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Abstract

Starting from a simple kinetic model for chemical reaction, multi–temperature
reactive Euler equations are derived for physical regimes in which evolution is driven
by elastic collisions within the same species and mechanical relaxation is faster than
the thermal one. The achieved hydrodynamic equations, where all inhomogeneous
exchange rates take analytical closed form for simple collision models, are then used
for the analysis of the steady shock problem. Results indicate that smooth shock
profiles occurring for slightly supersonic flows bifurcate to weak solutions (jump
discontinuity followed by a smooth tail) for increasing Mach number.
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1 Introduction

Modelling and analysis of gas mixtures have been and are being very stimulating and
challenging problems of practical significance, especially if one wants to account for non–
conservative effects like chemical reactions. The problem can be handled in the frame
of the continuum theory of fluids, but of course a consistent derivation of the relevant
fluid–dynamic equations from a kinetic approach is highly desirable [1, 2, 3]. Typically,
relaxation to thermodynamical equilibrium might occur on different scales: for instance,
when masses are disparate, a first Maxwellization step within each species is followed by
a slower equilibration of velocities and temperatures [4]. Indeed, when vibrational and
chemical relaxations proceed at the slower gas–dynamic time scale, a one–temperature
gas flow description is not valid any more [5]. On the other hand, a multi–temperature
approach is needed in several problems of aerothermodynamics [6] or in plasmas at high
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temperatures [7]. The subject has been quite intensively investigated by methods from
extended thermodynamics [8, 9, 10]. Work on multi–temperature equations as hydrody-
namic limit of kinetic equations is in progress, starting from suitable models for chemical
reactions and state transitions [11, 12], and introducing different scales for different mi-
croscopic interactions, according to the process(es) considered as dominant. In particular
it was shown in [13] that consideration, in an Euler description, of one velocity and one
vibrational temperature for each species and of a single translational temperature for the
whole gas, may be induced by dominance of purely elastic scattering in the presence of
resonance effects induced by degeneracy of internal energy levels. Multi–temperature and
multi–velocity Euler equations were obtained also in [14], for a non reactive polyatomic
mixture without degeneracy, when the leading process is constituted by mechanical colli-
sions within the same species. Similar results were obtained in [15] in the presence of a
reversible bimolecular reaction

A1 + A2 ⇄ A3 + A4 , (1)

starting from the simplified reactive kinetic model [16], in which non–translational degrees
of freedom are neglected. A nice feature of the above kinetic derivations is that non–
homogeneous source terms contributed by collision operators for reactive events and/or
state transitions (making equations non–conservative) emerge naturally and consistently
as suitable integrals of the microscopic interaction parameters, namely the differential
cross sections σ(g, cosχ), or collision kernels B(g, cosχ) = g σ(g, cosχ), where g = |v−w|
is the relative speed of the two molecules impinging at velocities v and w, and χ the
deflection angle. An unfortunate fact is that it seems hopeless casting such source terms
in closed analytical form, even for the most idealized simplified collision models, like the
Maxwellian molecules [2].

On the other hand, recent results from rational thermodynamics indicate that there
are physical situations in which the mechanical relaxation time is shorter than the ther-
mal one [9], or, in other words, equalization of species velocities (vanishing of diffusion
velocities) is faster than equalization of temperatures, so that an adequate Euler descrip-
tion is provided by consideration of a single mass velocity for the gas mixture, and of
different temperatures for each species. It was also shown that the thermal problem can
be separated from the mechanical one for a mixture at rest [17]. Indeed, as early as 1946,
Landau showed that this faster mechanical relaxation is true for plasmas [18], so that
in many cases one can regard the velocities of electrons and ions as equal, whereas the
temperatures are different.

It is just the above physical regime that will be addressed here, by specializing the hy-
drodynamic limit of the reactive Boltzmann equations worked out in [15] to the pertinent
one–velocity multi–temperature frame. In this case, collision contributions in the reac-
tive Euler equations due to the slow interactions (mechanical scattering between different
species and chemical reaction) are amenable, at least for Maxwellian molecules, to ex-
act, though cumbersome, analytical expressions, making explicit their dependence on the
relevant hydrodynamic variables. The obtained fluid–dynamic model equations are then
applied to one of the most classical test problems in the field, i.e. the one–dimensional
steady shock wave problem, generalizing thus to the multi–temperature scenario the re-
sults achieved in [19]. Occurrence of reactive encounters changes quite drastically the
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situation with respect to the analogous problem for the inert mixture, since, at the kinetic
level, the relevant collision operators exhibit different collision invariants, thus different
conservation equations are in order, and also a crucial parameter like the Mach number
is changed, and becomes smaller than the corresponding inert one [20].

The paper is organized as follows. After recalling the main features of the reactive
Boltzmann equations for a mixture of gases undergoing reaction (1), the derivation of the
considered multi–temperature Euler closure is presented in Section 2, where also the var-
ious exchange rates for the quantities not conserved by the dominant process are worked
out explicitly under Maxwell–like collision models for both mechanical and chemical en-
counters. Steady shock profiles are then analyzed in Section 3 in terms of the achieved
hydrodynamic equations, going through conservation laws and Rankine–Hugoniot condi-
tions, and reducing the problem to a four–dimensional dynamical system. Occurrence of
either smooth or discontinuous solutions, and of possible relevant bifurcations versus the
Mach number, are also discussed here. Indeed we observe formation of subshocks (discon-
tinuous solutions) for varying parameters, in agreement with a famous general theorem
on hyperbolic systems of balance laws rigorously proved in [21]. Our results, though ob-
tained by a different approach, are in fact equivalent to the conditions for non–existence
of smooth solutions established by Boillat and Ruggeri. Some outputs from the extensive
numerical investigations for varying parameters are finally presented and commented on
in Section 4.

2 Reactive multi–temperature fluid–dynamic equa-

tions

Assuming that fast collisions driving the overall evolution are elastic encounters between
particles of the same species, the set of integro–differential Boltzmann–like equations
governing the distribution functions fi(t,x,v) ∈ L1(R×R

3×R
3) of the considered mixture

reads as

∂fi
∂t

+ v · ∇
x
fi =

1

ε
Iii[fi, fi] +

∑

j 6=i

Iij[fi, fj] + Ji[f
˜
] i = 1, . . . , 4, (2)

where f
˜
= (f1, f2, f3, f4), Iij is the collision integral for mechanical encounters of the (i, j)

pair, and Ji is the net gain by collision for species i in the chemical reaction (i, j, h, k),
with admissible sequences (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). They are given by
five fold integrals involving the collision kernels for pair elastic scattering Bij, and the
collision kernel for the direct reaction B34

12 (the one for the reverse reaction B12
34 follows

by microreversibility). Each species is endowed with an energy of chemical link Ei, and
the heat of reaction is given by

∆E = −
4∑

i=1

ΛiEi Λ
˜
= (1, 1,−1,−1) (3)

in terms of the stoichiometric coefficients Λi. Being only matter of convention, we may
always assume ∆E > 0, so that an energetic threshold occurs for the direct reaction
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in (1). The case ∆E = 0 is very particular and quite unphysical, and will be briefly
commented on at the end of Section 3. Possible activation energies are included in the
collision kernels. Chemical reaction (1) implies that particle masses mi are such that
m1 + m2 = m3 + m4. The interested reader is referred to [15, 16] for more details,
especially on collision equilibria and entropy dissipation. The former are provided by
local Maxwellians at common velocity u and temperature T , with number densities ni

related by the so–called mass action law of chemical equilibrium

n1n2

n3n4

=
χ1χ2

χ3χ4

=

(
µ12

µ34

)3/2

exp

(
∆E

T

)
, (4)

where µij =
mimj

mi+mj
denotes reduced mass, and χi =

ni

n
concentration fraction with respect

to total number density n. Macroscopic parameters for species and for the mixture, includ-
ing pressure tensor and heat flux, are defined in the standard way (see for instance [11]).
The H–theorem holds in terms of the reactive version of the classical H–functional [16].
The symbol ε > 0 in (2) is a kind of Knudsen number, the small parameter representing
the ratio of the fast to the slow time (and length) scales, which goes to zero in the asymp-
totic procedure leading to the sought fluid–dynamics. We are concerned here only with
the zero–order approximation, and with the closure of the macroscopic “conservation”
equations relevant to the dominant operator only, labelled by 1/ε in (2). They are proper
weak forms of (2) themselves, in number of 20, corresponding to test functions which rep-
resent particle number, momentum, and kinetic energy in each species, and are actually
only balance equations, due to the contributions of the slow collision mechanisms, which
do not preserve all of those quantities. In fact, the actual conservations holding for the
gas as a whole are only seven, and correspond to particle number in three independent
pairs of species, to the overall momentum vector, and to the overall (kinetic plus chemi-
cal) energy. This is due to the occurrence of exchanges between different species and of
transformation of energy from its kinetic to its chemical form and vice versa. Since in
each direct reaction of type (1) the disappearance of two particles of species 1, 2 is com-
pensated by the appearance of two particles of species 3, 4, and vice versa in the reverse
reaction, three independent sums of number densities preserved during the evolution are
n1+n3, n1+n4, n2+n4, but other options could be equivalently adopted. The 20 balance
equations above are of course exact, but not closed in the main macroscopic fields, and
obviously suitable combinations of them reproduce the actual 7 conservation equations
holding for the mixture. Setting g = v −w = g n̂, rij = mi/(mi +mj),

vij=rij v + rji (w + g n̂′), vhk
ij =rij v + rji w + rkh g

hk
ij n̂′, (5)

and

ghkij =

[
µij

µhk

(
g2−δhkij

)]1/2
, δhkij = 2

Eh+Ek−Ei−Ej

µij

, (6)

the general weak forms of collision operators corresponding to a smooth test function
ϕi(v) may be cast as
∫

ϕi(v) Iij[fi, fj](v) d3v =

∫∫∫
Bij(g, n̂ · n̂′)

[
ϕi(vij)− ϕi(v)

]
fi(v) fj(w) d3v d3w d2n̂

′

(7)
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and ∫
ϕi(v) Ji[f

˜
](v) d3v =

∫∫∫
ϕi(v

ij
hk)U(g2 − δijhk)

×
(
µij

µhk

)3/2
(
1 +

µij

µhk

δhkij
g2

)1/2

Bhk
ij (g

ij
hk, n̂ · n̂′)fh(v) fk(w) d3v d3w d2n̂

′

−
∫∫∫

ϕi(v)U(g2 − δhkij )B
hk
ij (g, n̂ · n̂′)fi(v) fj(w) d3v d3w d2n̂

′,

(8)

where U stands for unit step function. We refer once more to the quoted literature, in
particular to [15], for more quantitative information.

Now the sought Euler closure is achieved, for the considered physical scenario (one–
velocity, four–temperature description), by substituting the local Maxwellians

Mi(v) = ni

(
mi

2πTi

)3/2

exp

[
− mi

2Ti

(v − u)2
]

i = 1, . . . , 4 (9)

for the distribution functions in the set of exact balance equations discussed above. The 11
scalar parameters ni, u, Ti appearing in the family (9) of Gaussians are the hydrodynamic
unknown fields of interest to be determined. The substitution defined by (9) greatly
simplifies the exact balance equations, especially in the integrals expressing slow collision
contributions, all of the type (7) and (8). Skipping again the heaviest (and the simplest)
technical details, the closure procedure proceeds along the following steps.

In the selection of the 11 Euler equations it is convenient to choose the 7 fluid–dynamic
equations which are naturally in conservative form, namely, as previously stated,

∂

∂t
(ni + nj) +∇

x
·
[
(ni + nj)u

]
= 0 (i, j) = (1, 3), (1, 4), (2, 4)

∂

∂t
(ρu) +∇

x
· (ρu⊗ u) +∇

x
(nT ) = 0

∂

∂t

(
1

2
ρu2 +

3

2
nT +

4∑

i=1

Eini

)
+∇

x
·
[(

1

2
ρu2 +

5

2
nT +

4∑

i=1

Eini

)
u

]
= 0 ,

(10)

with n =
∑

4

i=1
ni, ρ =

∑
4

i=1
mini, and nT =

∑
4

i=1
niTi. We need then four equations of

non–conservative type, and we may resort to the continuity equation for one single species
and to the separate (kinetic) energy equations for three different species. Precisely, we
choose the continuity equation for species 1 and energy equations for species 2, 3, 4, but
of course other options would be equivalent:

∂n1

∂t
+∇

x
· (n1u) = Qch

1

∂

∂t

(
1

2
ρiu

2 +
3

2
niTi

)
+∇

x
·
[(

1

2
ρiu

2 +
5

2
niTi

)
u

]
=
∑

j 6=i

Sme

ij + Sch

i i = 2, 3, 4,

(11)
where

Qch

i =

∫
Ji d3v , Sme

ij =

∫
1

2
miv

2Iij d3v , Sch

i =

∫
1

2
miv

2Ji d3v , (12)
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with

Qch

i = ΛiQ
ch

1 ,

4∑

i=1

∑

j 6=i

Sme

ij = 0 ,
4∑

i=1

Sch

i = −Qch

1 ∆E . (13)

The source terms on the right hand side of (11) are in principle known functions of the
hydrodynamic fields ni, u, Ti once the approximation (9) is used in (7) and (8) in order
to express (12). The product of two Maxwellians of type (9) may be rewritten as

Mi(v)Mj(w) = ninj

(
mi

2πTi

)3/2(
mj

2πTj

)3/2

exp
[
− αij

(
Gij + γijg − u

)2]
exp

(
− βijg

2
)

(14)
with Gij = rijv + rjiw and

αij =
mi

2Ti

+
mj

2Tj

, βij =

(
2Ti

mi

+
2Tj

mj

)−1

, γij =
µij

αij

(
1

2Ti

− 1

2Tj

)
, (15)

so that all integrations may be performed in terms of center of mass and relative velocities.
In addition

(vhkij )
2 = G2

ij + r2kh(g
hk
ij )

2 + 2rkhg
hk
ij Gij · n̂′ (16)

and analogously for v2ij, so that all angular integrations needed may be performed sepa-
rately, and can be cast in terms of the quantities

Bk
ij(g) =

∫

S2

(n̂ · n̂′)kBij(g, n̂ · n̂′)d2n̂
′ k = 0, 1,

Bk(g) =

∫

S2

(n̂ · n̂′)kB34

12(g, n̂ · n̂′)d2n̂
′ k = 0, 1,

(17)

with 0 < |B1
ij| < B0

ij and 0 < |B1| < B0. We set for future use B̄ij(g) = B0
ij(g)− B1

ij(g).
So, for instance, the reaction rate for species 1 takes the form

Qch

1 =

(
µ12

µ34

)3/2 ∫∫
B0(g

12

34)

(
1 +

2∆E

µ34g2

)1/2

M3(v)M4(w) d3G34 d3g

−
∫∫

B0(g)U

(
g2 − 2∆E

µ12

)
M1(v)M2(w) d3G12 d3g ,

(18)

where also integrations with respect to center of mass velocities can be performed sep-
arately, leaving only in conclusion a scalar integral with respect to g, whose integrand
depends of course on the trend of B0 versus g. Analogous steps apply to the mechanical
energy exchange rates, with final result

Sme

ij = −µij

∫∫
B̄ij(g)Gij · gMi(v)Mj(w) d3Gij d3g . (19)

The chemical energy exchange rate

Sch

i =
1

2
mi

(
µij

µhk

)3/2 ∫∫∫
(vijhk)

2U(g2 − δijhk)

(
1 +

µij

µhk

δhkij
g2

)1/2

× Bhk
ij (g

ij
hk, n̂ · n̂′)Mh(v)Mk(w)d3Ghk d3g d2n̂

′

− 1

2
mi

∫∫∫
v2U(g2 − δhkij )B

hk
ij (g, n̂ · n̂′)Mi(v)Mj(w) d3Gij d3g d2n̂

′

(20)
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can be handled in the same way, after resorting to (16), to the result
∫

S2

n̂′ Bhk
ij (ξ, n̂ · n̂′)d2n̂

′ =
1

g
g

∫

S2

(n̂ · n̂′)Bhk
ij (ξ, n̂ · n̂′)d2n̂

′ , (21)

to definitions (17), and to microreversibility relation

B12

34(g, n̂ · n̂′) =

(
µ12

µ34

)2
g1234
g

B34

12(g
12

34, n̂ · n̂′) . (22)

We omit for brevity the huge final expression, also because it is not needed for the purpose
of the present work. We shall rather concentrate on a case in which all of the above
integrations can be cast in closed analytical form, namely the Maxwell collision model

Bij(g, n̂ · n̂′) = κij(n̂ · n̂′), B34

12(g, n̂ · n̂′) = κ(n̂ · n̂′), (23)

in which case all of the Bk
ij, B̄ij, Bk become some constant κk

ij, κ̄ij, κk, while the collision
kernel for the reverse reaction exhibits a dependence on the relative speed

B12

34(g, n̂ · n̂′) =

(
µ12

µ34

)3/2(
1 +

2∆E

µ34g2

)1/2

κ(n̂ · n̂′). (24)

Under option (23), in contribution (19) the quantity B̄ij is constant hence it comes out
of the integral, and bearing in mind the expression (14) for Mi(v)Mj(w) the integrations
over the variables Gij and g may be performed separately, leading to

Sme

ij = − 3rijrjininjκ̄ij(Ti − Tj). (25)

Lengthier but rather standard manipulations allow to reduce (18) to Gaussian integrals
on cut domains, leading to the appearance of incomplete Euler gamma functions of half
integer order (amenable to error functions). They yield

Qch

1 =
2√
π
κ0

[
n3n4

(
µ12

µ34

)3/2

exp

(
∆E

r43T3 + r34T4

)
Γ

(
3

2
,

∆E

r43T3 + r34T4

)

− n1n2Γ

(
3

2
,

∆E

r21T1 + r12T2

)]
.

(26)

For i = 1 (and similarly for i = 2) the reactive energy exchange rate becomes

Sch

1 =

(
µ12

µ34

)3/2

n3n4

(
m3

2πT3

)3/2(
m4

2πT4

)3/2
1

2
m1

×
∫∫ {

κ0

[
G2

34 + r221
µ34

µ12

(
g2 +

2∆E

µ34

)](
1 +

2∆E

µ34g2

)1/2

+ 2κ1r21

(
µ34

µ12

)1/2

× G34 · g
(
1 +

2∆E

µ34g2

)}
exp

[
− α34

(
G34 + γ34g − u

)2]
exp(−β34g

2)d3G34d3g

− n1n2

(
m1

2πT1

)3/2(
m2

2πT2

)3/2
1

2
m1κ0

∫∫ (
G12 + r21g

)2
U

(
g2 − 2∆E

µ12

)

× exp
[
− α12

(
G12 + γ12g − u

)2]
exp(−β12g

2)d3G12d3g ,

(27)
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and again patient and careful calculations allow an explicit result in terms of incomplete
gamma functions. Analogous steps are in order for Sch

3 (and similarly for Sch

4 )

Sch

3 = n1n2

(
m1

2πT1

)3/2(
m2

2πT2

)3/2
1

2
m3

×
∫∫ {

κ0

[
G2

12 + r243
µ12

µ34

(
g2 − 2∆E

µ12

)]
+ 2κ1r43

(
µ12

µ34

)1/2

G12 · g
(
1− 2∆E

µ12g2

)1/2
}

× U

(
g2 − 2∆E

µ12

)
exp

[
− α12

(
G12 + γ12g − u

)2]
exp(−β12g

2)d3G12d3g

−
(
µ12

µ34

)3/2

n3n4

(
m3

2πT3

)3/2(
m4

2πT4

)3/2
1

2
m3κ0

∫∫ (
G34 + r43g

)2
(
1 +

2∆E

µ34g2

)1/2

× exp
[
− α34

(
G34 + γ34g − u

)2]
exp(−β34g

2)d3G34d3g .

(28)
Skipping all intermediate details, at the end of the tedious procedure, it is possible to
summarize all reactive energy rates in a single expression, featuring the stoichiometric
coefficients

Sch

i =
1√
π
miκ0

{(
µij

µhk

) 3(1+Λi)

4

nhnk exp

(
(Λi + 1)∆E

2(rkhTh + rhkTk)

)[(
3ThTk

mkTh +mhTk

−(1− Λi)
µij

m2
i

∆E − (1 + Λi)µhk

(
Tk − Th

mkTh +mhTk

)2

∆E + u2

)
Γ

(
3

2
,

∆E

rkhTh + rhkTk

)

+2 (rkhTh + rhkTk)

[
µhk

(
Tk − Th

mkTh +mhTk

)2

+
µij

m2
i

]
Γ

(
5

2
,

∆E

rkhTh + rhkTk

)]
−
(
µhk

µij

)3(1−Λi)

4

×ninj exp

(
(1− Λi)∆E

2(rjiTi + rijTj)

)[(
3TiTj

mjTi +miTj

− (1− Λi)µij

[
(mi +mj)Ti

mjTi +miTj

]2
∆E + u2

)

×Γ

(
3

2
,

∆E

rjiTi + rijTj

)
+ 2µij (rjiTi + rijTj)

[
(mi +mj)Ti

mjTi +miTj

]2
Γ

(
5

2
,

∆E

rjiTi + rijTj

)]}

−2

(
µij

µhk

) 1+3Λi
4

rijrjinhnkκ1 exp

(
(Λi − 1)∆E

2(rkhTh + rhkTk)

)(
3

2
+

∆E

rkhTh + rhkTk

)
(Tk − Th) .

(29)
For Maxwell type collision model (23), the multi–temperature single–velocity Euler equa-
tions for reaction (1) are then given by the 11 equations (10)+(11), with exchange rates for
non–conserved quantities provided by (25), (26), and (29) in terms of the angle–integrated
constant collision kernels κ̄ij, κ0, and κ1.

“Collision” equilibria for such a set of evolution equations correspond to states for
which all reactive rates on the right hand sides vanish. The “physical” equilibrium from
kinetic theory requires all equal temperatures and mass action law (4) for densities and
temperature. It is readily seen that Ti = Tj ∀i, j implies immediately Sme

ij = 0 ∀i, j, and

Qch

1 =
2√
π
κ0Γ

(
3

2
,
∆E

T

)[
n3n4

(
µ12

µ34

)3/2

exp

(
∆E

T

)
− n1n2

]
. (30)
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Moreover, all Sch

i are proportional to Qch

1 , for instance

Sch

1 =
1√
π
m1κ0

[(
3T

m1 +m2

+ u2

)
Γ

(
3

2
,
∆E

T

)
+

2m2T

m1(m1 +m2)
Γ

(
5

2
,
∆E

T

)]

×
[
n3n4

(
µ12

µ34

)3/2

exp

(
∆E

T

)
− n1n2

]
.

(31)

If then (4) holds, all Qch

i and Sch

i are bound to vanish, as expected from any good approx-
imation. Actually, if we pretend collision equilibria to hold for any choice of (Maxwellian)
collision kernels, the above “physical” equilibria are in a sense unique. In fact, mechan-
ical and reactive collision contributions should then vanish simultaneously, and, due to
negativity properties of the matrix appearing in Sme

ij , established in [15], this requires
that all temperatures must be equal to each other. Once we can rely on this statement,
the reactive collision contributions take forms (30), (31), and must in turn vanish, which
happens if and only if the mass action law (4) holds.

Option (23) is not the only one allowing an analytical form of exchange rates, even
simpler expressions would arise if instead the exothermic collision kernel B12

34 were taken
independent of g, and some simple power like trend could be worked out at the price of
additional machinery. For the application presented below in this paper we shall stick
to (23), which is simple enough for calculations, and at the same time realistic enough
to represent a typical threshold event, with a microscopic collision frequency shaped as a
perfect step.

3 Application to the one–dimensional shock wave prob-

lem

As anticipated, we shall test the reactive multi–temperature fluid–dynamic Euler model
proposed in the previous section on the classical steady shock problem in one space dimen-
sion, in which case mass velocity becomes a scalar, and we are left with 9 observable fields,
governed, in the reference frame of the moving wave, by the set of ordinary differential
equations

d

dx
(n1u) = Qch

1

d

dx

[
(ni + nj)u

]
= 0 (i, j) = (1, 3), (1, 4), (2, 4)

d

dx

(
ρu2 + nT

)
= 0

d

dx

(
1

2
ρu3 +

5

2
nTu+

4∑

i=1

Einiu

)
= 0

d

dx

(
1

2
ρiu

3 +
5

2
niTiu

)
=
∑

j 6=i

Sme

ij + Sch

i i = 2, 3, 4,

(32)
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where Qch

1 , Sme

ij , and Sch

i are given respectively by (26), (25), and (29). The shock solution
must join two limiting equilibrium states at x → ±∞, which are then characterized by

T±
i = T± i = 1, . . . , 4,

χ±
1 χ

±
2

χ±
3 χ

±
4

=

(
µ12

µ34

)3/2

exp

(
∆E

T±

)
. (33)

Each state is then determined by the knowledge (for instance) of density n±, tempera-
ture T±, two out of the four concentration fractions χ±

i , and velocity u±, which also define
the relevant sound speeds via [20]

c± = α±

(
5n±T±

3ρ±

)1/2

(α±)2 =

4∑

i=1

1

χ±
i

+
2

5

(
∆E

T±

)2

4∑

i=1

1

χ±
i

+
2

3

(
∆E

T±

)2
< 1 , (34)

and the corresponding Mach numbers

Ma
± =

u±

c±
. (35)

The 5 conservation laws in (32) establish a relation between the 5 downstream (+) and
upstream (−) parameters, the famous Rankine–Hugoniot conditions, which determine the
downstream state once the upstream one is given, like in the much more standard and
manageable inert problem. A detailed analysis has already been performed in Ref. [20],
but some steps are repeated here for the readers’ convenience. Rankine–Hugoniot condi-
tions read as

(n−
i + n−

j )u
− = (n+

i + n+

j )u
+ (i, j) = (1, 3), (1, 4), (2, 4),

n−T− + ρ−(u−)2 = n+T+ + ρ+(u+)2,

1

2
ρ−(u−)3 +

5

2
n−T−u− +

4∑

i=1

Ein
−
i u

− =
1

2
ρ+(u+)3 +

5

2
n+T+u+ +

4∑

i=1

Ein
+

i u
+;

(36)

the first three of them may be rewritten as

(χ−
i + χ−

j )n
−u− = (χ+

i + χ+

j )n
+u+ (i, j) = (1, 3), (1, 4), (2, 4), (37)

and simple manipulations show that

χ+

i = χ−
i + Λi∆χ i = 1, . . . , 4,

n+

n−
=

ρ+

ρ−
=

u−

u+
, (38)

where the parameter ∆χ is proved to be in a one–to–one relationship with u− and then
with the upstream Mach number, and determines uniquely T+ via (33). The process is
then closed by the formulas

n+

n−
= 2

(
1− T−

T+

)
− ∆E

T+
∆χ+

{[
2

(
1− T−

T+

)
− ∆E

T+
∆χ

]2
+

T−

T+

}1/2

u− =

(
n−T−

ρ−

)1/2 [
n+

n−

1− (n+/n−)(T+/T−)

1− (n+/n−)

]1/2
.

(39)
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Finally, the entropy flux condition imposed by the H–theorem results in the constraint, to
be fulfilled for a physical shock wave to exist, ∆χ < 0, which is equivalent to the familiar
Ma

− > 1.
When solving the differential set (32), the 5 conservation equations allow to eliminate

5 variables, namely all ni and T , in terms of u, explicitly

ni =
n−
i u

−

u
− ΛiN T =

ρ−(u−)2 + n−T−

n−u−
u− ρ−

n−
u2

N =
1

∆E

[
2ρ−u−u− 5

2

(
ρ−(u−)2 + n−T−

)
+

(
1

2
ρ−(u−)3 +

5

2
n−T−u−

)
1

u

]
,

(40)

implying also n = n−u−/u and ρ = ρ−u−/u. Since also nT =
∑

4

i=1
niTi, we are left

with only 4 unknown fields, namely u, T2, T3, T4, for which we have to solve the 4
non–conservative equations in (32), that could be cast in normal form to yield the four–
dimensional dynamical system to be solved numerically, looking for an heteroclinic orbit
connecting the upstream and downstream equilibria in the phase space. The crucial
problem is the first equation, which reduces to the form

d

dx
F (u) = G(u, T2, T3, T4), lim

x→±∞
u(x) = u±, (41)

where G is nothing but Qch

1 , which depends on all ni and Ti, once variables have been
reduced by the use of (40), while F = n1u takes the polynomial form in u

F (u) = n−
1 u

−− 1

∆E

[
2ρ−u−u2 − 5

2

(
ρ−(u−)2 + n−T−

)
u+

1

2
ρ−(u−)3 +

5

2
n−T−u−

]
. (42)

The derivative F ′(u) = dF
du

is then linear in u, and vanishes at u = u∗, where

u∗ =
5

8

ρ−(u−)2 + n−T−

ρ−u−
, (43)

so that the vector field of the dynamical system is singular on the hyperplane u = u∗,
which might or might not interfere with the admissible phase space. It is easy to check
that in our problem we have 0 < u+ < u−, and that the collocation of u∗ with respect
to u− is represented by

u∗ ≷ u− ⇐⇒ (u−)2 ≶
5n−T−

3ρ−
⇐⇒ Ma

− ≶
1

α−
. (44)

We deduce that for slightly supersonic flows (upstream Mach number in the interval
(1, 1/α−)) one can expect that the singularity does not affect the phase space, the vector
field is regular, and a smooth solution for the steady shock is allowed. But, as soon as
u− increases and the Mach number exceeds the threshold 1/α− > 1, a smooth solution is
ruled out, and one has to search for weak solutions, presenting jump discontinuity, which
indeed are the only possible shock solutions for the standard (conservative) inert Euler
equations. This effect is not new in classical thermodynamics [22]: though the equations
are of Euler type, there is a small region in parameter space in which non–equilibrium
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processes (like chemical reactions) have a dissipative effect, similar to viscosity or heat
conduction, and allow for a smooth solution, whereas in most of that space the solution
necessarily presents a discontinuity. The transition from one regime to the other occurs
here at the bifurcation value 1/α− of the Mach number. Similar (stronger) dissipative
effects are expected to occur in a multi–velocity and multi–temperature Euler approach,
because of the presence of diffusion velocities for the various species, which also induce
non–vanishing viscous stress and heat flux for the mixture, though single distribution
functions are Maxwellians. However, the problem, which requires much heavier numerical
computations, is not addressed here, and will be considered in future investigations.

In order to study weak solutions with discontinuity at some point x (that can be always
shifted by invariance to the origin), one has to look for a piecewise smooth solution in
the separate intervals (−∞, 0) and (0,+∞), satisfying limiting conditions at ±∞, and
whose limits for x → 0− and x → 0+, labelled by m and p superscripts, respectively, fulfil
the constraints following from the differential equations themselves. Since the right hand
sides of the last three equations in (32) are bounded functions, those equations imply
merely continuity of the quantities under derivative operator across the jump, namely

1

2
ρmi (u

m)3 +
5

2
nm
i T

m
i um =

1

2
ρpi (u

p)3 +
5

2
np
iT

p
i u

p i = 2, 3, 4. (45)

This is not true for the velocity field, as follows from (41), since F ′(u) vanishes at u = u∗.
However, the same technique as before yields the constraint F (um) = F (up), from which,
on using (42) and bearing (43) in mind

up + um

2
=

5

8

ρ−(u−)2 + n−T−

ρ−u−
= u∗ , (46)

meaning that the singular value u = u∗ exactly represents the midpoint of any admissible
jump.

The jump in the velocity profile induces of course corresponding discontinuities in the
gas number density n = n−u−/u, in the temperature T , and in the species densities ni,
as prescribed by (40). There is instead no jump for the concentrations χi, since the single
continuity equations may be written as

dχi

dx
=

Λi

n−u−
Qch

1 , (47)

where now the right hand side is a bounded function of x. So, the same reasoning leading
to (45) yields now χp

i = χm
i .

In order to construct the sought (smooth or weak) solutions, one needs to investigate
stability of the limiting equilibria. We consider the subsystem made by the balance
equations in (32), namely the first and last three equations, in the chosen unknowns u,
T2, T3, T4. We have rewritten it in normal form and we have studied the relevant Jacobian
matrix with the help of symbolic manipulation, that was able to determine at both ends
its four eigenvalues. In all cases that have been run, it turns out that all eigenvalues
of the downstream state have negative real part. The same happens for the upstream
state as long as Ma

− > 1/α− (weak solution regime). As soon as Ma
− descends below

this bifurcation value (possible smooth solution), the upstream Jacobian matrix exhibits

12



one positive eigenvalue, while the other three keep negative real part. The transition is
singular in that such an eigenvalue diverges to −∞ when Ma

− approaches the threshold
from above, and re–appears from +∞ after the crossing. The scenario suggested by the
above facts, and confirmed by numerical experiments presented in the next Section, is the
following.

ForMa
− < 1/α− the upstream equilibrium is a saddle with a one–dimensional unstable

manifold and a three–dimensional stable manifold, and the only way to reach it running
backwards towards −∞ is to follow the unstable manifold, tangent to the one–dimensional
unstable eigenspace. That manifold represents the unique non–constant solution of our
shock problem fulfilling the upstream condition, and enters the phase space, where it
is attracted by the asymptotically stable downstream equilibrium, providing the sought
heteroclinic orbit, and the smooth shock profile.

For Ma
− > 1/α− the upstream equilibrium is itself asymptotically stable, and the

only admissible solution satisfying the upstream condition is the constant solution, which
of course can not reach the downstream equilibrium for x → +∞. The only way to do
that is through a jump discontinuity, governed by (45) and (46), where necessarily ρmi ,
um, nm

i , T
m
i must coincide with ρ−i , u

−, n−
i , T

−
i . A simple calculation yields then the

corresponding values reached across the jump

up = 2u∗ − u− =
ρ−(u−)2 + 5n−T−

4ρ−u−
,

T p
i =

n−
i u

−

np
iu

p
T− +

1

5
mi

(
n−
i u

−

np
iu

p
(u−)2 − (up)2

)
i = 2, 3, 4,

(48)

where np
i (as well as all other quantities of interest) are determined by up via (40). At

this point, the state (48) across the jump is a point in the phase space attracted by the
asymptotically stable downstream equilibrium, and a smooth trajectory joins it to that
state for x → +∞. This builds up the sought weak shock wave solution (subshock), with a
jump discontinuity from upstream equilibrium to an intermediate non–equilibrium state,
followed by a smooth tail leading that state to the downstream equilibrium. Actually,
formation of subshocks is not observed, and not predicted at the kinetic level (see for
instance [23, 24] for reactive BGK approaches). As conjectured in the inert case [8],
the reason of this discrepancy could be the fact that the Euler closure neglects many
dissipative effects (like viscosity and heat conductivity) and more moments are needed in
order to reproduce results obtained by kinetic models for high Mach numbers.

In all of the above discussion we have implicitly assumed ∆E 6= 0 (i.e., ∆E > 0) and
avoided particular cases. We just comment that only a constant solution is possible for
Ma

− = 1, and that for Ma
− = 1/α− the jump disappears, but the solution is not smooth

since the initial slopes of the tails diverge. When instead ∆E = 0 the shock problem even
changes its nature, and, as shown in [20], only an inert–like step profile is possible, with
the same chemical composition up– and downstream.
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4 Results and comments

We shall show explicitly in this Section the shock profiles resulting from the numerical
integration of the multi–temperature Euler differential equations (32) for the 9 fields ni,
u, Ti, i = 1, . . . , 4, describing the considered gas mixture undergoing reaction (1). Such
equations may be made non–dimensional by re–scaling masses, collision kernels, densities,
velocities, temperatures, and the independent variable x in terms of typical values m̃, B̃,
ñ, ũ, T̃ , and L. Choosing T̃ = ∆E, and accordingly ũ = (∆E/m̃)1/2, the parameter ∆E
disappears at all, and dimensionless equations differ from the dimensional ones only by
the presence of a factor ũ/B̃ñL in front of the space derivatives. Therefore, the choice
L = ũ/B̃ñ yields a kind of universal set of equations which, just upon re–scaling, are
valid for any selection of the various reference units. In conclusion, aiming mainly at
illustrative and comparative purposes for varying parameters, we consider equations (32)
as dimensionless, on arbitrary scales, and with ∆E implicitly understood to be unity.
The relevant results are then sensitive only to the mutual relationships among masses and
among collision kernels (mechanical and reactive), and to the fixed upstream conditions
(in particular, the Mach number Ma

−). Smooth solutions are normalized in such a way
that u(0) = (u+ + u−)/2, whereas for weak solutions the jump is located at x = 0. All
computations were performed by integrating forward and resorting to standard Runge–
Kutta methods.

As a reference test case, having in mind a possible bimolecular reaction likeH2O+H ⇄

OH +H2, the dimensionless masses are taken to be

m1 = 1.8 m2 = 0.1 m3 = 1.7 m4 = 0.2 , (49)

and, to begin with, collision frequencies are chosen as κ̄ij = 1, κ0 = 1, κ1 = 0.5 (equally ef-
fective mechanical and reactive exchange mechanisms and forwardly oriented anisotropy).
As upstream conditions we take the situation defined by n− = 1.85 and by concentration
fractions

χ−
1 = 0.4324 χ−

2 = 0.4865 χ−
3 = 0.0270 χ−

4 = 0.0541 , (50)

from which T− = 0.1688 and α− = 0.9421. The bifurcation value for Ma
− is then 1/α− =

1.0614. Now, on the basis of the Rankine–Hugoniot conditions previously discussed, both
limiting conditions for the shock problem are determined by assigning the parameter
∆χ < 0, which, via the various equations (38), (33), (39), (35), defines uniquely u− (and
then Ma

−) as well as all downstream parameters n+, χ+

i , T
+, u+.

An important role is played, as anticipated, by the stability properties of the upstream
equilibrium, which undergoes a bifurcation when parameters are varied. The real parts of
the eigenvalues, determined by using Symbolic Math Toolbox in Matlab, are plotted versus
Ma

− > 1 in Figure 1. On a physical scale (left plot), one can see how, for increasing Ma
−,

there is a positive eigenvalue blowing up when approaching bifurcation, and three negative
eigenvalues, two of which merge together in a complex conjugate pair with negative real
part. After the critical threshold, the formerly positive eigenvalue re–appears from −∞,
and then increases up to the order of magnitude of the other eigenvalues, which remain
negative, after “feeling” only slightly the occurrence of criticality, and seem to stabilize
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Figure 1: Real part of the eigenvalues of the upstream equilibrium for the reference case
versus Mach number on a physical (a) and on a stretched (b) scale. The bifurcation value
for Ma

− is marked by a dotted line.

at constant values for increasing Ma
−. On the stretched scale around the critical Mach

number (right plot), one can see the very abrupt and fast variations of the bifurcating
eigenvalue, occurring on the scale of the fourth significant digit; on that vertical scale all
other eigenvalues appear as coincident.

We start from the choice Ma
− = 1.01 (corresponding to ∆χ = −0.0008) and implying

u− = 0.5369, u+ = 0.5283, T+ = 0.1701. In this only slightly supersonic case, the very
smooth shock profiles for u and Ti are shown in Figure 2 (notice the stretched vertical
scale). The solution has been found numerically starting from a close neighborhood in
phase space of the upstream equilibrium, choosing an initial point in the direction of
its one–dimensional unstable eigenspace. After trials and errors, the phase trajectory
leaves the neighborhood along the unstable manifold, and tends, for x → +∞, to the
downstream equilibrium, which is always asymptotically stable (all eigenvalues, not shown
here for brevity, have negative real parts).

We increase then Ma
− to 1.06 (very close to the bifurcation value, but still on the

smooth side), corresponding to ∆χ = −0.0046. In this case u− = 0.5635, u+ = 0.5128,
T+ = 0.1766, and we plot mass velocity, gas temperature, species densities, and species
temperatures in Figure 3. Trends remain of the same type, of course with stronger separa-
tion between the asymptotic values, but the much higher positive eigenvalue (see Figure 1)
makes detachment from the upstream equilibrium much faster, which explains the much
sharper edge and the considerable steepening of the profiles upstream, whereas the trends
downstream remain more gradual (no significant changes in the eigenvalues at +∞). One
may notice possible occurrence of overshooting in some species temperatures.

If we now increase the Mach number across the bifurcation and take Ma
− = 1.065 i.e.

∆χ = −0.0050 (0.5% variation), asymptotic values also change very little (u− = 0.5662,
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Figure 2: Mass velocity (a) and species temperatures (b) versus x for the reference case
when Ma

− = 1.01.

u+ = 0.5114, T+ = 0.1772) but the singularity enters the phase space (u∗ = 0.5647),
and only a discontinuous solution exists, as shown in Figure 4, as a development of the
previous (smooth) sharp edge.

If Ma
− is increased further to 1.15 (u− = 0.6113, u∗ = 0.5774, u+ = 0.4896) the jump

discontinuity enlarges significantly (a considerable fraction of the gap between upstream
and downstream states), with a clear overshooting effect for some temperatures, and a
much larger spread among species across the shock front, as shown for u and the Ti in
Figure 5. One can notice also some affinity in the temperatures of species with compara-
ble mass. The same effects become more and more evident for increasing Mach number,
as apparent in Figure 6 for Ma

− = 2.5, where the jump of u covers to a great extent the
difference between asymptotic states, leaving only a flat tail downstream, whereas tem-
peratures are very different in the shock region behind the front, with huge overshooting
and with a spread that is larger than the temperature difference T+ − T−. Notice also
how the shock thickness sensibly decreases for increasing Ma

− throughout Figures 2–6, as
expected.

The plots above relevant to the considered reference test problem remain qualitatively
similar if the input conditions are varied, and we conclude this Section by briefly dis-
cussing the main observed changes. Anisotropy of collision seems to play only some very
minor role, whereas some effects show up when to collision frequencies for mechanical
and chemical encounters are given different weights. So, if all elastic collision kernels κ̄ij

are set equal to 0.01, the reduced collisionality strongly enhances the length of the tails,
as shown in Figure 7, relevant to Ma

− = 2.5 (thus to be compared to Figure 6), where
the concentration fractions χi and species temperatures Ti are plotted. One can also ob-
serve here some slightly oscillating trends in the initial part of the temperature tails, as
probably due to the fact that evolution is driven essentially by reactive events, which do
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Figure 3: Mass velocity (a), gas temperature (b), species densities (c), and species tem-
peratures (d) versus x for the reference case when Ma

− = 1.06 (smooth solution).
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Figure 4: Mass velocity (a), gas temperature (b), species densities (c), and species tem-
peratures (d) versus x for the reference case when Ma

− = 1.065 (discontinuous solution).
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Figure 5: Mass velocity (a) and species temperatures (b) versus x for the reference case
when Ma

− = 1.15.
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Figure 6: Mass velocity (a) and species temperatures (b) versus x for the reference case
when Ma

− = 2.5.
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Figure 7: Concentration fractions (a) and species temperatures (b) versus x for Ma
− = 2.5

when elastic collision kernels are reduced by a factor 102 with respect to the reference case.

not necessarily prescribe, by themselves, temperature equalization. The opposite effect is
obviously observed if all elastic collision kernels κ̄ij are set equal to 20, as in Figure 8,
relevant again to Ma

− = 2.5, and with the same layout of Figure 7. Comparison with
Figure 6 shows that convergence to downstream equilibrium (accuracy test of 10−4) occurs
on the scale of 2 dimensionless length units, instead of 10. Since mechanical encounters
affect primarily temperature evolution, one can observe here how relaxation is faster for
temperatures than for concentrations (or densities), and indeed the same accuracy test is
fulfilled by temperatures already after 1 length unit.

An example of possible variation of upstream conditions is illustrated in Figure 9, left
plot, where, with respect to the test case, concentrations have been changed to the more
balanced distribution

χ−
1 = 0.25 χ−

2 = 0.35 χ−
3 = 0.25 χ−

4 = 0.15 , (51)

which imply a smaller critical Mach number 1.0227, and where Ma
− has been chosen

as 1.1. The shown temperature profiles should be compared qualitatively to those of
Figure 5. Mass ratios also play some role, and this is what the right plot of Figure 9 is
about. Here, the only change with respect to the left part is that masses have been varied
to

m1 = 3 m2 = 4.4 m3 = 4.6 m4 = 2.8 (52)

relevant to the reaction NO+CO2 ⇄ NO2+CO. Now the critical Mach number decreases
further to 1.0049, so that Ma

− = 1.1 becomes comparatively higher, which explains the
stronger (relative) jump. Also, masses are now much more balanced, which implies larger
exchange rates in collisions and then faster tail relaxation. Again one can notice affinity
in the temperatures of species with almost equal masses: 1 with 4 and 2 with 3 here (it
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Figure 8: Concentration fractions (a) and species temperatures (b) versus x for Ma
− = 2.5

when elastic collision kernels are increased by a factor 20 with respect to the reference
case.

was 1 with 3 and 2 with 4 with masses (49)).
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