€

}2 < p? 2(""”“11“2 .

‘Corollary. If L(z) is a bounded linear form on H, VI exists and is
equal to > L,gp;. ' o

Theorem XX. If 4 'is a continuous symmetric n-ic and VA exists,
A(@)— Aly) = (VAy), #—y) + 1y, @—y) where v(y, —y) is a numerically



~1
~3
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valued function for which
lm r(y, o —y)/le—y[=0.
This is the Goroms [8] and RoraE [T] definition of gradient.

Theorem XXI. If A is a continuous symmelric n-ic,

524 54

dxy Oz;  Omyday,

—6—(TA)=T<1511> and :S%(TkA)sz<———>.

01y, ox,,

Definition XVIII. The HERMITE polynomial H"(4) associated with the
continuous symmetric n-ic A(2) is defined by the formal series

T24 pag T 4

Hn(A) A(w)_ TA + s p‘:);_i< + B + (.._._‘1)[12:'2} ___'...,;'_,'., S

We shall consider the HERMITE polynomial associated witha n-ic regardless
of whether the traces in its definition converge or not. The HERMITE poly-
nomial need not be a functional on H, but is a symbol for an indicated finite
sum, some of whose terms are formal series which may or may not converge.
If T*A converges absolutely for k = 0, 1, 2, ..., [#/2], then H*(A4) is absolutely
convergent and is a functional on our real HILBERT space.

For applications to the quantum theory of fields, it is important to deﬁne
the following operators on H"(4), where L(z) is a linear form and a a complex
number:

Lio) HY(4) = ia) 4(0) — L(o) T4 + Lio) A fm/zf ’

aH"A) = H*ad),
(5A 6T 4 1 0124

= o @y o 2! Sz, e

Tk+n1 T34
TEH(A) = T*A — ey A ——r

2
VHA) = VA — VT4 + & A-...,

(VL, VT24)

(VL, VH"A)) = (VL, VA) — (VL, VI4) + —
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Theorem XXTII. If A(w) is a continuous symmetric n~ic, then

HrA) = Hr1 (ﬁﬁl> .

ox;

0

Ox;

Corollary. If A(x) is a continuous symmetric n-ic and T*4 is a4 con-
tinuous symmetric (n— 2k)-ic, then

Tan(A) — Hn—ek(kal) .
Theorem XXIII. If L is a continuous linear form, and 4 is a continuous
n-ic for which T*A is a (n— 2)-ic whose gradient is defined for k=1, 2, ..., [n/2],

then (VL, VHA) = H(VL, VA).

Definition XIX. If L(z) is a bounded linear form and A(z) is a con-
tinuous symmetric n-ic, the symmetric part of the multilinear form

Ly o)A@y y oy ) - denoted- by

n+1

a1 Z L(m;.)A(xn Ty ooy By 3y Lpypqy Tppny ooey By q)
S ES |

Sy LA, ..., Zpyy) =

The symmetric continuous n-ic SyLA(z) is called the symmetric form of LA(x).

Theorem XXIV. If L(z) is a b.l.f. and A(x) a continuous symmetric n-ic
for which T*Sy LA) is absolutely convergent, then

THSy L) 1 VTr-14 Tk
—— = y |+ L) —— .
k! 22 (7;-1)*) k!
Proof:
THSy LA)

It

(n+ 1)1 2k
T+ 12 ! (o 1) (dm) 2 L) Algus Pros s Pry Pray o Py Pis @5 2 oy @) +

(n -+ 1! (n-+1—2k)
T TS R o D 2 LA P P P s 90 9 3, 3,y ).

Theorem XXV. If L(z) is a bl. form and A@®) is a continuous sym-
metrye n-ic for which T*Sy LA) is absolutely convergent for k = 1, 2,3, ..., then

L{w) H"(4) = H*(4)(Sy L4) + (YL, VE(4)) /2n) .
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I[H~(4)-HY(B)] = {p!/(27)*}(4, B).
In particular if 4 = B:

17|

1= {pl2

I[|H7(4)|*] may exist even though Hr(4) is not a functional, i.e., if some of
the traces do not converge. If 4, and B; are continuous symmetric n-ics of
order p; and ¢; respectively for i=1,2,3,..., » or ¢=1,2,3,..., we define

I (3 H(4) (S HB)] = I3 BX(A,)- H(B;)] = S I[H"(A,)-HY(B,)] .

In particular, if f(z) = 3 H?(4,), where 4, is a continuous symmetric p-ic,
b

ZIHH” 4[] = E{p'/

If @ and b are complex numbers, we define I[|a|2]=|a|* and 1[ab] = ab.
By Theorem XIV the strictly bounded n-ics form a HILBERT space D, with
‘the inner product I[H7"(4)-H»(B)]. Corresponding to Theorem XVI, the
space D of all functions fw) EHP A,) with inner product I[f(z)-g(z)] is

a HILBERT space, where 4, is a stuetly bounded p-ic.

.Theorem XXVI. IfL isa bounded linear form and A is a strictly bounded
n-ie, then ,

@) I[|H(Sy L4)|*] <{( [HMA) ],

@) I[| B (VL, VA)|?] < 27| LT[ | H™(A) 2] .
Proof:

o ISy BA] <|2A| = |2 14] ,

@ I

Theorem XXVI. If L(x) is a b.l. form, A, (x) is a continuous symmetric
q-ic for which T*Sy LA,) is absolutely convergent and T4, has a gradient for
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G hk=1,2,3 ... and

SAalHAe) <o,  fl@)= 3 H(4,),
then

L@)f(e) = a0 + 3 @By

i=1
where B; is an i-ic and a; a complex number and I[| L(x)f(z)]*] < oo.

Theorem XXVIL. If A(x) is a continuous symmetric m-ic on a real
Hilbert space D and h is an element of D,

1) Az -+ h) = A@) + nd(@, .., @, k) - "Cod(x, ..., @, h, h) +
+ o +nd(z, ky . h) - AR) .

(2) The functional obtained by replacing = by z-+h in d4(x)/dx; is equal fo
the functional obtained by applying the operator 6/0m; to the polynomial (1) by
expanding A(xz + k). Hence this functional may be denoted unambisguously
by 6A(x + h)/ox;. ‘

Corollary I. If A(z) is a continuous symmetric n-ic whose trace TA(x)
is a strietly bounded (n— 2)-ic, then the functional obtained by replacing 2
by @ --h-in TA(x) is equal to the trace of (1) in the Theorem. Hence TA(x-+h)
is unambiguous and equal to

TA(z) + nTA(, ..., 2, k) + ... + TA®, @, b, ..., h) .

Corollary II. If A(x) is a continuous symmetric n-ic all of whose traces
are strictly bounded and H"A(x -+ &) denotes the value of the functional H"A(x)
when « is replaced by =4, then

HrAlx + h) = H"A(z) + nH*4A(z, ..., z, h) + "CoH2A(z, ..., ¢, by b) + ... =

T2A(w + k)  T3A(w -+ h)
21 o 31

= Az -+ h)—TA(z + k) +

Definition XXI. If A(x) is a continuous symmetric n-ic, we define

HrA (@ + 1) = HrA@) + nH A, .y @, 1) + "CoH A, oy @, By B) + e
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. Corollary III:

@) 2]+ nP | H Az, ..., @, B)|*] +
+ "CRI[|H" " A(w, ...y @, by B)[*] + ...

1[‘1 H

Corollary IV:
’ Rii2\n
IUHnA(w -+ h < I[lHn ;3 ](1 + H‘)l” > .

&t

Corollary V:

I[|H A(@ + 1) |*] - I[|H as  [r]—0.

Corollary VI (Tavror’s Theorem). If A(z) is a continwous symmetric
#n-ic, then
34 pr o g oA

A(.v—i-ﬁ‘??z) _{_ﬁL T 2! (—)_,72‘ +oee )—;' 57‘1? ’

~ Corollary VII. If A(x) is a continuous symmetric n-ic, then

n! '
Alwy+ 2y + oo +@y) = > T A(wl, oy W1y Ty ooy Tagveny Ty ey ) .

IEREN iy
ihi LFR U R AR !
+ o i 'xrgum::ntﬁ l_ arguments ik arguments

Definition XXII. If A(x)is a continuous symmetric n-ic, the HERMITE
funetion associated with A4(z), denoted by J"A(x) is defined by

I A(w) = H"A(x) e @0

where the symbol = is interpreted as numerical equality when H~A(z) is
a functional and as formally identical when H"A4(x) is a formal sum.
It A(z) is a p-ic and B(z) is a g¢-ie, we define the integral

[ 7A@ )1 B(w) de = I[HDA(o; HeA(2)].
It
flw) =3 J74,(x)  and  g(z) = X JB(x),

P q
where the sums may be numerical or merely formal sums of a finite or in-
finite series of HermIiTE functions, then

[ f@)g(@)dz = 3, [J7A (@) J*B,(z) dw, [Hf@)|2de = 3 [[J74,(«)|* de,

J"A(’l? + ?/) o H"A({L'-f—:l/)eh(”/a)(x_*_y'x—H').

6. — Rivista di Matematica.
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Theorem XXVIII. If {99,-} is @ c.0.8. in the real Hilbert space H, E,
is the linear manifold spanned by @, @z, ..., ¢, and 4 and B are continuous
symmetric n-ics of order p and g, respectively, and

[I7(4)TuB) de = lim [ Hr(A) HH(B) e~ da ,
7 n—>»e bn

where in the left member of the equation (@, ®) = &} + ... + 2%,

n

H(A) = 3 A, H (%),
fiy=1

H’;,...f,, being the basic Hermite polynomial of order p in E,.

The Theorem follows from formula (7) in the proof of Theorem IIL.

Corollary. If f(») = >J"4,, then

[l =t [l ar.

a E,

' N
Theorem XXIX. If f(x) = 3 Jrd,(»), where 4,(®) is a continuous sym-
n=0
metric n-ic on the real Hilbert space H, for which f [Jrdu(@)|>de  converges
H
form=1,2,3,..., N; his any element of H, and H ,, the Hilbert space which
is the orthogonal complement of h, then f [f(@ + Rh)|2de converges to a positive

real number. Ty

Proof. Since (¥, h) =0 on H, fora in H, ,

N
f(.'v -+ h) — e—-(n,,/‘.’)(h,h )6-—-(.1/2)(95,0:) Z HAn(w + h) —

n=40

N ooX
— {2y, : ;
= > 2 de JA@y oy @y Ty ey B)
i=0 j=1 '’ e et
: i arguments

X
“f(m +.h) lzdw < g BOM z z jc'j_,nh z(J—IHJiAi(m) 2da .

i=0 je=1 b4
T, =

Hence H]‘(w + h)|*de converges. It converges to a positive number by Co-

H
Ln

rollary of Theorem XXVIII.

N .
Corollary. If f(@) = > J»4,(»), where A,(») is a continuous sym-
n=0

metric n-ic on the real HILBERT space H, for which “J " A,(x)|*de converges,

H
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the sequence h;, hy, ks, ... i3 a complete orthonormal system on H, H® (e-
notes the HILBERT space spanned DY fyr, ligss, Risg, ..., then

i N N R .
f(f(w + Bihy A Pohy + oo+ Bidy) [2dw = ¢~ 7 (FIHEE +. +5]) > iy Br e Bis

A% i1 ify=0

where

N

2 i By B

fpreer =0

is a symmetric positive funetion of gy, ..., B.
The proof of the Corollary is similar to that of the Theorem after applying
Corollary VII of Theorem XXVII.

Parr III.

Measure theorie in Hilbert space, or fields of probability

in Hilbert space.

Detfinition XXIII: Cylinder sets. Let hy, h,, ... be a complete ortho-
normal system in H, and 4 a sub-set of the linear manifold [hy, ke, ..., ]
spanned by h;, ke, ..., h,. The N dimensional cylinder set C(4) denotes the
set of elements of H of the form y =@ + h where he A and x e H?, the
linear manifold spanned by hy.,, fy.,,.... If S is a system of sub-sets of
[f1y...y By), C(S) denotes the corresponding system of sests C{A4) of H where
AefS. We denote [hy, hy,..., hy] by B~ If 4, B and 4; (1=1,2,..) are
sets in L, we note that

04 + B) = 0(4) + C¢(B), C(4B) = 0(4)C(B),
(4 — B) = C(4)— 0(B), C(SA) =Y04,).

The system of sets O(S) in H is a field (or BorREL field) whenever the system
of sets 8 'in E» is a field (or BorEL field).

A system of sets is called a field if the sum, product and difference of two
sets of the system also belong to the same sysﬁém. A BorxrL field is a field
such that if 4; ({=1,2,...) is a sequence of sets in the field, > A, belongs
to the field.

By the Corollary to Theorem XXIX, if f(x) satisfies the hypothesis of
Theorem XXIX, then

JBay ooy B1) ={[ 1@ + Builts + o + B i)

J: (5

2z} /[ |f(z)]2de > 0
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i3
for every point > f;h; in By . It is also a consequence of the following theo-
rem that =1

f J { (Bry Pay ey Pr) APy AP . AB =1 .

Therefore f(Bis ...y Br) may be regarded as the probability density at the point
Z f:h;in E,; and it defines the completely additive set function P(4) on the

t=1

BorEeL field consisting of the BoREL's sets in #,:
P(4) = H ..ff(:vl, Tyy veny @) Ay Ay ... da,, .
4

Theorem XXX. The hypothesis of the Corollary to Theorem XXIX
implics

{ f U w*f‘/g1 by +ﬁzhl dﬂ}dlgk— f H(JJ+[311 h’l+ﬂ2 ho oo + ﬂk—-l Ro—1) {2dm-
ca ) k-1)

11(!

Proof. By the Corollary to Theorem XXVIII and formula (12) pre-
ceding Theorem V.

byt fo bt oo + i) |2da

W) [ @B b ol Br ) |2

. %
BBy (0}

By the Corollary to Theorem XXIX,

f{f(m_’_ﬁlhl—ll‘ﬂ‘lh‘l A By ha) %

J:{9)
is summable in #,. The left member of (1) is a summable function of g,
for every set of real values of ., f., ..., B and

J [ 1@ 4y by 4 oo+ B ki) 2ddB e = [ [f@ + By by -+ oo + £l 2d .

—® LB, EpE o
Taking the limits of both sides of this equation as n - oo, we obtain the
Theorem.

Yor any B having hy, ..., h; as a basis, let A be a BoreL set in K. then the
cylinder sets C(4) form a BoreL fleld #¥. Let P(C(4)) = P(4). P(C(4))
and the BoreL field F¥ determine a field of probability in the sense of KoL-
MOGOROV [9].

Theorem XXXI. The system of cylinder sets which belong to F* 4+ F? -+
+ F? + ... form a field of ¢ Jlmdm sets FZ and the set function P(C(4)) defined
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above is additive on FZ, i.c., it determines a generalized field of probability in the
sense of Kolmogorov on the system of sub-sets of H, I,

The Theorem follows from the observation that if O(d4)e Fr, C(4) e Fm
for m > a.

Theorem XXXIL. P does not determine a field of probability on F”, i.6.,
P is not completely additive on FZ. '

Proof. If A= C(B) where B is a BOREL set in I,, then
P(4) =Bf FBay veny o) e (BEH 480 4B, .. 4B, .
There is a real m independent of n such that ‘f(ﬁl, ey Pu) > m >0. Let
Ply(A) = fe“ﬂ'(5§+~-+ﬁ§) dp,...df,, then P(4)>mPY4)>0.
B ;

~Henee-if--Ay DAy Do i8-a-decreasing . .sequence..of .cylinder.. sets.. for. whieh...
P(4,)~ 0, P14,)— 0, ie., if P determines a field of probability on F#, P!
determines a field of probability on FZ, But Kormocorov ([9], Chapter IT)
showed that if P! determines a field of probability on I7%, it satisfies the
covering Theorem: «If A, 4,, 4,, 4;, ... belong to F” and Ac 4, + 4, +
then PY(A4)< Y P'4;).» The following example shows that the covering
Theorem is not satisfies by Pt Let ij be the points (z,, 2,,...) of H whose
first k; coordinates @; are such that |@;|<<j. Choose k; sufficiently large so
that

PO ) ={ [ apfi<ef2r  for  j=1,%,...

The sequence of sets ij are BOREL cylinder sets belonging to F*, H c C, +

+ Cy, + ..., because if (@, 2., ...)€H, >} converges, but PYH)=1 and
ZP‘(O,;J,) < ¢ contrary to the covering Theorem.

Definition XXIV. A p-dimensional rectangle is a set of poin’bs in E,
obtained from = sets of real numbers 4,, 4,,.., 4,, by forming all sets of
n-tuples (2, s, ..., £,) where x; € 4,. - ‘

, Theorem XXXIII. If 8,28,28:D... is a decreasing sequence of rect-
a,ng\ular cylinder sets, i.e., S; = C(R,); where B, is a finite dimensional measu-
rable rectangle, such that 8,8,8; ... ==0 and S;e F*. Let

P(S) = [ e Ghe 0 4, d, ... 4B,
Ry L

whéen R; is an n-dimensional rectangle, then Lm P(S,) = 0.
n—>» 0o N
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Proof. TLet 4,04,04,>5... be a decreasing sequence of rectangular
cylinder sets of F” for which lim P(4,) = L>0. We will show that the

product 4,4,4,... is not empty. ,

We may assume without essentially restricting the problem that in the
definition of the first n sets Ay, Apy=C(B;) where B, is a k-dimensional
measurable rectangle in the closed linear manifold (A, s by y ey By,] spanned by
the & orthonormal vectors h,,, hyy ey hy,. In each set B there is a closed
bounded rectangle U, such that P(Bn— U,) <ef2n. Let V,= C(U,), then

P(4,—V,) = P(B,— U,) <ef2n.

Let W,=TV,..V,, then 4, —W,c(4,— V) + (4,—V,) + ... + (4,—V,),
P4, —W,)<e But W,cV,cd,, hence P(W,) >Pd,)—e>L-—¢e or we
can choose ¢ so that P(W,)> M > 0 and W, is not empty: W, > Woo W,o ...
Let W, = O(X,), then X, = U,U, ... U, is a closed bounded non-null rectangle

then §7 is a closed bounded non-null set: 858,08 12D ... Tor every j << .
Hence the infinite product HS is a closed, bounded, non-empty set. Let

B; h, be a point in H S nezuest the origin, i.e., for which |#/] is a minimum
for a fixed j. The pomt Z B h, belongs to W, for n =1, 2, 3, ..., if it belongs

to H. )
P(W,) = P(X,) = P(S}) P(S8%) P8 > M>0.

Since 0 < P(8}) <1, P(S))< +/T for at most k values of i. Let min | |
denote the minimum value of || for all fih, €S}, then

min|ff| < min |ff,, | <min|fl, ,|< .. < lim min |6} =|6,]

There is an N such that for any &k >N, there are at most % values of i (these
at most % values of ¢ being the same for all n), such that P(S) < /I
(\/ 2 > 199/200). Hence there are at most & values of 4 for which min|g}|>1/10
for any =, since for such ¢ and nP(S}) < 199/200. For all values of 3 except
at most k> N, min|f;|<<1/10 for all » and

VI < P(8) < 1—min|gi]< 1—|8.].

Therefore there are at most & values of ¢ such that for k>N, |f,|>1—+/ 7.
Let f;,, B,y s P, be all the g, for which |f;|>1— /1.
Let

'Ulzﬂ;q; w2=ﬂ;.27 ) wa;ﬂaaa
2 o _
Barr =1 — NI, Bopo=1— VI, .., @, =1—~/T0.

in [hy's By s ey By, ] Let 8] for every j<<i be the projection.of . W,..on- []a,j] s
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If there are 8, for which 1— /3 >8> 1 ~—"§1/ﬁ call them 8, B, 5.y Bi,
andlet @y, ,=1— y/M -a, <N -+ 1. For every k> 0,if thereare f; for which

Ntk mr RS Yy
1—-"NHM >\ >1—""YI

call them /3;.,,k+l, Ba, ey ﬁ;,ak“ and let

42
Nk oy
Bypppr=1— VM,

apr<< N + k.

Since 1 —{‘ﬂﬁ—% 0 as k—+o0, {ﬁl;} is a re-arrangement of the sequence
{B:}, 1B <|@]. For i> N, wyy =1— v, 0< M <1,

SA—VHPR<Y @ — V)L + VA o+ VI 2 (v T2 =

o (1 — 32 (1 — M)?
- z 32 iy Z 202

which is convergent. Therefore 3 7 converges and Y B hyi € H and hence
to W,. Q.E.D.

We can without altering the proof replace e~ (i+ai+..+x}) in the above
Theorem by the product f,(@)fs(@.) ... f.(x,), where each f;(a;) is a non-negative
LEBESGUE integrable function with the properties: )

1. fwfi(m) da = 1.

2. There is an m > 0 such that |@|< m implies f () dt > .

F. H. BRowNELL [11] has recently shown how to construct BorEL measures
on some locally compact subspaces of HILBERT space. That his results do not
include the above Theorem is shown by the following example:

Let R, be the BoREL rectangular cylinder set whose base is the rectangle
in B, containing the points (@, ,, ..., #,) such that |z;|>nfori=1,2,3, ...,n.
The sets E, form a monotone decreasing sequence whose intersection is null,
but R, is not contained in any locally compact subspace of H.
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